第一篇:《循环小数》教学设计
“引导探究
自主学习”教学模式尝试
——《循环小数》教学设计
左卫寨小学 马槐春
教学内容:义务教育课程标准实验教科书北师大版小学数学四年级下册书69-70页
教学目标: 知识与能力
通过计算两只蜗牛每分爬行多少米,发现商和余数的特点,知道什么是循环小数。会表示循环小数,会用四舍五入法对循环小数取近似值。
过程与方法
通过动物乐园的情景,体会生活中的实际问题,进一步体会数学与生活的密切联系,利用已有知识,经历探索循环小数的过程,发展应用意识。
情感、态度与价值观
通过探究现实生活中的相关问题,体会数学与现实的密切联系,激发数学学习的兴趣,培养数学应用的的意识,通过小组合作,探究学习,培养团队协作的意识,养成实事求是的科学态度。
教学准备:关于自然界循环现象的资料。多媒体课件 教学重点:循环小数的认识 准确地判断循环小数 教学难点:能够正确表示循环小数 教学过程:
一、创设情境,引导生疑。
1、听故事,认识循环
课件出示《和尚和庙》的故事,教师讲故事,并让学生接着往下讲。并提问:你们为什么能很整齐的将这个故事续讲下去? 生:因为这个故事就是将这四句话重复讲下去。
师:也就是说,按这样相同的次序不断地重复出现。如果老师让你们继续讲下去,不准停,你们能讲多少次? 生:无数次.....2、课件出示找规律填空,指名学生完成并说说你发现的规律。师:这些图片和刚才的故事都是依次不断重复的出现。我们把这种不断重复的现象叫做循环。
3、提问:你能说出生活中的循环现象吗?
其实只要我们留心观察,就能发现这些依次不断重复出现的现象在生活是普遍存在的。今天我们就一同到数学王国里去找找看。
【设计意图:生动有趣的活动容易吸引学生的注意力,激发学生的学习兴趣。这个活动简单有趣,学生容易明白教师的意图,利于形成对“循环”这一概念的初步认识。为了让学生更深地感受重复现象,教师让学生说一些生活中的重复现象,这是密切联系生活实际,尊重学生已有的知识经验,让学生懂得数学来源于生活。】
二、探索交流,引导解疑。
(一)、认识循环小数
1、出示教材主题图:小蜘蛛和小蜗牛正在进行激烈的爬行比赛,请同学们认真观察,从图中你发现了哪些数学信息?能提出什么数学问题?
2、课件出示问题:谁爬得快?指导学生列示,(师板书:73÷3 9.4 ÷11)
3、指名学生上黑板列竖式计算。在计算的过程中想想你发现了什么规律。
4、是呀!73÷3的余数不断重复,商也不断重复,永远都除不完,它的商可以这样写:24.3333„后面加省略号,表示还有无数个3,这样的数叫做循环小数。
5、让学生总结一下什么是循环小数。课件出示循环小数的概念,齐读。
【设计意图:学生通过自主探究与合作交流认识了循环小数,使学生全面参与新知的产生、发展和形成过程,真正体验到探究的乐趣和学数学的价值,有利于学生今后的再学习。】
(二)、探索循环小数的读写
1、学习循环小数的读法
让学生自己试着读一读,教师指导。(板书24.333„读作:二十四点三,三循环。0.85454 „读作零点八五四,五四循环)
课件出示练习题火眼金睛。快速认出哪些是循环小数?让学生分组完成。
【设计意图:在学习新概念后,紧接着安排这两道直接应用新概念的练习,以达到及时强化记忆、巩固概念的目的。】
2、学习循环小数的简便写法
师:你们想不想知道循环小数还有其他表示方法,那就请我们的数学万花筒来告诉我们吧。(课件出示数学万花筒)。读了这段话你知道了什么?
【设计意图:让学生自主探究,自己寻找知识,有利于发挥学生的主动性,调动学生的积极性】
3、在黑板上粘贴纸条,让学生上黑板找出循环小数的循环节,并写出简便写法。
(三)、对循环小数取近似值
师:我们计算时如果用到那么一长串数字,会很麻烦吗?(会)那么我们根据需要可以用四舍五入法取他们的近似值来进行计算。前面我们学了四舍五入法取一个数的近似值,同学们还记得吗?取循环小数的近似值的方法和整数的一样,都要用到四舍五入的方法。
课件出示我能行的练习题,学生以小组为单位抢答完成。
【设计意图:通过根据实际情况,取循环小数的近似值,加强知识间的联系,培养实际应用能力。】
(四)、了解小数的分类
1、课件出示一组小数,开火车读
2、要求学生把这些小数分成两类,告诉学生分为有限小数和无限小数。
3、再要求学生把无限小数分为两类,可分为无限循环小数和无限不循环小数。
【设计意图:使学生全面参与了解新知识,真正体验到探究的乐趣,感受到数学的美。】
三、拓展应用,内化提高
1、摆一摆:
每组发一组数字卡片,让学生摆成循环小数,并记录下来。在规定的时间内看哪组摆的循环小数最多。
2、课件出示:小刚练习书法,他把“我们是共产主义接班人”这句话 依次反复写,第62个字应写什么字?小组讨论,集体反馈。
【设计意图:这两个练习是发展题,一方面让学生研究循环小数的规律,另一方面培养学生动手操作能力和逻辑思维能力。】
四、全课小结
师:通过这节课的学习,你有哪些收获?
【设计意图:让学生在重温学习的过程中获得积极的情感体验,使知识的脉络更清晰,更有条理。】
第二篇:循环小数教学设计
循环小数教学设计
教学内容:第九册第三单元第27-29页。教学目标:
1.让学生在自主探究、合作学习中理解并掌握循环小数、无限小数、有限小数、无限不循小数以
及循环节的意义,正确读写循环小数。
2.能用循环小数表示除法里的商。
3.培养学生的抽象概括能力,观察比较能力。
4、向学生渗透集合的思想,激发学生的学习兴趣。教学重难点:正确理解循环小数的意义。教学过程
一.故事引入
1.讲故事。老师给同学们讲一个故事:从前有座山,山里有座庙,庙里有个老和尚,老和尚对小和
尚说,从前有座山……
师:像这样依次不断重复地出现的现象叫循环现象。
问:生活中还有象这样依次不断重复出现,无穷无尽的现象吗?你能举例吗?
2、联系实际生活
师:在生活中你们遇到过这样依次不断重复出现的循环现象吗?谁能举例说一说。
师:同学们知道的可真不少,其实在数学中也存在着这样有趣的现象。在数学王国里,就有这么一位特殊的小数朋友(板书:小数)大家想认识这位新朋友吗?
师:在认识这位新朋友之前,我们先来一次计算比赛,好不好?
[采用从直观到半抽象的方法去认识新的概念,遵循了儿童的认知规律。这一环节的设计,有利于
培养学生的逻辑思维能力。]
二、研究问题,探究新知
(一)研究有限小数和无限小数 1.分组计算,感知概念。
(1)0.595÷3.4(0.175)(2)34÷6(5.66······)
2.学生选择喜欢的一道计算,指名派个代表上来板演。1分钟后喊停。3.师:引导看黑板,核对第一题,宣布第一组获胜。
4、第二题,你们有什么想法?(商除不尽)1.34÷6= 5.66······,引导学生观察商有什么特点。生:老师,我发现这道除法题除不尽,商总是重复出现6。
师:为什么会重复出现“6”呢?
生:因为余数重复出现“4”了,所以…… 师:这么说,34÷6 的商里有多少个“6”呢?
生:有无数个“6”。
师:既然是无数个,可以怎么表示呢?
生:我认为可以用省略号表示有无数个“6”。
(板书:34÷6= 5.66······)
5.指出:像0.175,这样小数部分的位数是有限的小数给它个名称叫有限小数。(板书:有限小数)那么第2题的商除得尽吗?除不尽可以用省略号表示,猜一猜,这样的小数会叫什么名称呢?为什么?
(板书:无限小数)
(二)认识循环小数
1、出示59.6/11,让学生除到商是五位数小数时停笔。
师:想一想,如果继续除下去,商会怎样?
生:商里会依次不断的重复出现“1”和“8”。
师:你是这样想出来的呢?
生:因为余数重复出现“2”和“9”,所以商就会重复出现“1”和“8”。
师:是不是这样的情况呢?继续除除看。
师:谁能说出这道题的商。
生:59.6除以11等于5.4181818等等。
师:“等等”用什么符号表示?能不能不写省略号?为什么?
生:不能不写省略号。因为只有写上省略号,才能表示商后面还有很多1818。师:(出示下组题)能说出省略号表示的意思吗?
4/9=0.444…… 7/12=0.58333…… 13/55=0.2363636……
[让学生在尝试练习中认识循环小数,引导学生发现当两个数相除出现循环小数时商和余数的规律。这就重视了让学生掌握知识形成的过程,有利于学生今后的再学习。]
2、概括。
师:观察这些小数,它们都有什么特点?
生:一个小数,几个数字重复出现。
生:一个小数,几个数字依次不断地重复出现。
生:一个小数,从某一位起,一个数字或者几个数字依次不断地重复出现。
师:那这样的小数,叫什么小数呢?(循环小数)。这就是我们今天要学习的“循环小数”(板书课题),谁再来说一说什么叫“循环小数”?
师:说的很好,请同学们看看书上写的和***同学刚才说的还有什么不同?
生:书上多了“小数部分”这几个字。
师:书上为什么要强调从“小数部分„而不是从整数部分的某一位起,一个数字或者几个数字依次不断
重复出现。
3.判断。
师:请同学们判断下面哪几个数是循环小数,为什么?(课件显示)
777…… 3.1415926……
3.23232323
6.0373737
7.516516……
学生判断后老师组织讨论。
(1)师:3.232323是循环小数吗?
师:小数部分的“23”这两个数字不是依次重复出现三次吗?为什么不是循环小数呢?
生:虽然“21”重复地出现三次,但没有“不断地”重复出现,所以它不是循环小数,它是有限小数。
(2)师:3.1415926……是无限小数吗?
师:是循环小数吗?为什么?
生:因为小数部分没有出现一个或几个相同的数字,所以……
(3)师:在0.547745……这个小数中,“5”、“4”、“7”这三个数字已重复出现了两次,他是不是循环
小数呢?为什么?
生:虽然“5”、“4”、“7”这三个数字重复地出现,但没有依次地出现,所以它不是循环小数。
(三)循环节
师:“3.333……”中不断地重复出现的数字是哪一个?(3)在“5.2727……”中不断地重复出现的数字是哪一个?(2、7)在循环小数中,依次不断重复出现的数字有个名称,请看教科书第101页。
师:什么叫循环节?请找出以上判断题中循环小数的循环节。
生:这个数的循环节是“21”。
师:对吗?
生:不对,因为这个数不是循环小数,所以它没有循环节。
师:对的,循环节只有在循环小数里才会出现,如果不是循环小数也就没有循环节。
(四)循环小数的简便记法
1.讲解。
师:循环小数的一般写法是把循环节写出两遍到三遍,然后写上省略号。不过这样写比较麻烦,简便写法是只写出一个循环节,然后在循环节的首位和末位数字上各记一圆点,这个点叫循环点。
2.练习。
(1)写出5.333……的简便记法。
(2)写出判断题中循环小数的简便写法
三、巩固练习
1、判断
2、找数
四、课堂小结
师:今天我们学习了哪些新知识?谁能说一说。师:你能用今天所学的知识说明这几道题的商吗?
第三篇:循环小数教学设计
循环小数教学设计
教学目标:
1.使学生初步认识循环小数,知道什么是循环小数,以及循环小数的简便写法和读法。
2.初步认识有限小数和无限小数。
3.激发学生探究的欲望,培养学生观察、比较、分析、判断、抽象概括能力。
教学重点、难点:理解循环小数的意义,会用简便方法读写循环小数.教学准备:教师在小黑板上准备多题练习题.教学过程:
一.
创设情景 师:你们最喜欢星期几啊?
师:一个星期七天的出现有什么规律?
引导学生:一个星期的星期一到星期日总是不断地出现。(板书:不断、出现)
师:有规律吗?
生:是按照从“星期一”到“星期日”的顺序重复出现的。(板书:重复)师:既然是不断地重复出现,那么出现的次数是有限的还是无限的? 师:像一个星期七天总是不断地重复出现的现象,我们把它叫做循环。(板书:循环)生活中还有象这样依次不断重复出现,无穷无尽的循环现象吗?你能举例
师:今天我们来研究数学里的循环。(引出课题)二.自主探究
(一)初步认识循环小数 师出示8.4÷4(用竖式计算)
师:这道题同学们算得快又对,那么敢挑战下面两道题吗?(出示 10÷3,49÷22)
让学生说说你有什么发现。师:为什么会重复出现“3”呢?
师:这么说10÷3的商里有多少个“3”呢? 师:既然是无数个,可以怎么表示呢?
生:我认为可以用省略号表示有无数个“3”。(板书:10÷3 = 3.3333……)师:第3题的商又有什么特点呢?(除到商是五位小数时,要求停笔)师:想一想,如果继续除下去,商会怎样? 生:商会依次不断地重复出现“2”和“7”。师:你是怎样想出来的呢?
生:因为余数重复出现“6”和“16”,所以商就会重复出现“2”和“7”。师:谁能说出这道题的商。生:49除以22等于2.22727等等。
师:“等等”用什么符号表示?能不能不写省略号?为什么?
生:不能不写省略号。因为只有写上省略号,才能表示商后面还有很多27。(板书商)
师:像这样的数就是循环小数。
练习一:(小黑板出示)能说出省略号表示的意思吗? 0.222……
(表示后面有无数的2)0.41616……
(表示后面有无数的16)0.72360360……
(表示后面有无数的360)师:有几个数字在重复? 让生比较这三个数有什么相同点和不同点?
小结:从某一位起,一个数字或几个数字,依次不断地重复出现。(根据学生的回答补充板书)师:请同学们看看书上写的与刚才说的还有什么不同? 师:书上为什么要强调从“小数部分”的某一位起呢?
生:这就是说循环小数是从“小数部分”而不是从整数部分的某一位起,一个数字或者几个数字依次不断地重复出现。(让生试着在草稿本上写几个循环小数)
(二)循环小数的简便读写法 1.循环节
师:(指板演题)在“3.333……”中不断地重复出现的数字是哪一个?
(3)
在“2.22727……”中依次不断地重复出现的数字是哪几个?
(2、7)
师:在循环小数中,依次不断重复出现的数字叫循环节 师:同桌互相说说自己写出来的循环小数哪些数字是循环节。练习二:(说说下面的小数的循环节是谁?)7.232323……
4.8484842、循环小数的简便记法
师:循环小数的一般写法是把循环节写出两遍或三遍,然后写上省略号。不过这样写比较麻烦,简便写法是只写出一个循环节,然后在循环节的首位和末位数字上各记一个圆点,这个点叫做循环点,如2.227。读作:二点二二七,二七循环。师:请同学们试一试。(1)写出3.333……的简便写法.(2)自己写出来的循环小数的简便写法。
(三)认识有限小数和无限小数
师出示练习三:再请同学们判断下面哪几个数是循环小数,为什么?
0.999……
5.02727……
6.306306……
3.212121
3.1415926……
0.547745……
(学生判断后,教师组织讨论)师:3.212121不是循环小数,那它是什么数呢?
师:在3.1415926……和0.547745……小数中,是不是循环小数呢?为什么? 生1:3.1415926……没有重复出现的数字, 所以它也不是循环小数。生2:在0.547745……小数中“5”、“4”、“7”这三个数字重复地出现,但没有依次地重复出现,所以它也不是循环小数。师:那这三个数是什么数呢?
让生自学例九,后汇报交流你知道了什么? 师:那么是无限小数的,一定是循环小数吗? 让学生举例验证。
师:是循环小数一定是无限小数吗?(四)小结学习内容
师:今天我们学习了哪些新知识?谁能说一说。师:你能用今天所学知识说明这几道题的商吗?
出示: 2÷9 = 0.222……
5÷12 = 0.4166…… 9÷55 = 0.16363……
三.巩固练习
1、判断题。(对的画“√”,错的画“×”)
(1)0.7777是循环小数。
(2)0.07是混循环小数。
(3)2.07 = 2.07
(4)1.3 > 1.333
(5)循环小数13.24324……可以写作13.24。
2、找数。在下列数中
(1)比1小,循环节是三位数字的纯循环小数有((2)比1大,循环节是一位数字的混循环小数有(10.101
3.212
0.07
0.414
(四)课堂作业: 练习七第7、8题。
(((((2.45)))))。)。0.101)
(五)课堂小结与质疑。
第四篇:循环小数教学设计
循环小数教学设计
教学内容:教材第27~28页,练习五第1~5题。教学目标:
1.使学生初步认识循环小数、有限小数和无限小数,能用简便记法表示循环小数,能用循环小数表示除法的商,并能正确区分有限小数和无限小数。
2.让学生经历猜想、验证的探究过程,培养学生的探究精神和意识。
3.学生能在学习过程中获得成功体验,培养学生积极的数学情感。
教学准备:多媒体课件,视频展示台。教学过程:
一、创设情景,引入课题
师:我们这节课来探索一些有趣的规律。先听老师讲一个故事,看你能从这个故事中发现什么规律?
(教师讲故事:从前有座山,山上有个洞,洞里住着老猴子和小猴子。一天,老猴子对小猴子说:从前有座山,山上有个洞,洞里住着老猴子和小猴子。一天,老猴子对小猴子说:从前有座山,山上有个洞,洞里住着老猴子和小猴子。一天,老猴子对小猴子说:从前有座山,……)
生:这个故事总是在重复同一个内容。
师:不错!大家已经发现这个故事的一个特点了。板书:不断重复
师:谁能根据这个特点接着老师的故事继续往下讲? 让几个学生继续讲这个重复的故事。
师:照这样讲下去,你发现这个故事还有一个什么特点? 引导学生讨论后回答:像这样重复下去,这个故事永远也讲不完。随学生的回答板书:讲不完。
师:这种不断重复的现象不但故事中有,在有的计算中我们也会遇到。我们来看这样一个问题。
多媒体课件出示第27页王鹏赛跑的情景图。引导学生观察图意后,列出算式400÷75。
师:请同学们用竖式计算这个算式,看计算过程中你能发现什么?
学生计算,在计算过程中引导学生发现400÷75这个算式的两个特点:①余数重复出现“25”;②商的小数部分连续地重复出现“3。”
师:像这样继续除下去。能除完吗? 生:可能永远也除不完。
师:怎样表示这种永远也除不完的商?这种商有些什么特点,就是这节课我们要研究的问题,也是我们要认识的新朋友——循环小数。
板书课题:循环小数
二、认识循环小数 1.初步认识循环小数。
请一位学生把400÷75的竖式计算放到视频展示台上。师:刚才我们发现了这个算式的三个特点,下面我们探讨一个问题,为什么商的小数部分总是重复出现“3”,它和每次出现的余数有什么关系?
引导学生发现:当余数重复出现时,商就要重复出现;商是随余数重复出现才重复出现的。
师:猜想一下,如果继续除下去,商会是多少?它的第4位商是多少?第5位呢? 学生思考后回答:如果继续除下去,无论是哪一位,只要余数重复出现25,它的商也就重复出现3。
师:是这样的吗?我们可以接着往下除来看看。学生验证略。
师:那么我们怎样表示400÷75的商呢?
引导学生说出:可以用省略号来表示永远除不尽的商。教师随学生的回答板书:400÷75=5.333…
师:我们所说的重复也叫做循环,像5.333…这样小数部分有一个数字依次不断地重复出现的小数,就是循环小数。
2.进一步认识循环小数。
师:下面我们来继续研究循环小数,请同学们用竖式计算786÷11。
学生先独立计算,然后在小组内讨论,教师在视频展示台上出示写有讨论问题的卡片,如:
①这个算式能不能除尽? ②它的商会不会循环? ③如果循环它是怎样循环的?
(学生计算、讨论、交流,大约控制在4分钟,然后组织全班汇报,学生的意见可能出现以下两种)
生1:我们小组认为这个算式不能除尽,但它的商不会循环。师:为什么?
生1:因为它不像例1那样连续出现数字“3。”
生2:我们小组认为这里的商不能除尽,而且会循环。师:说说你们这样猜测的原因?
生2:因为我发现有数字“4”和“5”的重复。
师:大家觉得他们的猜测正确吗?请你们(指生1)这组的同学继续除下去,看商的小数部分会不会重复出现4、5。
学生计算后证实会重复出现4、5。
师:比较5.333…和7.14545…,你觉得这两个循环小数有什么不同?
生:前一个循环小数是一个数字循环,后一个循环小数是两个数字循环。
师:请同学们用循环小数的方式标出这个算式的商。指导学生写出78.6÷11=7.14545…
师:你觉得这样的算式除到哪一位就可以不除了呢? 指导学生说出,只要余数重复了,就可以不除了。师:为什么?
引导学生说出:因为像这样的算式余数循环,商也会跟着循环。师(指着5.333…,7.14545…):对了!像5.333…,7.14545…这样的小数都是循环小数。你能像这样写出几个循环小数吗?
学生写后,组织全班交流。
教师:观察这些循环小数,说说它们有什么共同之处? 引导学生观察、讨论后,指导学生说出:都是从小数部分的某一位起,都有一个数字或几个数字依次不断地重复出现。
三、学习用简便记法表示循环小数,认识有限小数和无限小数 师:能把这些循环小数中循环的数字用你喜欢的方式标出来吗? 学生自主活动,并让几名学生在黑板上的循环小数上进行标示。如:
5.3333…
7.14545…
教师边指边介绍:这些在小数部分依次不断地重复的一个或几个数字,可以用这样的方式把它写出来。如5.3333…可以写作,7.14545…可以写作。这就是用循环节表示循环小数,如果同学们对循环节有兴趣,可以看一看教材第28页的阅读材料。
学生看书。
师:请同学们计算15÷16和1.5÷7。学生计算后,问:从中你发现什么? 生:15÷16=0.9375,1.5÷7=0.2142857…
师:像这样两个数相除,如果得不到整数商,所得的商可能会有两种情况,你知道是哪两种情况吗?
引导学生说出一种是继续除下去能够除尽,像15÷16一样;另一种情况是继续除下去,永远也除不完,像1.5÷7一样。
师:能够除尽的商的小数部分的位数是有限的,我们把它叫做有限小数;永远也除不完的商的小数部分是无限的,我们把它叫做无限小数。循环小数的小数位数是有限的还是无限的?
生:无限的。
师:所以循环小数是无限小数。请同学们写几个无限小数,再写几个有限小数。
学生写后,集体订正。
四、课堂小结
教师:今天你发现了哪些有趣的问题?通过今天的学习你有哪些收获?
学生回答略。
五、运用巩固
指导学生完成练习五第1~5题,对学有余力的学生,可以指导他们完成第6*题。
第五篇:循环小数教学设计
循环小数教学设计
教学目标:
1.使学生初步认识循环小数,知道什么是循环小数,以及循环小数的简便写法和读法。2.初步认识有限小数和无限小数。
3.激发学生探究的欲望,培养学生观察、比较、分析、判断、抽象概括能力。教学重点、难点:理解循环小数的意义,会用简便方法读写循环小数.教学准备:教师在小黑板上准备多题练习题.教学过程:
一、创设情景
你最喜欢哪个季节?一年四季的出现有什么规律? 引导学生:一年四个季节总是不断地出现。(板书:不断、出现)有规律吗?
是按照从“春”到“冬”的顺序重复出现的。(板书:重复)既然是不断地重复出现,那么出现的次数是有限的还是无限的? 像一年四季总是不断地重复出现的现象,我们把它叫做循环。(板书:循环)生活中还有象这样依次不断重复出现,无穷无尽的循环现象吗?你能举例 今天我们来研究数学里的循环。(引出课题)二.自主探究
(一)初步认识循环小数 出示8.4÷4(用竖式计算)
这道题同学们算得快又对,那么敢挑战下面两道题吗?(出示 10÷3,49÷22)让学生说说你有什么发现。
为什么会重复出现“3”呢?这么说10÷3的商里有多少个“3”呢? 师:既然是无数个,可以怎么表示呢?(我认为可以用省略号表示有无数个“3”。)(板书:10÷3 = 3.3333„„)第3题的商又有什么特点呢?(除到商是五位小数时,要求停笔)想一想,如果继续除下去,商会怎样?(商会依次不断地重复出现“2”和“7”。)
你是怎样想出来的呢?(因为余数重复出现“6”和“16”,所以商就会重复出现“2”和“7”。)谁能说出这道题的商。(49除以22等于2.22727等等。)“等等”用什么符号表示?能不能不写省略号?为什么?
(不能不写省略号。因为只有写上省略号,才能表示商后面还有很多27。)(板书商)像这样的数就是循环小数。练习一:(小黑板出示)能说出省略号表示的意思吗? 0.222„„
(表示后面有无数的2)0.41616„„
(表示后面有无数的16)0.72360360„„
(表示后面有无数的360)师:有几个数字在重复? 让生比较这三个数有什么相同点和不同点?
小结:从某一位起,一个数字或几个数字,依次不断地重复出现。(根据学生的回答补充板书)师:请同学们看看书上写的与刚才说的还有什么不同? 师:书上为什么要强调从“小数部分”的某一位起呢?
生:这就是说循环小数是从“小数部分”而不是从整数部分的某一位起,一个数字或者几个数字依次不断地重复出现。
(让生试着在草稿本上写几个循环小数)
(二)循环小数的简便读写法 1.循环节 师:(指板演题)在“3.333„„”中不断地重复出现的数字是哪一个?
(3)
在“2.22727„„”中依次不断地重复出现的数字是哪几个?
(2、7)师:在循环小数中,依次不断重复出现的数字叫循环节
师:同桌互相说说自己写出来的循环小数哪些数字是循环节。
练习二:(说说下面的小数的循环节是谁?)7.232323„„
4.848484
2、循环小数的简便记法
师:循环小数的一般写法是把循环节写出两遍或三遍,然后写上省略号。不过这样写比较麻烦,简便写法是只写出一个循环节,然后在循环节的首位和末位数字上各记一个圆点,这个点叫做循环点,如2.227。读作:二点二二七,二七循环。师:请同学们试一试。(1)写出3.333„„的简便写法.(2)自己写出来的循环小数的简便写法。
(三)认识有限小数和无限小数
师出示练习三:再请同学们判断下面哪几个数是循环小数,为什么?
0.999……
5.02727……
6.306306……
3.212121
3.1415926……
0.547745……
(学生判断后,教师组织讨论)师:3.212121不是循环小数,那它是什么数呢?
师:在3.1415926„„和0.547745„„小数中,是不是循环小数呢?为什么? 生1:3.1415926„„没有重复出现的数字, 所以它也不是循环小数。生2:在0.547745„„小数中“5”、“4”、“7”这三个数字重复地出现,但没有依次地重复出现,所以它也不是循环小数。
师:那这三个数是什么数呢?
让生自学例九,后汇报交流你知道了什么? 师:那么是无限小数的,一定是循环小数吗? 让学生举例验证。
师:是循环小数一定是无限小数吗?
(四)小结学习内容
师:今天我们学习了哪些新知识?谁能说一说。师:你能用今天所学知识说明这几道题的商吗?
出示: 2÷9 = 0.222„„
5÷12 = 0.4166„„
9÷55 = 0.16363……
三.巩固练习
1、判断题。(对的画“√”,错的画“×”)
(1)0.7777是循环小数。
()
(2)0.07是混循环小数。
()
(3)2.07 = 2.07
()
(4)1.3 > 1.333
()
(5)循环小数13.24324„„可以写作13.24。
()
2、你能很快说出下面的数哪些是循环小数,哪些不是吗?
①0.3333 ③5.8142142„ ②1.5353„„ ④3.1415926„„
3跳起来摘葡萄。
循环小数0.48536536„„的小数部分第60位上的数是几?第100位上的数呢?