第一篇:数列、极限、数学归纳法(上)
【考点梳理】
一、考试内容
1.数列,等差数列及其通项公式,等差数列前n项和公式。
2.等比数列及其通项公式,等比数列前n项和公式。
3.数列的极限及其四则运算。
4.数学归纳法及其应用。
二、考试要求
1.理解数列的有关概念,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前n项和。
2.理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能够应用这些知识解决一些问题。
3.理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能够运用这些知识解决一些问题。
4.了解数列极限的定义,掌握极限的四则运算法则,会求公比的绝对值小于1的无穷等比数列前n项和的极限。
5.了解数学归纳法的原理,并能用数学归纳法证明一些简单的问题。
三、考点简析
1.数列及相关知识关系表
2.作用地位
(1)数列是函数概念的继续和延伸,是定义在自然集或它的子集{1,2,„,n}上的函数。对于等差数列而言,可以把它看作自然数n的“一次函数”,前n项和是自然数n的“二次函数”。等比数列可看作自然数n的“指数函数”。因此,学过数列后,一方面对函数概念加深了了解,拓宽了学生的知识范围;另一方面也为今后学习高等数学中的有关级数的知识和解决现实生活中的一些实际问题打下了基础。
(2)数列的极限这部分知识的学习,教给了学生“求极限”这一数学思路,为学习高等数学作好准备。另一方面,从数学方法来看,它是一种与以前学习的数学方法有所不同的全新方法,它有着现代数学思想,它把辩证唯物主义的思想引进了数学领域,因而,学习这部分知识不仅能接受一种新的数学思想方法,同时对培养学生唯物主义的世界观也起了一定的作用。
(3)数学归纳法是一种数学论证方法,学生学习了这部分知识后,又掌握了一种新的数学论证方法,开拓了知识领域,学会了新的技能;同时通过这部分知识的学习又学到一种数学思想。学好这部分知识,对培养学生逻辑思维的能力,计算能力,熟悉归纳、演绎的论证方法,提高分析、综合、抽象、概括等思维能力,都有很好的效果。
(4)数列、极限、数学归纳法这部分知识,在高考中占有相当的比重。这部分知识是必考的内容,而且几乎每年有一道综合题,其中1999年高考有两道综合题。
3.等差数列
(1)定义:an+1-an=d(常数d为公差)
(2)通项公式:an=a1+(n-1)d
(3)前n项和公式:Sn=n(a1an)n(n1)=na1+d 2
2(4)通项公式推广:an=am+(n-m)d
4.等差数列{an}的一些性质
(1)对于任意正整数n,都有an+1-an=a2-a
1(2){an}的通项公式:an=(a2-a1)n+(2a1-a2)
(3)对于任意正整数p,q,r,s,如果p+q=r+s,则有ap+aq=ar+as
(4)对于任意正整数p,q,r,如果p+r=2q,则有ap+ar=2aq
(5)对于任意正整数n>1,有2an=an-1+an+1
(6)对于任意非零实数b,若数列{ban}是等差数列,则数列{an}也是等差数列
(7)已知数列{bn}是等差数列,则{an±bn}也是等差数列
(8){a2n},{a2n-1},{a3n},{a3n-1},{a3n-2}等都是等差数列
(9)S3m=3(S2m-Sm)
(10)若Sn=Sm(m≠n),则Sm+n=0
(11)若Sp=q,Sq=p,则Sp+q=-(p+q)(p≠q)
(12)Sn=an2+bn,反之亦成立
5.等比数列
(1)定义:an1=q(常数q为公比)an
-(2)通项公式:an=a1qn1
(3)前n项和公式
na1Sn=a1(1qn)1qq1 q1
特别注意q=1时,Sn=na1这一特殊情况。
-(4)通项公式推广:an=am²qnm
6.等比数列{an}的一些性质
(1)对于任意正整数n,均有an1a2= ana1
(2)对于任意正整数p、q、r、s,只要满足p+q=r+s,则ap²aq=ar²as
(3)对于任意正整数p、q、r,如果p+r=2q,则ap²ar=aq
2(4)对任意正整数n>1,有an2=an-1²an+
1(5)对于任意非零实数b,{ban}也是等比数列
(6)已知{an}、{bn}是等比数列,则{anbn}也是等比数列
(7)如果an>0,则{logaan}是等差数列
(8)数列{logaan}成等差数列,则an成等比数列
(9){a2n},{a2n-1},{a3n-1},{a3n-2},{a3n}等都是等比数列
7.数列极限
(1)极限的定义“ε—N”
(2)极限的四则运算
若liman=A,lim bn=B,则 nn
lim(an±bn)= liman±limbn=A±B nnn
lim(an²bn)=liman²limbn=A²B nnn
lim(an/bn)=liman/limbn=nnnA(B≠0)B
(3)两个重要极限
c001①limc=1c0 nn不存在c0
|r|10②limrn=1r1 n不存在|r|1或r1
中学数学中数列求极限最终都化成这两类的极限问题。由①我们可以得到多项式除多项式的极限。
a0bpq
0a0npa1np1aplim=0pq nbnqbnq1a01q不存在pq
其中p,q∈N,a0≠0,b0≠0。
(4)无穷递缩等比数列各项和公式
S=limSn=na1(|q|<1)1q
应用:化循环小数为分数。
8.递归数列
数列的连续若干项满足的等量关系an+k=f(an+k-1,an+k-2,„,an)称为数列的递归关系。由递归关系及k个初始值可以确定的一个数列叫做递归数列。如由an+1=2an+1,及a1=1,确定的数列{21}即为递归数列。n
递归数列的通项的求法一般说来有以下几种:
(1)归纳、猜想、数学归纳法证明。
(2)迭代法。
(3)代换法。包括代数代换,对数代数,三角代数。
(4)作新数列法。最常见的是作成等差数列或等比数列来解决问题。
9.数列求通项与和
(1)数列前n项和Sn与通项an的关系式:
an=snsn1n2n1s
1(2)求通项常用方法
①作新数列法。作等差数列与等比数列。
②累差叠加法。最基本的形式是:an=(an-an-1)+(an-1+an-2)+„+(a2-a1)+a1
③归纳、猜想法。
(3)数列前n项和
①重要公式
1n(n+1)
2112+22+„+n2=n(n+1)(2n+1)6
113+23+„+n3=(1+2+„+n)2=n2(n+1)2 41+2+„+n=
②等差数列中,Sm+n=Sm+Sn+mnd
③等比数列中,Sm+n=Sn+qnSm=Sm+qmSn
④裂项求和
将数列的通项分成两个式子的代数和,即an=f(n+1)-f(n),然后累加抵消掉中间的许多项,这种先裂后消的求和法叫裂项求和法。用裂项法求和,需要掌握一些常见的裂项,如:
111=- n(n1)nn
1n²n!=(n+1)!-n!
1=cotα-cot2α sin2α
Cn-1r1=Cnr-Cn-1r -
1n1=-等。n!(n1)!(n1)!
⑤错项相消法
对一个由等差数列及等比数列对应项之积组成的数列的前n项和,常用错项相消法。⑥并项求和
把数列的某些项放在一起先求和,然后再求Sn。
数列求通项及和的方法多种多样,要视具体情形选用合适方法。
10.数学归纳法
(1)数学归纳法的基本形式
设P(n)是关于自然数n的命题,若
1°p(n0)成立(奠基);
2°假设P(k)成立(k≥n0),若可以推出P(k+1)成立(归纳),则P(n)对一切大于等于n0的自然数n都成立。
(2)数学归纳法的应用
数学归纳法适用于有关自然数n的命题。具体来讲,数学归纳法常用来证明恒等式,不等式,数的整除性,几可中计数问题,数列的通项与和等。
四、思想方法
数列、极限、数学归纳法中,主要注意如下的基本思想方法:
1.分类讨论思想。如等比数列的求和分公比等于1和不等于1两种情形;已知数列前n项和求通项分n=1和n≥2两种情形;求极限时对两个参数进行大小比较的讨论等。
2.函数思想。将数列视为定义域为自然数或其子集的函数。
3.数形结合思想。如等差数列的通项公式和前n项和公式分别视为直线、二次曲线的方程。
4.转化思想。如将非等差数列、非等比数列转化为等差数列、等比数列。
5.基本量思想。如把首项及公差、公比视为等差数列、等比数列的基本量。
6.构造思想。如由旧数列构造新数列。
7.特殊化思想。为研究一般问题可先退化到特殊问题的研究。在这部分内容中,处处充满了由具体到抽象,由特殊到一般,由有限到无限的辩证法,这就要求我们在思考问题时要用辩证的观点,由具体认识抽象,由特殊窥见一般,由有限逼近无限。其中,我们常用的“归纳——猜想——证明”法就体现了这一点。
8.一般化思想。为研究一个特殊问题,我们先研究一般的情形。我们采用的数学归纳法,就主要体现一般化思想,先证命题对一般值成立,然后再证对每一个特殊的n值也成立。
第二篇:数列极限
《数学分析》教案--第二章 数列极限
xbl
第二章 数列极限
教学目的:
1.使学生建立起数列极限的准确概念,熟练收敛数列的性质;
2.使学生正确理解数列收敛性的判别法以及求收敛数列极限的常用方法,会用数列极限的定义 证明数列极限等有关命题。要求学生:逐步建立起数列极限的 数列发散、单调、有界和无穷小数列等有关概念.会应用数列极限的 并能运用
概念.深刻理解定义证明有关命题,语言正确表述数列不以某定数为极限等相应陈述;理解并能证明收敛数列、极限唯一性、单调性、保号性及不等式性质;掌握并会证明收敛数列的四则运算定理、迫敛性定理及单调有界定理,会用这些定理求某些收敛数列的极限;初步理解柯西准则在极限理论中的重要意义,并逐步学会应用柯西准则判定某些数列的敛散性;
教学重点、难点:本章重点是数列极限的概念;难点则是数列极限的 用.教学时数:16学时
定义及其应
§ 1 数列极限的定义
教学目的:使学生建立起数列极限的准确概念;会用数列极限的定义证明数列极限等有关命题。
教学重点、难点:数列极限的概念,数列极限的N定义及其应用。教学时数:4学时
一、引入新课:以齐诺悖论和有关数列引入——
二、讲授新课:
(一)数列:
1.数列定义——整标函数.数列给出方法: 通项,递推公式.数列的几何意义.-《数学分析》教案--第二章 数列极限
xbl
2.特殊数列: 常数列,有界数列,单调数列和往后单调数列.(二)数列极限: 以 为例.定义(的 “
”定义)定义(数列 收敛的“
”定义)注:1.关于 :的正值性, 任意性与确定性,以小为贵;2.关于:非唯一性,对只要求存在,不在乎大小.3.的几何意义.(三)用定义验证数列极限: 讲清思路与方法.例1
例2
例3
例4
证
注意到对任何正整数
时有
就有
第三篇:数列极限
若当n无限增大时数列能无限的接近某一个常数a,则称此数列为收敛数列,常数a称为它的极限,不具有这种特性的数列不是收敛数列
收敛数列的特性是随着n的无限增大,数列无限接近一个常数a,这就是说,当n充分大时,数列的通项与常数a之差的绝对值可以任意小
第四篇:数列极限
§2.1 数列极限概念
第二章数列极限
§1 数列极限概念
Ⅰ.教学目的与要求
1.理解数列极限概念并利用定义证明数列是否收敛.2.掌握无穷小数列概念并利用其证明数列是否收敛于指定的常数.Ⅱ.教学重点与难点:
重点: 数列极限概念.难点: 数列极限概念、利用数列极限定义证明数列是否收敛于指定的常数.Ⅲ.讲授内容
若函数f的定义域为全体正整数集合N+,则称
f:NR或f(n), nN
为数列.因正整数集N+的元素可按由小到大的顺序排列,故数列f(n)也可写作
a1,a2,,an,,或简单地记为{an},其中an,称为该数列的通项.
关于数列极限,先举一个我国古代有关数列的例子.
例1古代哲学家庄周所著的《庄子·天下篇》引用过一句话:“一尺之棰,日取其半,万世不竭”,其含义是:一根长为一尺的木棒,每天截下一半,这样的过程可以无限制地进行下去.
把每天截下部分的长度列出如下(单位为尺): 第一天截下111,第二天截下2,„„,第n天截下n,„„这样就得到一个数列 22
21111,2,,n,.或n.2222
不难看出,数列{11}的通项随着n的无限增大而无限地接近于0.一般地说,对于数2n2n
列{an},若当n无限增大时an能无限地接近某一个常数a,则称此数列为收敛数列,常数a称为它的极限.不具有这种特性的数列就不是收敛数列.
收敛数列的特性是“随着n的无限增大,an无限地接近某一常数a”.这就是说,当n充分大时,数列的通项an与常数a之差的绝对值可以任意小.下面我们给出收敛数列及其极限的精确定义.
定义1设{an}为数列,a为定数.若对任给的正数,总存在正整数N,使得当,n>N
时有|ana|则称数列
n
{an收敛于a,定数a称为数列{an}的极限,并记作
limana,或ana(n).读作“当n趋于无穷大时,an的极限等于a或an趋于a”.
若数列{an}没有极限,则称{an}不收敛,或称{an}为发散数列.
定义1常称为数列极限的—N定义.下面举例说明如何根据N定义来验证数列极限.
例2证明lim证由于
|
0,这里为正数
nn
110|, nn
1故对任给的>0,只要取N=1
这就证明了lim
1,则当nN时,便有
111|0|.即nNn
0.nn
例3证明
3n2
3.lim2
nn
3分析由于
3n299
|2(n3).(1)|2
n3n3n
因此,对任给的>o,只要
9,便有 n
3n2
3|,(2)|2
n3
即当n
时,(2)式成立.又由于(1)式是在n≥3的条件下成立的,故应取
Nmax{3,9
证任给0,取Nmax{3,据分析,当nN时有(2)式成立.于是本题得证.9
注本例在求N的过程中,(1)式中运用了适当放大的方法,这样求N就比较方便.但应注意这种放大必须“适当”,以根据给定的E能确定出N.又(3)式给出的N不一定是正整
数.一般地,在定义1中N不一定限于正整数,而只要它是正数即可.例4证明limq=0,这里|q|<1.
n
n
证若q=0,则结果是显然的.现设0<|q|<1.记h我们有
|q0||q|
n
n
1,则h>0. |q|, n
(1h)
并由(1h)n1+nh得到
.(4)
1nhnh1,则当nN时,由(4)式得|qn0|.这对任给的0,只要取Nh
|q|
n
就证明了limq0.n
n
注本例还可利用对数函数ylgx的严格增性来证明(见第一章§4例6的注及(2)式),简述如下:
对任给的>0(不妨设<1),为使|qn0||q|n,只要nlg|q|lg即n
lg
(这里也假定0|q|1).lg|q|
于是,只要取N
lg
即可。lg|q|
例5证明lima1=1,其中a>0.
n
证(ⅰ)当a1时,结论显然成立.(ⅱ)当a1时,记a1,则0.由
a(1)1n1n(a1)
1n
1n
n
1n
得a1
a1
(5)n.1n
任给0,由(5)式可见,当n
a1
N时,就有a1,即|a1|.所以
1n
lima1.n
(ⅲ)当0a1时,,1n
1
a
-1则0.由
11
(1)n1n1n1aa
a111a1
得1a(6)1
na1.1n1a1n1a
任给0,由(6)式可见,当n1所以lima1.n
a11
N时,就有1a,即|a1|.1n1n
关于数列极限的—N定义,应着重注意下面几点:
1.的任意性定义1中正数的作用在于衡量数列通项an与定数a的接近程度,愈小,表示接近得愈好;而正数可以任意地小,说明an与a可以接近到任何程度.然而,尽管有其任意性,但一经给出,就暂时地被确定下来,以便依靠它来求出N,又既时任意小的正数,那么
,3或2等等同样也是任意小的正数,因此定义1中不等式
|ana|中的可用,3或2等来代替.同时,正由于是任意小正数,我们可限定
小于一个确定的正数(如在例4的注给出的证明方法中限定<1).另外,定义1中的|ana|<也可改写成|ana|.2.N的相应性一般说,N随的变小而变大,由此常把N写作N(),来强调N是依赖于的;但这并不意味着N是由所唯一确定的,因为对给定的,比如当N=100时,能使得当•n>N时有|ana|,则N=101或更大时此不等式自然也成立.这里重要的是N的存在性,而不在于它的值的大小.另外,定义1中的,n>N也可改写成nN.3.从几何意义上看,“当n>N时有|aa|”意味着:所有下标大于N的项an都落在邻域U(a;)内;而在U(a;)之外,数列{an}中的项至多只有N个(有限个).反之,任给>0,若在U(a;)之外数列{an}中
N,n
则当n>N时有anU(a,),即当n>N时有|ana|<.由此,我们可写出数列极限的一种等价定义如下:
定义1任给>0,若在U(a,)之外数列an中的项至多只有有限个,则称数列an
'
收敛于极限a.
由定义1,可知,若存在某00,使得数列{an}中有无穷多个项落在U(a,0)之外,则{an}一定不以a为极限.
例6证明{n2}和{(1)n}都是发散数列.
证对任何aR,取01,则数列{n}中所有满足na1的项(有无穷多个)显然
都落在U(a;0)之外,故知{n2}不以任何数a为极限,即{n2}为发散数列.至于数列{(1)n},当a1时取01,则在U(a;0)之外有{(1)n}中的所有奇数项;当a1时取0
|a1|,则在U(a;0)之外有{(1)n}中的所有偶数项.所以2
{(1)n}不以任何数a为极限,即{(1)n}为发散数列.例7设limxnlimyna,做数列{zn}如下:
n
n
{zn}:x1,y1,x2,y2,,xn,yn,.证明limzna.n
证,因limxnlimyna,故对任给的0,数列{xn}和{yn}中落在U(a;)之外
n
n的项都至少只有有限个.所以数列{zn}中落在U(a;)之外的项也至多只有有限个.故由定义1',证得limzna.
n
例8设{an}为给定的数列,{bn}为对{an}增加、减少或改变有限项之后得到的数列.证明:数列{bn}与{an}同时为收敛或发散,且在收敛时两者的极限相等.
'
证设{an}为收敛数列,且limana.按定义1,对任给的>0,数列{an}中落在n
U(a;)之外的项至多只有有限个.而数列{bn}是对{an}增加、减少或改变有限项之后得到的,故从某一项开始,所以{bn}中落在U(a;)之{bn}中的每一项都是{an}中确定的一项,外的项也至多只有有限个.这就证得limbna.
n
现设{an}发散.倘若{bn}收敛,则因{an}可看成是对{bn}增加、减少或改变有限项之
后得到的数列,故由刚才所证,{an}收敛,矛盾.所以当{an}发散时,{bn}也发散.在所有收敛数列中,有一类重要的数列,称为无穷小数列,其定义如下:定义2若liman0,则称{an}为无穷小数列.
n
由无穷小数列的定义,不难证明如下命题:
定理2.1数列{an}收敛于a的充要条件是:{ana}为无穷小数列.
Ⅳ 小结与提问:本节要求学生理解数列极限概念,利用定义证明数列是否收敛、是否收敛于指定的常数.要求学生课堂上给出limana和liman不存在的“—N”定义.n
n
Ⅴ 课外作业: P27 2、3、4、6、7、8.
第五篇:数列极限例题
三、数列的极限
(1)n1}当n时的变化趋势.观察数列{1n问题:
当n无限增大时, xn是否无限接近于某一确定的数值?如果是, 如何确定? 通过上面演示实验的观察:
(1)n1当n无限增大时, xn1无限接近于1.n问题:“无限接近”意味着什么?如何用数学语言刻划它.xn1(1)n1给定
11 nn1111, 由, 只要n100时, 有xn1, 100n10010011,只要n1000时, 有xn1, 给定1000100011,只要n10000时, 有xn1, 给定10000100001给定0,只要nN([])时, 有xn1成立.定义
如果对于任意给定的正数(不论它多么小), 总存在正整数N, 使得对于nN时的一切xn, 不等式xna都成立, 那末就称常数a是数列xn的极限, 或者称数列xn收敛于a, 记为
limxna,或xna(n).n如果数列没有极限, 就说数列是发散的.注意:
N定义:limxna0,N0, 使nN时, 恒有xna.n其中记号:每一个或任给的;:至少有一个或存在.数列收敛的几何解释:
a2axN2x2x1xN1ax3x
当nN时, 所有的点xn都落在(a,a)内, 只有有限个(至多只有N个)落在其外.注意:数列极限的定义未给出求极限的方法.n(1)n11.例1 证明limnnn(1)n111 .证
注意到xn1 nn任给0, 若要xn1, 只要
11,或 n, n所以, 取 N[], 则当nN时, 就有 1n(1)n11.nn(1)n11.即limnn
重要说明:(1)为了保证正整数N,常常对任给的0,给出限制01;
n(1)n11”的详细推理
(2)逻辑“取 N[], 则当nN时, 就有
n1见下,以后不再重复说明或解释,对函数极限同样处理逻辑推理.由于N立.严格写法应该是:任给0, 不妨取01,若要11N1,所以当nN时一定成立nN11,即得
1成nn(1)n11111< ,只要 n,所以, 取 N[], 则当nN时, 由于xn1=nn1111NN1,所以当nN时一定成立nN1,即得成立.也就
n是成立
n(1)n111.xn1=
nnn(1)n11.即limnn小结: 用定义证数列极限存在时, 关键是任意给定0,寻找N, 但不必要求最小的N.例3证明limq0, 其中q1.nn证
任给0(要求ε<1)若q0, 则limqlim00;
nnn若0q1, xn0q, nlnqln,nnlnln, 取N[](1), 则当nN时, 就有qn0, lnqlnqlimqn0.n0, q1,q1,, n
说明:当作公式利用:limq
n1, q1,不存在,q1.