第一篇:初中数学变式教学研究课题总结报告
初中数学变式教学研究课题结题报告
徐颖
一、本课题研究的背景与课题的提出
(一)背景
1、对当前教育形式和“变式教育”的认识 新课程标准提出:“教育应该面向全体学生,让每个孩子都成为对社会有用的人才”。所以现代教育过程中根据学生个性差异因材施教,促进学生个性发展,尊重学生个性的独创性教育显得十分重要。教育者要为每一位学生提供同样的学习机会,也要帮助每一位学生充分发展。究其核心就是要尊重学生个性差异,运用各种方法、创造各种条件引导学生主动探究和创造学习。“有效的数学学习活动不能单纯地模仿和记忆”,“学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程”。数学教学是需要在学生形成初步知识和技能后加以应用的实践训练,即解题。以其来加深和巩固已获知识,那么怎样的问题训练可以既帮助学生提高数学素质和数学能力,而又不重蹈“题海”呢?“变式教学”是很好的载体,符合时代的要求。
有效教学追求的是学生对知识的内化,能够把所学的知识积极转化为自己的知识结构的一部分,数学课堂的“变式教学”,既让学生理解数学知识(概念系统)、数学思想与数学方法,又能深刻体会数学思想的核心作用,提高数学能力。“变式教学”围绕一两道数学问题中所需反映的数学实质进行一系列的问题变化,使学生得以掌握与提高,是培养学生举一反
三、灵活转换、独立思考能力,从而减轻学生学业负担培养创新能力的有益途径之一。
2、对教学现状的考虑 从初中数学现状来看,“教师教,学生学;教师讲,学生听”仍是主导模式,基本上是“ 狂轰乱炸”的“题海”战术“淹没”了生动活泼的数学思维过程,这种“重复低效”的数学课堂教学,使相当一部分学生“丧失”了数学学习的兴趣。思维变的狭窄,对所学知识往往只注重数学表象,而忽视了数学知识的核心——数学思想。这些促使我们思考:实施怎样的数学课堂教学,既能让学生理解数学知识(概念系统)、数学思想与数学方法,又能深刻体会数学思想的核心作用,提高数学能力呢?
(二)课题的提出 针对以上背景,也为了进一步提高我校数学教师的整体教学水平,为进一步适应时代的要求,着眼学生的终身学习,着眼学生的发展,让学生积极主动地参与学习活动,在主动参与的过程中掌握学习的方法与技能,进一步提高学生数学的综合素养,自202_年3月我们小组开始承担了区教研室的教研课题《数学教学中变式训练的实践与思考的研究》这项工作以来,组内全体成员以饱满的热情、高度的社会责任感和使命感,井然有序地围绕这一研究课题展开工作。希望探索构建和谐课堂教学的策略及机制,促进学生素质的和谐发展。课题研究的意义
1、有利于推进新课程改革
当前运用科学发展观构建和谐社会已成为社会发展的主流。在这样的宏观背景下,如何重新审视我们的课堂教学,促使课堂教学和谐地生成,必然成为我们考虑的焦点。课程改革更多关注“成人”与“成才”的和谐
要求我们的教育要尊重人的主体性、平等性。我们提出的“变式教学”无疑适应这一要求,该课题的研究有助于推进新一轮的课程改革。
2、有利于学生的和谐发展
课堂教学的使命是使学生获得全面、持续、和谐的发展。但由于受功利主义的影响,部 1 分教师在教学中“见物不见人”,只注重知识的传授,而忽视了学生身心自然、和谐的发展。新课程倡导的课堂教学不仅面向学生的现在,更注重面向学生的未来。因此,我们要从关注生命的高度来关照课堂,通过“变式教学”使学生的数学学习习惯和数学能力都能进一步得以伸展,让每一次的课堂经历都成为学生生命历程的一部分。
3、有利于教育教学理论的研究:
一个真实的课堂教学过程是一个师生及多种因素间动态的相互作用的推进过程。由于参加教育活动有诸多复杂的因素,因此教育过程的发展有多种可能性的存在,教育过程的推进就是在多种可能性中做出选择,使新的状态不断生成并影响下一步发展的过程。因此,我们认为在实际教学中要关注和处理好课堂教学设计与课堂教学中的实际生成的关系。
二、课题的理论依据 “变式”在心理学认为,其含义是变换材料的出现形式在教学中是指在引导学生认知事物属性的过程中,不断变更所提供的直观材料或者事例的呈现形式,使事物的非本质属性时隐时现,而本质属性保持恒定。它遵循“目标导向、启迪思维、暴露过程、主体参与、探索创新”的教学原则,以培养具有创新意识和创新能力的人才为目标。因此本课题的支撑性理论:
其一,是巴班斯基的“最优化学习”理论,以此来指导学生进行学习方式和方法的优化,提升学习效率。
其二,个性化教育的理论,研究发现个性是表明个人对社会自主创造关系的思想与行为的总特征。个性具有自主性和独特性。个性化教育就是在教育中重视受教育者的需要、兴趣、自由和人的尊严,人的潜能和价值,促进人的个性自主、和谐发展的教育。
其三,启发性教育理论,我国古代关于教学论的著作《礼记·学记》中所指出的“君子之教,喻也。道而弗牵,强而弗抑,开而弗达。”强调引导、鼓励、激发学生积极思维,主动正确地获取知识。
第四,人的主体理论,人类进入21世纪以来以人为本的教育思想已经成为我国的基本教育理念。倡导张扬人的个性,发挥人的主体能力,这已经成为全社会的共识。第五,迁移理论,以次来指导教学过程中,如何充分利用正迁移的强化,尽量避免负迁移的干扰。
三、研究目标
以“变式教学”为研究平台,全面贯切新课程标准的教育理念。以培养学生的创新精神和探究问题、解决问题的能力为目的。让学生充分展示个性和潜力,激发学生潜能多元化发展,让全体学生都能最终成为对全社会有用的人。
研究要解决的具体问题是如何利用学校现有的各种资源,发挥学生主体作用,充分尊重学生的主观能动性,通过创设数学变式,引导学生主动参与教学活动,在获取知识的同时,激发他们强烈的求知欲和创造欲,从而得到提高数学课堂教育效益的目的,增加数学实践的本领的同时而获得可持续发展能力——创新能力和自我发展能力。在严格控制学生活动总量,减轻学习负担的前提下,使全体学生数学素质获得更为全面的发展,数学基本知识、基本能力有所提高。
四、研究内容
本课题研究的基本内容有:
1、研究学生:着重研究平时的学习行为和效果,发现不足和缺憾,然后着力通过数学变式来培养学生创新能力来加以克服,观察克服的程度,再加以改进,总结经验,试图发现一种科学的教学体系来提高初中数学课堂教学效益。
2、研究教法:给出不同条件时如何引导学生联系旧知解决新问题,培养学生能以不变应万变,把握数学知识的核心部分,提高思考问题、解决问题能力。
3、研究教学:不同的课型该用哪种模式体现“变式教学”的精神。
五、实施研究原则 本课题研究所遵循的原则是:主体性、发展性、系统性、创新性、开放性、优化性、民主平等性、问题探究等原则。
五、实施研究原则
本课题研究所遵循的原则是:主体性、发展性、系统性、创新性、开放性、优化性、民主平等性、问题探究等原则
1、主体性原则:在实施课题研究过程中,始终坚持学生是学习的主体,发展的主体,学生的学习和发展要在他们自己的学习实践中实现。
2、发展性原则:现代心理学告诉我们:学生在其发展过程中,其心理、生理、知识、能力、经验都处于发展中,尚不成熟。这种发展包括两个方面,一是认知水平的发展。二是人格的发展。也就是说,学生在发展过程中既要学会学习,也要学会做人。二者相得益彰,和谐统一。
3、系统性原则。系统性原则指在课题研究时,要以整体的观点来分析、解决问题,要切实把握好具体每个环节,处理好整体与部分、部分与部分、系统与环境的关系。
4、创新原则:教师在课堂教学中要锐意进取,勇于开拓。敢于冲破传统思维和教学模式的樊篱。用新异的教学方式处理问题,解决问题,达到培养学生创新思维和创新能力的目的。教师在教学实践中应该注意以下三点;一是选择多种结论的问题,否则学生思维容易限于绝地。二是开导思维的流畅性、变通性、和精确性,尤其要在变通性上下工夫。三是要鼓励学生大胆运用假设,对一个问题的合理假设越多,其创新能力就越大。
5、开放性原则:变式教学过程是个开放的教学空间;一是学生在课堂上的心态是开放的;二是教学内容不拘泥于教材,也不局限于教师的知识视野;三是教师要重视对学生进行训练;四是教学方法不能满足于课本、权威教案等。
6、优化性原则。优化性原则指的是在研究中,要以最小的投入换取最大的产出。即尽可能地减少各种教育资源的投入,提高教学效益。
7、民主平等性原则:强调教育过程要形成有利于创新的民主氛围,强调平等,如,师生关系,教学环境、生生关系等。
8、问题探究原则:在课堂中教师要以教材为凭借,问题为线索,引导学生不断探索新知。“变式教学”强调变换条件,不断地提出-新问题,让学生在解决问题的过程中巩固旧知,获得新智、训练思维。在探究问题的过程中强调学生自主学习,合作探究,强调发挥团队精神。
六、研究方法
由于本课题是探讨一种教学方法对课堂效益提高的影响,根据这一实际情况,考虑到研究对象的特殊性,在形式上,我将采取尝试法、实验法、比较分析法、文献资料法等多种研究方法;在研究过程中,我将通过记录比较课后作业的准确度,每一章节的单元测验试卷和配套试题的测验结果,即学生对知识掌握的程度来辨别和判定提高数学课堂效益的程度,研究学生自主学习能力的提高与数学课堂效益的提高是否相关或一致,从而确保研究的客观性和科学性。
七、研究的程序
实验在步骤上大致分为以下三个阶段。第一阶段:课题研究准备阶段。(202_年9月至202_年10月)l、确定研究课题
2、学生学习情况调查
3、设计课题研究方案、4、进行课题可行性研究(重点、难点)论证。
5、学习有关理论,进行模仿运用。具体可从培养学生课前预习、课后温习、平时自习、一段时间后复习入手,要求学生平时注意观察问题、思考问题、归纳知识,鼓励学生提出问题,对待学生质疑问难的勇气给予肯定以及激励评价等来激发学生的主动学习的欲望,促进学生自觉地主动地参与到学习中来。
第二阶段:课题研究实施阶段(202_年11月至202_年5月)
1、记录学生学习的反馈情况,登记每一单元测验的结果和每一章的评估结果等数据和信息,并进行适当的筛选。
2、撰写课题阶段性总结材料。
3、“变式教学”课堂汇报。
4、总结、反思、改进,构建数学“变式教学”新模式。
第三阶段:课题研究总结阶段(202_年5月至202_年6月)
1、整理材料并运用统计方面的知识,进行计算、对比,通过对结果分析,给予实验研究一个理性的评价。
2、撰写课题研究结题报告、论文。
八、研究的具体策略 1教育理论的学习
自从课题组成立以来,我们组织了大量的学习活动,学习了许多资料,主要资料有《数学课程标准》,《数学课程标准解题》,《数学教学理论与实践》等相关的专业理论知识,还利用互联网上提供的大量学习资料。
八、研究的具体策略 1教育理论的学习
自从课题组成立以来,我们组织了大量的学习活动,学习了许多资料,主要资料有《数学课程标准》,《数学课程标准解题》,《数学教学理论与实践》等相关的专业理论知识,还利用互联网上提供的大量学习资料。
2实验活动的展开
根据课题所采用“ 学习、实践、研究、反思、改进、实践、研讨、总结”的研究方法。首先学习了相关的理论知识,制定研究内容。
(1)开展集体学习。课程标准中强调要对数学学习有关好奇心和求知欲,建立数学学习的自信心,对数学有恰当的认识,养成质疑和独立思考的习惯。这些目标的变迁,充分体现了以学生发展为主的思想。另外数学教学内容的生活化和综合化,也强调了知识和生活的联系。因此,数学教学中要打破单一枯燥的教学模式,要从多角度,对学生进行变式训练,使学生全面客观地掌握知识,认识数学,发展生活中的数学,从而使数学生活学活用,发展学生的能力。
(2)实验阶段。对变式训练的内容进行研究,由张凌云、尹秀凤推出两节公开课。在展示在哪教学内容上使用变式训练教学。张凌云主讲《垂直与弦的直径》专题课,由单纯的数学题目上的计算,证明和判断,到与实际生活中的联系。比求石拱桥所在圆的半径,寻找残缺轮盘的圆心,每一个题目都由学生说出如何考察的本课的性质,掌握圆的对称性的重要性,如何应用这个性质解决问题。这节课按捺皮紧密,课堂气氛活跃,重点突出,教学效果很好。尹秀凤老师主讲二次函数的定义,在概念教学中巧用变式训练,使学生对二次函数有了一个全面的认识。因此,对变式训练的内容的研究过程中,容易混淆或不易理解的概念、公式及一些重要性质。在教学的过程中都要巧用变式训练教学,优化教学效果。教学过程中充分调动学生的积极性。教师只起“导演”的作用。让学生通过预习准备、合作交流、研究讨论中获得知识,提高技能。
九研究的成果
开展课题研究以来,本课题组成员推出多节校镇级公开课,多次组织说课、听课、评课等活动,重点研究了在数学教学中进行变式训练的途径,推动了我校的数学教学工作。
1促进教师的发展,提高数学教学水平
在课题研究过程中,通过数节公开课和多次的说课、评课等活动,带动了全校数学教学的研讨气氛。课题的研究方向及研究成果受到了数学组其他教师的好评以及学校领导的肯定。掀起了在全校推广变式训练教学的热潮,有效地促进了本课题组老师的专业水平的提升,引起了全校各科对变式训练的重视,提高了教育教学质量。在教学中如何实施变式训练由蒋海珠 4 老师撰写成论文,在数学组均达成共识。促进学生的发展,使学生成为学习的主人
变式训练就是以学生的发展为中心,把知识从不同的角度、以不同的形式展示给学生,让学生深入挖掘、思考,一题多解、一题多变,培养学生思维的灵活性、探索性,打破了思维的定向性,让学生在变式训练中领悟到知识点的“横看成岭侧成峰”的变化,灵活掌握,把数学学活,理解生活中的数学无处不在。
3师生的关系在转变。教师在实践过程中学会了反思,一是重新认识学生和自己一方面尊重学生人格,关注个体差异,满足学生发展的需要,一方面努力实现自身角色转换。不仅仅当知识的传授者,更要做学生学习的组织者、引导者。二是重新认识自己与学生的关系,建立起积极参与共同发展的、平等的师生关系、老师对学生学习主体地位的认识有了明显增强,大家都在关注学生的需要,学生的学习主动性开始成为教师关注的重点。三是重新认识教学过程,努力创新教学模式,注重培养学生的独立性、自主性,注意引导学生和质疑、探究。四是重新认识课堂,教师把微笑带进课堂,关爱、宽容每一个学生,教师把民主带进课堂,建立和谐的师生关系,教师把探索带进课堂,激发学生的求知欲望,教师把合作带进课堂,促进学生思维和合作创新,教师把成功带进课堂,让每个学生都能获得成功的体验。课堂教学中经常听到“谁想说?”“谁愿意说?”“谁还想说?”“谁还有不一样的方法?”等商量的口气与学生交流,鼓励学生发表自己的见解。
4本次课题实验不但改变了教与学,同时也逐步让家长感受到新评价带来的新气息和变化,改变了家长过去对子女“好不好,看成绩”的思想。在成长记录的评价中,那些充满鼓励性的话语和期待,已逐渐注意对子女的非智力因素的培养,共同促进子女的综合素质的提高。学生每周都要将自己的“成长记录”向家长介绍,让家长“参观”,使家长更清楚地了解到子女在校的各种情况,从而有的放矢地进行教育和引导。
5、培养了一支适应课改的教师队伍。我们数学组彻底各位老师勇于开拓,积极探索,在课题研究实践中不断成长,各位青年教师多次承担镇级公开课,均受到各级领导的一致赞评。并且我课题组杨学民和张凌云的论文分别获得区级一、二等奖,其他课题组成员也把的心得撰写成了论文.对我们的今后教学起到了积累作用.
十、思考与困惑
我们已经看到了课题研究的初步成效。我们的研究是为了更好地培养下一代,促进他们更健康、活泼地发展。同时也是为了每个教师的发展,每个教育者的发展。我们在今后的课题研究中,既要注意实现我们的理想目标、现代理念,也要考虑到先进观念与现实的合理融合。我们需要进一步研究:如何开展有效地数学教学,让学生健康持续发展下去,真正在学数学过程中既得到知识,又受到启发教育.成为合格的初中生.
第二篇:浅析初中数学变式教学
浅析初中数学变式教学之“习题变式”
上传: 刘永明
更新时间:202_-5-19 20:46:09 浅析初中数学变式教学之“习题变式”
【摘要】:变式,即同一事物非本质特征的一种转换。这种转换使客观事物得以不同形式展现在人们面前,成为我们客观认识事物基本条件。数学教学中的变式教学可以体现新课程的教学理念,减轻学生负担,提高教学质量。现就变式教学中的习题变式谈个人观点,供其他教师在教学中借鉴。【关键词】:习题变式 方法 思维
在新一轮课改教学中,如何减轻学生过重的学习负担已成为广大教育工作者关注的重点。要减轻学生过重负担,就必须更新教育观念,改革教学方法,努力提高课堂教学质量。数学教学有各种方法和手段,变式教学是其中的一种。尽管有时候人们不一定都认识变式教学的含义,人们却在自觉或不自觉地将它应用于教学之中。在数学教学中研究和运用变式,对教师有效地传授知识,突出本质特征,排除无关特征,让学生去伪存真,全面认识事物,提高数学教学质量有着现实的意义;把变式教学与主体性教育有机结合起来,可以充分挖掘学生的潜能,有效地培养学生的自学能力、探究能力和良好的学习习惯,进而培养学生的创新意识和创新能力,由此可见,变式教学较好地体现了新课程的教学理念,具有鲜明的时代性。笔者在本文结合教学体会谈谈对习题变式认识。
习题是训练学生的思维材料,是教者将自己的思想、方法以及分析问题和解决问题的技能技巧施达于学生的载体。要不被千变万化的表象所迷惑,抓住本质的东西,变式教学是一种有效的办法。通常可以利用习题变式训练学生的思维,使学生在多变的问题中受到磨练,举一反三,加深理解。如将练习中的条件或结论做等价性变换,变更练习的形式或内容,形成新的练习变式,可有助于学生对问题理解的逐步深化。如讲完例题“一件工作,甲单独做20小时完成,乙单独做12小时完成。那么两人合作多少小时完成?保留原题条件,可变换出下列几个逐级深化的题目让学生去思考:
变式1:一件工作,甲单独做20小时完成,乙单独做12小时完成。甲先单独做4小时,然后乙加入合作,那么两人合作还要多少小时完成?
变式2:一件工作,甲单独做20小时完成,乙单独做12小时完成。甲先单独做4小时,然后乙加入合作,那么两人合作还要多少小时完成此工作的2/3?
变式3:一件工作,甲单独做20小时完成,乙单独做12小时完成。甲先单独做4小时,然后乙加入合作,那么共要多少小时完成此工作的2/3?
变式4:一件工作,甲单独做20小时完成,甲、乙合做7.5小时完成。甲先单独做4小时,然后乙加入合作,那么两人合作还要多少小时完成?
变式5:一件工作,甲单独做20小时完成,甲、乙合做7.5小时完成。甲先单独做4小时,余下的乙单独做,那么乙还要多少小时完成?
变式6:一件工作,甲单独做20小时完成,甲、乙合做3小时完成此工作的2/5。现在甲先单独做4小时,然后乙加入合做2小时后,甲因故离开,余下的部分由乙单独完成,那么共用多少小时完成此项工作? 这一变式改变已知的几个条件中的某些条件;或改变结论中的某些部分的形式;从而拓宽、加深学生的知识层面,也体现了教学的层次性和多样性,培养了学生创新能力和探究能力。
习题变式中除了改变题目中的条件或结论外,有时将问题由特殊形式变为一般形式也是常见的。比如: 在教学直线、线段、射线时有这样一个题:
1、当直线a上标出一个点时,可得到 条射线,条线段
2、当直线a上标出二个点时,可得到 条射线,条线段;
3、当直线a上标出三个点时,可得到 条射线,条线段 变式
1、当直线a上标出十个点时,可得到 条射线,条线段; 变式
2、当直线a上标出十个点时,可得到 条射线,条线段;
通过这种变式,就把问题由特殊形式变为一般形式,学生通过探索交流得出答案,掌握了方法,从而尝试到成功的乐趣,并激发学生的学习热情。
以上是本人在习题变式上的一些体会和认识。变式教学在转换事物非本质特征的时候呈现了事物表象的多样性,使得我们可以动态地认识事物许多的鲜明特征,不为形式不同的表象所迷惑,形成理性认识,有助于扩展思维的宽度,培养思维的发散能力。教学实践证明,通过习题变式有利于克服“题海战术”的重复训练倾向,从而减轻学生的过重负担,真正把能力培养落到实处。习题变式是数学教学的方法之一,如能将它与其它教学手段方法结合运用,一定能收到更好的效果
第三篇:初中数学教学中变式训练的实践与思考的研究课题总结报告
初中数学教学中变式训练的实践与思考的研究课题总结报告
一、本课题研究的背景与课题的提出
(一)背景
1、对当前教育形式和“变式教育”的认识
新课程标准提出:“教育应该面向全体学生,让每个孩子都成为对社会有用的人才”。所以现代教育过程中根据学生个性差异因材施教,促进学生个性发展,尊重学生个性的独创性教育显得十分重要。教育者要为每一位学生提供同样的学习机会,也要帮助每一位学生充分发展。究其核心就是要尊重学生个性差异,运用各种方法、创造各种条件引导学生主动探究和创造学习。“有效的数学学习活动不能单纯地模仿和记忆”,“学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程”。数学教学是需要在学生形成初步知识和技能后加以应用的实践训练,即解题。以其来加深和巩固已获知识,那么怎样的问题训练可以既帮助学生提高数学素质和数学能力,而又不重蹈“题海”呢?“变式教学”是很好的载体,符合时代的要求。
有效教学追求的是学生对知识的内化,能够把所学的知识积极转化为自己的知识结构的一部分,数学课堂的“变式教学”,既让学生理解数学知识(概念系统)、数学思想与数学方法,又能深刻体会数学思想的核心作用,提高数学能力。“变式教学”围绕一两道数学问题中所需反映的数学实质进行一系列的问题变化,使学生得以掌握与提高,是培养学生举一反
三、灵活转换、独立思考能力,从而减轻学生学业负担,培养创新能力的有益途径之一。
2、对教学现状的考虑
从初中数学现状来看,“教师教,学生学;教师讲,学生听”仍是主导模式,基本上是 “狂轰乱炸”的“题海”战术“淹没”了生动活泼的数学思维过程,这种“重复低效”的数学课堂教学,使相当一部分学生“丧失”了数学学习的兴趣。思维变的狭窄,对所学知识往往只注重数学表象,而忽视了数学知识的核心——数学思想。这些促使我们思考:实施怎样的数学课堂教学,既能让学生理解数学知识(概念系统)、数学思想与数学方法,又能深刻体会数学思想的核心作用,提高数学能力呢?
(二)课题的提出
针对以上背景,也为了进一步提高我校数学教师的整体教学水平,为进一步适应时代的要求,着眼学生的终身学习,着眼学生的发展,让学生积极主动地参与学习活动,在主动参与的过程中掌握学习的方法与技能,进一步提高学生数学的综合素养,自202_年8月开始承担了区教研室的教研课题《数学教学中变式训练的实践与思考的研究》这项工作以来,我以饱满的热情、高度的社会责任感和使命感,井然有序地围绕这一研究课题展开工作。希望探索构建和谐课堂教学的策略及机制,促进学生素质的和谐发展。
课题研究的意义
1、有利于推进新课程改革
当前运用科学发展观构建和谐社会已成为社会发展的主流。在这样的宏观背景下,如何重新审视我们的课堂教学,促使课堂教学和谐地生成,必然成为我们考虑的焦点。课程改革更多关注“成人”与“成才”的和谐,它要求我们的教育要尊重人的主体性、平等性。我们提出的“变式教学”无疑适应这一要求,该课题的研究有助于推进新一轮的课程改革。
2、有利于学生的和谐发展
课堂教学的使命是使学生获得全面、持续、和谐的发展。但由于受功利主义的影响,部分教师在教学中“见物不见人”,只注重知识的传授,而忽视了学生身心自然、和谐的发展。新课程倡导的课堂教学不仅面向学生的现在,更注重面向学生的未来。因此,我们要从关注生命的高度来关照课堂,通过“变式教学”使学生的数学学习习惯和数学能力都能进一步得以伸展,让每一次的课堂经历都成为学生生命历程的一部分。
3、有利于教育教学理论的研究:
一个真实的课堂教学过程是一个师生及多种因素间动态的相互作用的推进过程。由于参加教育活动有诸多复杂的因素,因此教育过程的发展有多种可能性的存在,教育过程的推进就是在多种可能性中做出选择,使新的状态不断生成并影响下一步发展的过程。因此,我们认为在实际教学中要关注和处理好课堂教学设计与课堂教学中的实际生成的关系。
二、课题的界定与理论依据
㈠本课题主要界定
1、“变式教学”是对教学中的问题进行不同角度,不同层次,不同情形,不同背景的变式。以暴露问题本质特征,揭示不同知识间的内在联系的一种教学设计方法。它以“知识变式”、“题目变式”、“思维变式”、“方法变式”为基本途径。我们可以把数学变式教学的主要含义概括为:一是 “概念变式”;二 “过程性变式”,从而使变式教学既适用于数学概念的掌握,也适用于数学活动经验的增长。
2、本课题主要是研究在初中数学课堂教学过程中,探讨如何通过教师合理安排变式教学,呈现数学教学的本质内涵,达到学生高效的学的目的,逐步探索提高初中数学教与学的有效程度的途径与方法。
3、总体范围界定于义务制7-9年级数学课堂教学,研究学生学习过程中所表现出的不足,如演绎解题的不良习惯、学习情绪的不稳定的原因、兴趣和求知欲不高的缘由、思维的局限性,解题方法单一性,综合能力低下的影响因素,以及相关对策的效果。
4、本课题的自变量为数学变式教学,对提高数学课堂效益的作用,为了便于实验操作,决定控制实验范围,对自变量加以限定,是只把以下几个方面作为探究重点:
①探索培养学习兴趣与促进学生好奇心和求知欲与提高数学课堂效益的关系。
②探索培养学生观察、思考、抽象、归纳等能力与提高数学课堂效益的关系。
③探索发现法、讨论法、探究法等教学方法与提高数学课堂效益的关系。
④探索变式以为载体的主体参与教学模式与学生自主学习能力培养的关系。
⑤探索学生成绩、学生素质、自主学习能力和品质的形成之间的关系。
5、本课题的因变量是数学变式教学,对提高数学课堂效益的结果,实际上就是课题研究预先要达到的一个理想的目标,具体说,通过两种变式教学策略,可以有效地帮助学生理解学习对象的本质属性以及建立学习对象与已有知识的内在合理联系。这样可能避免教师的机械灌输与学生的死记硬背式的机械学习,促进有意义学习。也就是提高学生自我学习、自我发现、自我反思、自我发展、自我完善的能力,大幅度提高学业成绩,自主学习的品质。如:自学能力,发现问题能力和解决问题能力等等各种能力的良好形成。
㈡“变式”在心理学认为,其含义是变换材料的出现形式在教学中是指在引导学生认知事物属性的过程中,不断变更所提供的直观材料或者事例的呈现形式,使事物的非本质属性时隐时现,而本质属性保持恒定。它遵循“目标导向、启迪思维、暴露过程、主体参与、探索创新”的教学原则,以培养具有创新意识和创新能力的人才为目标。因此本课题的支撑性理论:
其一,是巴班斯基的“最优化学习”理论,以此来指导学生进行学习方式和方法的优化,提升学习效率。
其二,个性化教育的理论,研究发现个性是表明个人对社会自主创造关系的思想与行为的总特征。个性具有自主性和独特性。个性化教育就是在教育中重视受教育者的需要、兴趣、自由和人的尊严,人的潜能和价值,促进人的个性自主、和谐发展的教育。
其三,启发性教育理论,我国古代关于教学论的著作《礼记·学记》中所指出的“君子之教,喻也。道而弗牵,强而弗抑,开而弗达。”强调引导、鼓励、激发学生积极思维,主动正确地获取知识。
第四,人的主体理论,人类进入21世纪以来以人为本的教育思想已经成为我国的基本教育理念。倡导张扬人的个性,发挥人的主体能力,这已经成为全社会的共识。第五,迁移理论,以次来指导教学过程中,如何充分利用正迁移的强化,尽量避免负迁移的干扰。
三、研究目标
以“变式教学”为研究平台,全面贯切新课程标准的教育理念。以培养学生的创新精神和探究问题、解决问题的能力为目的。让学生充分展示个性和潜力,激发学生潜能多元化发展,让全体学生都能最终成为对全社会有用的人。
研究要解决的具体问题是如何利用学校现有的各种资源,发挥学生主体作用,充分尊重学生的主观能动性,通过创设数学变式,引导学生主动参与教学活动,在获取知识的同时,激发他们强烈的求知欲和创造欲,从而得到提高数学课堂教育效益的目的,增加数学实践的本领的同时而获得可持续发展能力——创新能力和自我发展能力。在严格控制学生活动总量,减轻学习负担的前提下,使全体学生数学素质获得更为全面的发展,数学基本知识、基本能力有所提高。
四、研究内容
本课题研究的基本内容有:
1、研究学生:着重研究平时的学习行为和效果,发现不足和缺憾,然后着力通过数学变式来培养学生创新能力来加以克服,观察克服的程度,再加以改进,总结经验,试图发现一种科学的教学体系来提高初中数学课堂教学效益。
2、研究教法:给出不同条件时如何引导学生联系旧知解决新问题,培养学生能以不变应万变,把握数学知识的核心部分,提高思考问题、解决问题能力。
3、研究教学:不同的课型该用哪种模式体现“变式教学”的精神。
五、实施研究原则
本课题研究所遵循的原则是:主体性、发展性、系统性、创新性、开放性、优化性、民主平等性、问题探究等原则。
1、主体性原则:在实施课题研究过程中,始终坚持学生是学习的主体,发展的主体,学生的学习和发展要在他们自己的学习实践中实现。
2、发展性原则:现代心理学告诉我们:学生在其发展过程中,其心理、生理、知识、能力、经验都处于发展中,尚不成熟。这种发展包括两个方面,一是认知水平的发展。二是人格的发展。也就是说,学生在发展过程中既要学会学习,也要学会做人。二者相得益彰,和谐统一。
3、系统性原则。系统性原则指在课题研究时,要以整体的观点来分析、解决问题,要切实把握好具体每个环节,处理好整体与部分、部分与部分、系统与环境的关系。
4、创新原则:教师在课堂教学中要锐意进取,勇于开拓。敢于冲破传统思维和教学模式的樊篱。用新异的教学方式处理问题,解决问题,达到培养学生创新思维和创新能力的目的。教师在教学实践中应该注意以下三点;一是选择多种结论的问题,否则学生思维容易限于绝地。二是开导思维的流畅性、变通性、和精确性,尤其要在变通性上下工夫。三是要鼓励学生大胆运用假设,对一个问题的合理假设越多,其创新能力就越大。
5、开放性原则:变式教学过程是个开放的教学空间;一是学生在课堂上的心态是开放的;二是教学内容不拘泥于教材,也不局限于教师的知识视野;三是教师要重视对学生进行训练;四是教学方法不能满足于课本、权威教案等。
6、优化性原则。优化性原则指的是在研究中,要以最小的投入换取最大的产出。即尽可能地减少各种教育资源的投入,提高教学效益。
7、民主平等性原则:强调教育过程要形成有利于创新的民主氛围,强调平等,如,师生关系,教学环境、生生关系等。
8、问题探究原则:在课堂中教师要以教材为凭借,问题为线索,引导学生不断探索新知。“变式教学”强调变换条件,不断地提出-新问题,让学生在解决问题的过程中巩固旧知,获得新智、训练思维。在探究问题的过程中强调学生自主学习,合作探究,强调发挥团队精神。
六、研究方法
由于本课题是探讨一种教学方法对课堂效益提高的影响,根据这一实际情况,考虑到研究对象的特殊性,在形式上,我将采取尝试法、实验法、比较分析法、文献资料法等多种研究方法;在研究过程中,我将通过记录比较课后作业的准确度,每一章节的单元测验试卷和配套试题的测验结果,即学生对知识掌握的程度来辨别和判定提高数学课堂效益的程度,研究学生自主学习能力的提高与数学课堂效益的提高是否相关或一致,从而确保研究的客观性和科学性。
七、研究的程序
实验在步骤上大致分为以下三个阶段。
第一阶段:课题研究准备阶段。(202_年7月至202_年8月)l、确定研究课题
2、学生学习情况调查
3、设计课题研究方案
4、进行课题可行性研究(重点、难点)论证。
5、学习有关理论,进行模仿运用。具体可从培养学生课前预习、课后温习、平时自习、一段时间后复习入手,要求学生平时注意观察问题、思考问题、归纳知识,鼓励学生提出问题,对待学生质疑问难的勇气给予肯定以及激励评价等来激发学生的主动学习的欲望,促进学生自觉地主动地参与到学习中来。
第二阶段:课题研究实施阶段(202_年9月~202_年7月)
1、记录学生学习的反馈情况,登记每一单元测验的结果和每一章的评估结果等数据和信息,并进行适当的筛选。
2、撰写课题阶段性总结材料。
3、“变式教学”课堂汇报。
4、总结、反思、改进,构建数学“变式教学”新模式。第三阶段:课题研究总结阶段(202_年8月~202_年9月)
1、整理材料并运用统计方面的知识,进行计算、对比,通过对结果分析,给予实验研究一个理性的评价。
2、撰写课题研究结题报告、论文。
八、研究的具体策略 1教育理论的学习
自从课题组成立以来,我们组织了大量的学习活动,学习了许多资料,主要资料有《数学课程标准》,《数学课程标准解题》,《数学教学理论与实践》等相关的专业理论知识,还利用互联网上提供的大量学习资料。
2实验活动的展开 根据课题所采用“ 学习、实践、研究、反思、改进、实践、研讨、总结”的研究方法。首先学习了相关的理论知识,制定研究内容。
(1)开展集体学习。课程标准中强调要对数学学习有关好奇心和求知欲,建立数学学习的自信心,对数学有恰当的认识,养成质疑和独立思考的习惯。这些目标的变迁,充分体现了以学生发展为主的思想。另外数学教学内容的生活化和综合化,也强调了知识和生活的联系。因此,数学教学中要打破单一枯燥的教学模式,要从多角度,对学生进行变式训练,使学生全面客观地掌握知识,认识数学,发展生活中的数学,从而使数学生活学活用,发展学生的能力。
(2)实验阶段。对变式训练的内容进行研究,由张凌云、尹秀凤推出两节公开课。在展示在哪教学内容上使用变式训练教学。张凌云主讲《垂直与弦的直径》专题课,由单纯的数学题目上的计算,证明和判断,到与实际生活中的联系。比求石拱桥所在圆的半径,寻找残缺轮盘的圆心,每一个题目都由学生说出如何考察的本课的性质,掌握圆的对称性的重要性,如何应用这个性质解决问题。这节课按捺皮紧密,课堂气氛活跃,重点突出,教学效果很好。尹秀凤老师主讲二次函数的定义,在概念教学中巧用变式训练,使学生对二次函数有了一个全面的认识。
因此,对变式训练的内容的研究过程中,容易混淆或不易理解的概念、公式及一些重要性质。在教学的过程中都要巧用变式训练教学,优化教学效果。教学过程中充分调动学生的积极性。教师只起“导演”的作用。让学生通过预习准备、合作交流、研究讨论中获得知识,提高技能。
九研究的成果 开展课题研究以来,本课题组成员推出多节校镇级公开课,多次组织说课、听课、评课等活动,重点研究了在数学教学中进行变式训练的途径,推动了我校的数学教学工作。
1促进教师的发展,提高数学教学水平
在课题研究过程中,通过数节公开课和多次的说课、评课等活动,带动了全校数学教学的研讨气氛。课题的研究方向及研究成果受到了数学组其他教师的好评以及学校领导的肯定。掀起了在全校推广变式训练教学的热潮,有效地促进了本课题组老师的专业水平的提升,引起了全校各科对变式训练的重视,提高了教育教学质量。在教学中如何实施变式训练由蒋海珠老师撰写成论文,在数学组均达成共识。促进学生的发展,使学生成为学习的主人
变式训练就是以学生的发展为中心,把知识从不同的角度、以不同的形式展示给学生,让学生深入挖掘、思考,一题多解、一题多变,培养学生思维的灵活性、探索性,打破了思维的定向性,让学生在变式训练中领悟到知识点的“横看成岭侧成峰”的变化,灵活掌握,把数学学活,理解生活中的数学无处不在。
3师生的关系在转变。
教师在实践过程中学会了反思,一是重新认识学生和自己一方面尊重学生人格,关注个体差异,满足学生发展的需要,一方面努力实现自身角色转换。不仅仅当知识的传授者,更要做学生学习的组织者、引导者。二是重新认识自己与学生的关系,建立起积极参与共同发展的、平等的师生关系、老师对学生学习主体地位的认识有了明显增强,大家都在关注学生的需要,学生的学习主动性开始成为教师关注的重点。三是重新认识教学过程,努力创新教学模式,注重培养学生的独立性、自主性,注意引导学生和质疑、探究。四是重新认识课堂,教师把微笑带进课堂,关爱、宽容每一个学生,教师把民主带进课堂,建立和谐的师生关系,教师把探索带进课堂,激发学生的求知欲望,教师把合作带进课堂,促进学生思维和合作创新,教师把成功带进课堂,让每个学生都能获得成功的体验。课堂教学中经常听到“谁想说?”“谁愿意说?”“谁还想说?”“谁还有不一样的方法?”等商量的口气与学生交流,鼓励学生发表自己的见解。
4本次课题实验不但改变了教与学,同时也逐步让家长感受到新评价带来的新气息和变化,改变了家长过去对子女“好不好,看成绩”的思想。在成长记录的评价中,那些充满鼓励性的话语和期待,已逐渐注意对子女的非智力因素的培养,共同促进子女的综合素质的提高。学生每周都要将自己的“成长记录”向家长介绍,让家长“参观”,使家长更清楚地了解到子女在校的各种情况,从而有的放矢地进行教育和引导。
5、培养了一支适应课改的教师队伍。我们数学组彻底各位老师勇于开拓,积极探索,在课题研究实践中不断成长,各位青年教师多次承担镇级公开课,均受到各级领导的一致赞评。并且我课题组杨学民和张凌云的论文分别获得区级一、二等奖,其他课题组成员也把的心得撰写成了论文.对我们的今后教学起到了积累作用.
四、思考与困惑
我们已经看到了课题研究的初步成效。我们的研究是为了更好地培养下一代,促进他们更健康、活泼地发展。同时也是为了每个教师的发展,每个教育者的发展。我们在今后的课题研究中,既要注意实现我们的理想目标、现代理念,也要考虑到先进观念与现实的合理融合。我们需要进一步研究:如何开展有效地数学教学,让学生健康持续发展下去,真正在学数学过程中既得到知识,又受到启发教育.成为合格的初中生.
第四篇:浅谈初中数学习题变式训练
浅谈初中数学习题变式训练
东营市利津县陈庄镇中学
闫如明
数学教学的最根本目的是培养学生能够独立思考问题、分析问题和解决问题的能力,培养学生的创新意识以及创造性的逻辑思维方式。数学教学不局限于一个狭隘的课本知识领域里,理解课本的内容知识不是教学的最终目的,更重要的是让学生在学习中如何运用课本知识,通过课本例题起到“窥一斑知全貌”“举一例能反三”的教学效果;因此调动学生学习的积极性和主动性,组织学生善于发挥自己的主观意识,学会独立自主的去探究和研究数学科学领域,是数学教师的首要任务,这就要求每位数学教师要善于去领会和研究课本例题和习题,设计出好的例题变式题。
翻阅历年的中考试卷可以发现,历年的中考试题都源于课本,都是课本习题的变式,那如何进行课本习题的变式教学?这是我们每一个数学教师必须认真思考的问题。我觉得教师所选用的习题应“源于课本”,然后对它进行变式,并紧扣考试说明,“以考为纲”,使它“高于课本”。这就要求教师们要善于利用变式教学,使数学教学“变教为诱,变学为思”。
一、变式教学在数学教学中所起的作用有如下几个方面:
1.帮助克服思维定势消极影响,培养思维的科学性。
思维定势心理学解释为是先于一定活动并指向一定活动的一种动力准备状态。它表现为在认识活动的方向选择上带有“经验型”的倾向性。其消极方面是受制于先前某种经验影响,生搬硬套、因循守旧,形成思维的惰性,对知识掌握产生一种负迁移的不良作用。例如学生在学习不等式a>b,c>d,a+c>b+d的性质后学生容易产生a>b,c>d,a-c>b-d的错误认识。在教学中讲解了正确推理a>b,c>d,a-c>b-d后,再通过语言变式把这一推理解释为“大数少减就一定大于小数多减”,学生就能真正体会推理的含义,消除负迁移形成的错误认识。因此,数学教学中如能够适当地运用变式教学,对防止此类不良定式的产生,克服思维定式的消极作用,使学生养成科学的思维习惯是十分有用的。
2.有利于培养发散和概括能力,提高思维的变通性。
变式教学在转换事物非本质特征的时候呈现了事物表象的多样性,使得我们可以动态地认识事物许多的鲜明特征,有助于拓展思维的宽度,培养思维的发散能力。但是变式教学的最终目的是为了突出事物本质的特征,舍弃问题的非本质因素,把复杂问题转换成简单问题,最后通过概括使认识达到新的高度。
3、丰富学生的感性经验,提高学生对知识理解的准确性。
理解是指个体运用已有知识经验去认识未知事物的联系关系,直至揭露其本质和规律的一种思维活动。它通过教材的直观和概括两个认识环节实现,在直观这一环节上,直观对象变式对直观效果有着重要的影响。数学教学中运用图像变式、语言变式等手段适当变更对象非本质因素,这对抓住本质要素进行准确的概括是十分重要的。如讲“角”的定义,若仅列举锐角、直角、钝角情形,学生就有可能形成角就是两条直线的交叉的错误认识。若把平角、周角展示给学生,这就能使学生准确理解到“从一点出发的两条射线组成图形”的真正含义。4.排除非本质因素影响,培养思维的深刻性。
思维的深刻性是教学中追求的目标之一,在掌握知识的应用阶段尤为明显。要不被千变万化的表象所迷惑,抓住本质的东西,变式教学是一种可以运用于教学的有效办法。通过利用练习变式训练学生的思维,使学生在多变的问题中受到磨练,举一反三,加深理解。
变式教学作为教学的方法之一,在实际工作中有重要作用,这是应该肯定的,那如何对习题进行变式教学呢?习题变式教学应遵守哪些原则呢?
二、习题变式训练应遵守以下3个原则:
1.针对性原则
习题变式教学,不同于习题课的教学,它贯穿于新授课、习题课和复习课,与新授课、习题课和复习课并存,一般情况下不单独成课。因此对于不同的授课,对习题的变式也应不同。例如:新授课的习题变式应服务于本节课的教学目的;习题课的习题变式应以本章节内容为主,适当渗透一些数学思想和数学方法。复习课的习题变式不但要渗透数学思想和数学方法还要进行纵向与横向的联系,同时变式习题要紧扣考纲。在习题变式教学时,要根据教学目标和学生的学习现状,切忌随意性和盲目性。2.可行性原则
选择课本习题进行变式,不要“变”得过于简单,过于简单的变式题,会让学生认为是简单的“重复劳动”,影响学生思维的质量;难度“变”大的变式习题易挫伤学生的学习积极性,使学生难以获得成功的喜悦,长此以往,将使学生丧失信心,因此,在选择课本习题变式时,要变的有“度”。3.参与性原则
在习题变式教学中,教师要让学生主动参与,不要总是教师“变”,学生“练”。要鼓励学生大胆的“变”,培养学生的创新意识和创新精神。
三、实施“变式”教学三步曲
1.课前预习,强化自学
例题的变式教学,预习是必不可少的重要环节,是提出疑问、独立思考、提高分析和解决问题能力的环节;让学生带着疑问学习,是要求预习的根本目的,通过对新课的全面预习,提高了学生的自觉能力和实践能力,促进课堂效益,为例题变式教学的实施起着不可忽视的作用;因此,教师必须重视学生的预习,做好预习笔记,正确引导学生课前预习,“巧立名目”,精心设疑,让不同层次的学生在“山穷水疑无路”的时候,忽然“柳暗花明又一村”,激发学生的学习兴趣。
2.课堂初试牛刀
课堂教学是学生得以“解惑”的主渠道,是教师与学生进行沟通、传播知识的重要途径,是例题变式教学的关键;学生经历了预习,新课内容已胸有成竹,教师在教学中起好主导的作用,循循善诱,引导学生在错综复杂的数量关系,千头万绪的理论辨证中寻觅,总结科学的解题经验。
3.练习变式,借题发挥:
例题毕竟有限,要进一步提高“变”的魅力,练习题正是学生用武之地,练习变式是例题变式教学的最后环节。将练习题自由演变,一题多变,借题发挥,提升学生的思维能力和解题能力,巩固记忆,完善自我的应变能力、应试技巧。使整节课前后贯通,紧密相连,形成一个知识网络体系。
四、结束语:
变式教学是对数学中的问题进行不同角度、不同层次、不同情形、不同背景的变式,以暴露问题的本质特征,揭示不同知识点的内在联系的一种教学设计方法。通过变式教学,使一题多解,多题重组,常给人以新鲜感,能唤起学生的好奇心和求知欲,因而能产生主动参与的动力,保持其参与教学过程的兴趣和热情。若能重视对课本习题进行变式训练,不但可以抓好双基,便于搞清问题的内涵和外延,而且还可以提高数学能力。总之,在课堂教学中,通过变式教学引导学生通过多侧面、多角度、多渠道的思考问题,让学生多探讨、多争论,能有效的训练学生思维的完整性、深刻性和创造性,大大的激发学生的兴趣,从而培养学生的创新能力。我们应在理论和实践中努力的探索,勇于进取,努力使变式教学不断走向深入,走向成功。
第五篇:初中数学中“变式训练
变式训练案例分析
变式训练是中学数学教学中的一种重要教学策略,在提高学生的学习兴趣、培养学生的数学思维和数学解题能力方面有着不可忽视的作用。通过变式训练可以使教学内容变得更加丰富多彩,使学生的思路更加宽广。所谓“变式训练”,就是有针对性地设计一组题,采用一题多解,多题一解,多图一题,一题多变,对此辨析,逆向运用等方法,对初始题目加以发展变化,从逻辑推理上演绎出几个或一类问题的解法,通过对一类问题的研究,迅速将相关知识系统化、结构化、网络化,提高解题能力。
教学案例:
(一)一题多图
在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E。
①当直线MN绕点C旋转到图1的位置时,有DE=AD+BE,请说明为什么? ②当直线MN绕点C旋转到图2的位置时,有DE=AD-BE,请说明为什么?
①当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并说明理由。
感悟:
通过一题多图可以让学生掌握类比的数学思想。
(二)一题多变
一题多变主要在平面几何中用应广泛需要老师们认真总结练习。
1、(32-1)×(32+1)=。
2、(32-1)×(32+1)×(34+1)×(38+1)…………(364+1)=3、3×(32+1)×(34+1)×(38+1)…………(364+1)=
4、(32+1)×(34+1)×(38+1)…………(364+1)=
5、(32+1)×(34+1)×(38+1)…………(364+1)+9=
感悟:
通过一题多变培养学生寻找共性,克服困难的信心,将知识网路化、系统化。
(三)一题多解
如图,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别是E、F,求证:AD垂直平分EF。
方法
1、两次全等证明
方法
2、角平分线定理和一次全等综合证明。
方法
3、线段垂直平分线逆定理证明。
方法
4、“三线合一”证明。
感悟:
通过一题多解培养学生的发散思维和创新能力,使学生的能力大大提高。更能展现出教师的魅力。
变式训练并不是一朝一夕就可以成熟的,需要我们认真钻研大纲和教材把知识系统化、网路化用心对待!