第一篇:小学六年级数学《圆的面积》教学设计
小学六年级数学《圆的面积》教学设计
作为一名老师,时常需要用到教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。如何把教学设计做到重点突出呢?下面是小编为大家收集的小学六年级数学《圆的面积》教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。
小学六年级数学《圆的面积》教学设计1目标预设:
1、使学生经历操作、观察、估算、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。
2、使学生进一步体会转化的方法的价值,培养学生运用已有知识解决实际问题和合情推理的能力,培养空间观念,并渗透极限思想。
教学过程:
一、引导估计,初步感知。
1、出示圆形电脑硬盘。引导学生思考:要求这个硬盘的面积就是要求什么?圆面积的大小与什么有关?
2、估计圆面积大小与半径的关系。
师先画一个正方形,再以正方形的边长为半径画一个圆,估计圆的面积大约是正方形面积的多少倍,在这里正方形边长是r,用字母表示正方形的面积是多少?圆的面积与它的半径有什么关系?
二、动手操作,共同探索。
1、引发转化,形成方案。
(1)我们如何推导三角形,平行四边形,梯形的面积公式的?
(2)准备如何去推导圆的面积?
2、动手操作,共同探究
(1)把一个圆平均分成了8份,每一份的图形是什么形状?能把这些近似的三角形拼成一个学过的图形吗?
(2)动手操作。同桌为一组,把课前准备的16份拼一拼,能否拼成一个近似的平行四边形。
(3)比较:与刚才老师拼成的图形有何不同?
(4)想象:如果我们把这个圆平均分成32份、64份……拼成的图形有何变化呢?
如果一直这样分下去,拼成的图形会怎么样?
3、引导比较,推导公式。
圆与拼成的长方形之间有何联系?
引导学生从长方形的面积,长宽三个角度去思考。
根据学生回答,相机板书。
长方形的面积=长×宽
↓↓↓
圆的面积=∏rr
=∏r2
追问:课始我们的估算正确吗?
求圆的面积一般需要知道什么条件?
1、基本训练,练练应用公式,求圆的面积。
2、解决问题
(1)出示例9,引导学生理解题意。
要求喷水器旋转一周喷灌的面积就是求什么?喷水距离5米是指什么?
(2)学生计算
(3)交流,突出5平方的计算
1、练习十九1求课始出示的光盘的面积
2、在一块长方形的草地上,一只羊被3米长的绳子拴在草地正中央的桩上(接头不计)这只羊最多能吃到多大面积的草?
地方有哪些?
引导学生回顾圆面积的推导过程,知道圆周长如何求面积?总结圆面积计算的方法)
补充习题51页2、3、4题
拓展右图中正方形的面积是8平方厘米。已知圆的直径如何求面积,已知圆的周长如何求面积。
圆的面积是多少平方厘米?
反思:
1、变教教材为用教材教,教材通过例7,用数方格的方法让学生初步感知圆面积的计算公式,具体过程是这样的:先让学生用数方格的方法数出1/4圆的面积,再推出圆的面积,然后填写表格,通过观察数据,发现圆面积与它的半径的关系,整个过程费时又费力,教学时出示例7的图形,在教师的引领下,让学生估算圆的面积,从而发现圆的面积与半径的关系,省时又省力,为本课重难点的掌握,赢得了时间。在推导出计算公式后,不急于进行例9的教学而让学生做练一练中的题目,在学生掌握了圆面积计算公式后,再学习例9,解决实际问题,符合学生的认知规律。
2、重视动手操作,参与知识的形成过程,当学生探究思维的火花被点燃时,教师巧妙地引导示范、演示,一步步深入挖掘学生的创造性,荷兰数学教育家费赖登塔尔认为:数学学习是一种活动,这种活动与游泳骑自行车一样不经过亲身体验,仅仅看书本听讲解观察他人的演示是学不会的,因此在关键的“化圆为方”环节中,让学生动手操作亲身体验,促使学生的思维由量变到质变,同时操作活动中又巧妙地利用学生的想象把分割过程无限细化,渗透极限思想。
3、数学来源于生活,又应用于生活,喷水器喷水、光盘、羊吃草问题都是学生常见的生活情境,通过把生活中的问题数学化,学生既体验到活用数学知识,解决问题的快乐,也感受到数学的实际应用价值。羊吃草问题,引发了学生对视而不见的生活现象的`“数学思考”。同时羊吃草范围的圆,看不见摸不着,需要学生想象力的参与,在练习层次上加深了一步。过早地解决实际问题,不利于学生基本技能的形成。
小学六年级数学《圆的面积》教学设计2教学内容:
义务教育课程标准实验教科书第十一册P67-68。
教学目标:
1、认知目标
使学生理解圆面积的含义;掌握圆的面积公式,并能运用所学知识解决生活中的简单问题。
2、过程与方法目标
经历圆的面积公式的推导过程,体验实验操作,逻辑推理的学习方法。
3、情感目标
引导学生进一步体会“转化”的数学思想,初步了解极限思想;体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。
教学重点:
掌握圆的面积的计算公式,能够正确地计算圆的面积。教学难点:理解圆的面积计算公式的推导。
学具准备:
相应课件;圆的面积演示教具
教学过程:
一、创设情境,导入新课
出示教材67页的情境图。
师:同学们,请看上面的这幅图,从图中你发现了什么信息?
生1:我发现图上有5个工人在铺草坪。
生2:我发现花坛是个圆形。
师:哦,是个圆形。还有没有?请仔细观察。
生:我发现一个工人叔叔提出了一个问题。
师:这个问题是什么?
生:这个工人叔叔说“这个圆形草坪的占地面积是多少平方米?”
师:你们能帮他解决这个问题吗?
师:求圆形草坪的占地面积也就是求圆的什么?
师:今天我们就一起来学习圆的面积。(板书课题:圆的面积)
二、游戏激趣,理解圆面积的概念
师:同学们,我们先来玩个小小游戏,大家说好不好?游戏规则是这样的:选出一名男同学和一名女同学,给圆涂上颜色,比一比,谁涂得快。(涂完后,师:同学们,你们有什么话要说吗?)
生:这个游戏不公平?男同学涂的圆大,女同学涂的圆小。师:圆所占平面的大小叫做圆的面积
(板书:圆所占平面的大小叫做圆的面积)
师:现在大家知道男同学为什么涂得慢了吗?(引导学生说出男同学所涂的圆的面积大)
三、探究合作,推导圆面积公式
1、渗透“转化”的数学思想和方法。
师:圆的面积怎样计算呢?计算公式又是什么?你们想知道吗?我们先来回忆一下平行四边形的面积是怎样推导出来?
生:沿着平行四边形的高切割成两部分,把这两部分拼成长方形师:哦,请看是这样吗?(教师演示)。
生:是的,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。
师:同学们对原来的知识掌握得非常好。刚才我们是把一个图形先切,然后拼,就转化成别的图形。这样有什么好处呢?
生:这样就把一个不懂的问题转化成我们可以解决的问题。师:对,这是我们在学习数学的过程当中的一种很好的方法。今天,我们就用这种方法把圆转化成已学过的图形。
师:那圆能转化成我们学过的什么图形?你们想知道吗?(想)
2、演示揭疑。
师:(边说明边演示)把这个圆平均分成16份,沿着直径来切,变成两个半圆,拼成一个近似的平行四边形。
师:如果老师把这个圆平均分成32份,那又会拼成一个什么图形?我们一起来看一看(师课件演示)。
师:大家想象一下,如果老师再继续分下去,分的份数越多,每一份就会越小,拼成的图形就会越接近于什么图形?(长方形)
3、学生合作探究,推导公式。
(1)讨论探究,出示提示语。
师:下面请同学们看老师给的三个问题,请你们四人一组,拿出课前准备的学具拼一拼,观察、讨论完成这三个问题:
①转化的过程中它们的发生了变化,但是它们的不变?
②转化后长方形的长相当于圆的,宽相当于圆的?③你能从计算长方形的面积推导出计算圆的面积的公式吗?尝试用“因为??所以??”类似的关联词语。
师:你们明白要求了吗?(明白)好,开始吧。
学生汇报结果,师随机板书。
同学们经过观察,讨论,寻找出圆的面积计算公式,真了不起。
(2)师:如果圆的半径用r表示,那么圆周长的一半用字母怎么表示?
(3)揭示字母公式。
师:如果用S表示圆的面积,那么圆的面积计算公式就是:S=πr2
(4)齐读公式,强调r2=r×r(表示两个r相乘)。
从公式上看,计算圆的面积必须知道什么条件?在计算过程中应先算什么?
[设计意图:通过小组合作、讨论使学生进一步明确拼成的长方形与圆之间的对应关系,有效地突破了本课的难点。]
4、公式运用,巩固新知。
师:现在大家懂得计算圆的面积了吗?我们来试试看。
四、应用公式,解决生活中的实际问题
师:接下来我们运用圆的面积计算公式来解决生活中的实际问题。
师:(出示教材第67页的情境图)这是刚才课前发现的问题。师:这道题你们能自己解决吗?(让学生尝试自己解决问题,并指名板演。再让学生说说是怎样想的,然后教师小结:求圆的面积必须知道什么条件?)[设计意图:学生已经掌握了圆面积的计算公式,可大胆放手让学生尝试解答,从而促进了理论与实践的结合,培养了学生灵活运用所学知识解决实际问题的能力。]
五、练习反馈,扩展提高
1、一个圆形茶几桌面的直径是1m,它的面积是多少平方厘米?
2、小刚家门前有一棵树,他很想知道这棵树的横截面的面积是多少,但是他又不想锯掉,你们有什么办法帮他吗?
六、全课总结
同学们,这节课我们学习了哪些知识?你有什么收获?
七、板书设计
圆的面积
圆所占平面的大小叫做圆的面积
长方形面积=长×宽
=半径
S=πr×r
=πr2
第二篇:圆面积教学设计
教学内容
六年级上册第69~71例
1、例2。教材分析
圆的面积是六年级上册第一单元的内容,本单元是在学生掌握了直线图形的周长和面积,并且对圆已有初步认识的基础上进行学习的。从认识圆入手,到圆的周长和面积,与直线图形的学习顺序是一致的。但是,学习圆是从学习直线图形到学习曲线图形,无论是内容本身,还是研究问题的方法都有所变化。学生初步认识研究曲线图形的基本方法——“化曲为直”、“化圆为方”,同时也渗透了曲线图形与直线图形的内在联系,感受极限思想。
在本单元中,本节内容安排在“认识圆,圆的周长”之后,这样可以让学生借鉴在学习圆周长时的经验来研究圆的面积;有利于让学生感悟学习习近平面图形的规律和方法。
教学目标
1.学生通过观察、操作、分析和讨论,推导出圆的面积公式。2.能够利用公式进行简单的面积计算。
3.渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。教法分析
1.教法分析:
针对学生年龄特点和心理特征,以及他们现在的知识水平。采用启发式,小组合作等教学方法,让尽可能多的学生主动参与到学习过程中。课堂上教师要成为学生的学习伙伴,与学生“同甘共苦”一起体验成功的喜悦,创造一个轻松,高效的学习氛围。
2.学法指导
通过实例引入,引导学生关注身边的数学,在借助长方形面积公式来推导圆的面积公式的同时,使学生体会到观察,归纳,联想,转化等数学学习方法,在师生互动中让每个学生都动口,动手,动脑。培养学生学习的主动性和积极性。
3.教学手段
采用多媒体辅助手段,充分调动学生的感官,增加形象感与趣味性,腾出足够的时空和自由度使学生成为课堂的主人。
教、学具准备 1.CAI课件;
2.把圆8等分、16等分和32等分的硬纸板若干个; 3.剪刀若干把。教学过程
一、以情激趣,导入新课
师:同学们,你们想一想,当我们还不会计算平行四边形的面积的时候,是利用什么方法推导出了平行四边形的面积计算公式呢? 预设:
引导学生明确:我们是用“割补法”将平行四边形转化成长方形的方法推导出了平行四边形的面积计算公式。
师:同学们再想想,我们又是怎样推导出三角形的面积计算公式的呢?
师:对了,我们将平行四边形、三角形“转化”成其它图形的方法来推导出它们的面积计算公式
师:那么,怎样才能把圆形转化为我们已学过的其它图形呢?(板书课题:圆的面积)
二、展示目标,自主探索
请大家看屏幕(利用课件演示),老师先给大家一点提示。师:(教师配合课件演示作适当说明)如果我们把一个圆形平均分成16份(如图三),其中的每一份(如图四,课件闪烁其中1份)都是这个样子的。同学们,你们觉得它像一个什么图形呢?
师:是的,其中的每一份都是一个近似三角形。请同学们再想一想,这个近似三角形这一条边(教师指示)呢? 预设:
引导学生观察,明确这个近似三角形的两条边其实都是圆的半径。师:如果我们用这些近似三角形重新拼组,就可以将这个圆形“转化”成其它图形了。同学们,老师为你们每个小组都准备了一个已经等分好了的圆形,请你们动手拼一拼,把这个圆形“转化”成我们已学过的其它图形,开始吧!预设:
学生利用这种近似三角形拼组图形会有一定的难度,教师要加强巡视和有针对性的指导,既鼓励学生拼出自己想象中的图形,又要引导他们拼出最简单、最容易计算面积的图形。一般情况下,学生会拼出如下几种图形(如图
五、图
六、图七)。
跟圆形有什么关系
3.探究联系。
师:同学们,“转化”完了吗?好,请大家来展示一下你们“转化”后的图形。预设:
分组逐个展示,并将其中“转化”成长方形的一组的作品贴在黑板上。如果有小组转化成了不规则的图形,教师应及时引导他们转化为我们已学过的平面图形。
师:好,各个小组都不错。现在请同学们思考一个问题:你们把一个圆形“转化”成了现在的图形之后,它们的面积有没有改变?请小组内讨论。
师:谁来告诉大家,它们的面积有没有改变?
师:是的,没有改变,就是说:这个近似的长方形的面积=圆的面积。师:虽然我们现在拼成的是一个近似的长方形,但是如果把圆等分成32份、64份、128份、256份„„一直这样下去分成很多很多份,拼成的图形就变为真正的长方形(课件演示,如图八)。
4.推导公式。
师:现在我们就来看这个长方形。同学们,如果圆的半径为r,你们知道这个长方形的长和宽分别是多少吗?现在请小组为单位进行讨论讨论。
师:好,同学们,谁能首先告诉老师,这个长方形的宽是多少?
预设:
根据学生的回答,教师演示课件,同时闪烁圆的半径和长方形的宽,并标示字母r,如图九。
师:那这个长方形的长是多少呢?(教师边演示课件边说明)这个长方形是由两个半圆展开后拼成的,请大家看屏幕,这个红色的半圆展开后,其中这条黄色的线段就是长方形的长(如图十),请同学们仔细观察(课件继续演示如图十一,半圆展开后再还原,再展开,),这个长方形的长究竟与圆的什么有关?究竟是多少呢?
预设:
教师引导学生明白:这个长方形的长与圆的周长有关,并且是圆的周长的一半(如果学生有困难的话,教师利用课件演示,如图十二)。并且让学生通过计算得出长方形的长就是πr。
师:现在我们已经知道了这个长方形的长和宽(如图十三),它的面积应该是多少?那圆的面积呢?
预设:
老师根据学生的回答进行相关的板书。
师:你们真了不起,学会了“转化”的方法推导出圆的面积计算公式。现在请大家读一读,记一记,写一写圆的面积计算公式。
二、运用公式,解决问题 1.教学例1。
师:同学们,从这个公式我们可以看出,要求圆的面积,必须先知道什么?(出示例1)如果我们知道一个圆形花坛的直径是20m,我们该怎样求它的面积呢?请大家动笔算一算这个圆形花坛的面积吧!预设:
教师应加强巡视,发现问题及时指导,并提醒学生注意公式、单位使用是否正确。2.完成做一做。
师:真不错!现在请同学们翻开数学课本第69页,请大家独立完成做一做的第1题。订正。3.教学例2。
师:(出示例2)这是一张光盘,这张光盘由内、外两个圆构成。光盘的银色部分是一个圆环。请同学们小声地读一读题。开始!师:怎样求这个圆环的面积呢?大家商量商量,想想办法吧!师:找到解决问题的方法了吗?
师:好的,就按同学们想到的方法算一算这个圆环的面积吧!预设:
教师继续对学困生加强巡视,如果还有问题的学生并给予指导。交流,订正。
三、课堂作业。
教材第70页第 2、3、4题。
四、课堂小结
师:同学们,通过这节课的学习,你有什么收获?
教学反思
本节课的教学设计主要体现以下特点:
1.注重学生的实践活动。在面积公式推导过程中,学生的实际操作是必不可少的一部份,如放在课堂上会占用很多时间,考虑到学生操作起来较慢,于是先让学生预先进行实际的操作,然后把操作的成果带回来上课用。
2.使学生运用迁移的方法,把新知识转化为旧知识,把圆转化成已经学过的图形。通过让学生回忆平行四边形、三角形、梯形的面积公式的推导,复习了“转化”的思想,顺其自然也可以想到把圆转化成已学过的图形,介绍分割圆的方法,展示由“曲”变“直”的过程,小组讨论,推导出圆面积公式。培养学生动手操作,口头表达和逻辑思维的能力,渗透了极限和转化思想。
3.圆除了剪拼成近似的长方形外,还可以转化成近似的三角形、近似的梯形。如果让学生在这里再动手操作,对学生思维的拓展是有很大的好处,但一节课无法容纳这么多的内容,所以这一节课就选择了单纯让学生把圆转化成近似长方形来推导圆面积的公式。
4、充分运用多媒体,形象演示圆面积的转化过程,有助提高学生的思维能力。
第三篇:圆面积教学设计)
《圆的面积》教学设计
教学目标:
1、通过学生观察、操作、分析和讨论,推导出圆的面积计算公式。2.能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单的实际问题。
3.培养学生类比推理的能力,及观察能力和动手操作能力。
教学重点:理解和掌握圆面积的计算公式,能利用公式进行计算。教学难点:理解圆面积的推导过程。教具、学具准备:
1、圆面积演示学具
2、课件
3、把圆8等分、16等分和32等分的硬纸板若干个
4、剪刀若干把
教学过程:
一、创设情境,生成问题
1、播放孙悟空为唐僧画保护圈的视频。
2、让学生为老师画一保护圈。老师扮演唐僧,学生扮演孙悟空(进行演示)注:唐僧与孙悟空分别拿金箍棒的一端进行画圆。
师:同学们通过刚才的视频与演示,说说从中你能发现数学知识吗? 学生观察并讨论,然后指名回答。
师:同学们说得很好。请大家说说这个圆形的面积指的是哪部分呢? 师:说得很好,今天这节课我们就来学习如何求唐僧画的保护圈面积有多大。(板书:圆的面积)
二、探索交流,解决问题
1、圆面积概念
师:请同学们拿出你们准备的圆片,用手摸一摸圆的表面 你发现了什么?
师:下面小组内的同学互相比一比圆片,看看哪个大,哪个小? 师:通过比较我们知道了圆有大有小,请看课件(展示课件),同时想一想你能用一句话概括什么叫做圆的面积吗?
生:圆所围平面的大小叫做圆的面积。(教师板书,让学生齐读一遍。)
2、尝试转化,推导公式(学习圆的面积公式)(1).确定“转化”的策略。
师:同学们,你们想一想,当我们还不会计算平行四边形的面积的时候,是利用什么方法推导出了平行四边形的面积计算公式呢?
师:同学们再想想,我们又是怎样推导出三角形的面积计算公式的呢? 师:对了,我们将平行四边形、三角形“转化”成其它图形的方法来推导出它们的面积计算公式。
(2).尝试“转化”。
请大家看屏幕(利用课件演示),老师先给大家一点提示。
师:(教师配合课件演示作适当说明)如果我们把一个圆形平均分成16份(如图三),其中的每一份(如图四,课件闪烁其中1份)都是这个样子的。同学们,你们觉得它像一个什么图形呢?
师:是的,其中的每一份都是一个近似三角形。请同学们再想一想,这个近似三角形这一条边(教师指示)跟圆形有什么关系呢?
师:如果我们用这些近似三角形重新拼组,就可以将这个圆形“转化”成其它图形了。同学们,老师为你们每个小组都准备了一个已经等分好了的圆形,请你们动手拼一拼,把这个圆形“转化”成我们已学过的其它图形,开始吧!
(3).探究联系。
师:同学们,“转化”完了吗?好,请大家来展示一下你们“转化”后的图形。
师:好,各个小组都不错。现在请同学们思考一个问题:你们把一个圆形“转化”成了现在的图形之后,它们的面积有没有改变?请小组内讨论。
师:谁来告诉大家,它们的面积有没有改变?
师:是的,没有改变,就是说:这个近似的长方形的面积=圆的面积。师:虽然我们现在拼成的是一个近似的长方形,但是如果把圆等分成32份、64份、128份、256份„„一直这样下去分成很多很多份,拼成的图形就变为真正的长方形(课件演示,如图八)。(4).推导公式。
师:现在我们就来看这个长方形。同学们,如果圆的半径为r,你们知道这个长方形的长和宽分别是多少吗?现在请小组为单位进行讨论讨论。
师:好,同学们,谁能首先告诉老师,这个长方形的宽是多少?(r)
师:那这个长方形的长是多少呢?(教师边演示课件边说明)这个长方形是由两个半圆展开后拼成的,请大家看屏幕,这个红色的半圆展开后,其中这条黄色的线段就是长方形的长(如图十),请同学们仔细观察(课件继续演示如图十一,半圆展开后再还原,再展开,),这个长方形的长究竟与圆的什么有关?究竟是多少呢?(πr)
师:现在我们已经知道了这个长方形的长和宽(如图十三),它的面积应该是多少?那圆的面积呢?
长方形面积=长×宽 圆
面 积=πr×r
老师根据学生的回答进行相关的板书。
师:你们真了不起,学会了“转化”的方法推导出圆的面积计算公式。现在请大家读一读,记一记,写一写圆的面积计算公式。
3、运用公式,解决问题(1).教学例3。
一个圆的半径是4厘米,它的面积是多少平方厘米?
师:同学们,从这个公式我们可以看出,要求圆的面积,必须先知道什么?(出示例3)如果我们知道一个圆的直径是4厘米,我们该怎样求它的面积呢?请大家动笔算一算这个圆形花坛的面积吧!
(2).教学例4。
街心花园中圆形花坛的周长是18.84米,花坛的面积是多少平方米? A、学生读题,找出已知条件和问题。B、分析题意。
师:请同学们想一想:要求圆形花坛的面积必须知道什么条件? 生:必须知道圆的半径。
生:那么圆的半径题中直接告诉了吗? 生:没有。师:题中告诉了我们什么条件? 生:圆的周长。
师:那么怎样来求半径呢?你能告诉大家利用哪个公式吗? 生:利用r=C÷π÷2(3)学生独立列式解答。(4)集体订正。
小结:通过刚才的学习,我们知道要求圆的面积,必须知道半径这个条件,当题中没有直接告诉我们时,应先求出圆的半径,再求圆的面积。
三、巩固应用,内化提高
师:下面老师来检测一下大家的掌握情况,请看基本练习(课件出示):教材第95页“做一做”
1、2题。(学生独立完成,老师巡视指导,集体订正。)
重点强调:当圆的半径题中没有告诉时,一般应想求出圆的半径,再求圆的面积。
四、回顾整理,反思提升
1、同学们,通过这节课的学习,你有什么收获?
2、拓展练习
师:这是一张光盘,这张光盘由内、外两个圆构成。光盘的银色部分是一个圆环。请同学们用想到的方法算一算这个圆环的面积吧!
第四篇:六年级数学上册《圆面积应用》教案设计
六年级数学上册《圆面积应用》教案设
计
题
圆面积应用
执教
薛xx
时
时
教学
目标
使学生理解内接正方形和外切正方形的含义,掌握圆与内接正方形、外切正方形之间面积的计算方法。
2经历问题解决的全过程,并在解决具体问题的基础上发现更为一般的数学规律,提高发现问题、提出问题、分析问题、解决问题的能力。
教学重点
掌握圆与内接正方形、外切正方形之间面积的计算方法。
教学难点
在解决问题的基础上发现数学规律。
教师活动
学生活动
二次备
一:布置前置性问题学习内容:
自己查询数学家刘徽,了解刘徽。
2理解环形,明白环形的计算方法。
3同桌合作探讨圆与内接正方形、外切正方形之间面积的计算方法。
二:师提问:
什么是环形?举例说明。
2怎样求出环形的面积?
三:学习例3、仔细观察:什么是内接圆和外切圆,它们都有什么特征?
2、正方形的边长与圆的半径有什么关系?
3、学生尝试解决外切正方形与圆之间的面积。
4、解决内接正方形与圆之间的面积。
四:回顾与反思:
学生汇报了解到的有关于刘徽的资料。
独立自学
3学生动手操作,剪环形。
4合作探究:环形面积的计算方法。
学生交流,互相补充。
(1)观察,学生看出,正方形的边长就是圆的直径。
(2)学生独立计算,集体订正。
(1)怎样求内接正方形与圆之间的面积?
(2)那正方形的面积怎样求?
(3)学生尝试解决
环形,用实物,学生看到实物后,能对环形有具体的感知。
达
标
检
测
必
做
题
.一个环形的外圆半径是8分米,内圆半径分米,求环形的面积?
2.环形的外圆周长是1884厘米,内圆直径是4厘米,求环形的面积?
3一个圆环,外圆半径是16厘米,内圆半径是9厘米。这个圆环的面积是多少平方厘米?
选
做
题
在一个周长是628米的圆形花圃边沿修一条宽1米的环形小路。这条小路的面积是多少?
2一个环形铁片的外圆周长是212,内圆直径是,求环形铁片的面积。
3一只环形玉佩的外圆半径为2厘米,比内圆半径多1厘米,这只环形玉佩的面积是多少平方厘米?
4一个中间长为110米、宽90米,两端都是直径为90米的半圆形体育场,现要在其外侧开辟6条宽08米的环形跑道,还需要的徒弟面积为多少平方米
校园圆形花池的半径是6米,在花池的周围修一条1米宽的水泥路,求水泥路的面积是多少平方米?
板
书
设
计
圆面积应用
环形的面积=大圆的面积-小圆的面积
外方内圆的面积=正方形的面积-圆形的面积
外圆内方的面积=圆形的面积-正方形的面积
教
学
反
思
学生在知识的学习过程中,有亲身体验,获得“做出来”的数学,而不是给以“现成的”数学,由于布置学生前置性学习任务,学生经历剪圆环的动手操作过程,从而为求环形的面积作铺垫。在这个过程中学生们能自主合作,探究新知,培养了动手操作能力及合作意识。让学生在环形图中认识了“环宽”。我有效的利用进行对比演示加深学生对环形特征的理解,非常的形象和直观,吸引了学生的注意力,激发了学生学习的兴趣。教学效果比较好。
第五篇:圆面积的综合应用教学设计
《圆面积的综合应用》教学设计
浙江省诸暨市璜山镇化泉小学 张垚杰(初稿)浙江省诸暨市实验小学教育集团 陈菊娣(修改)
浙江省诸暨市教育局教研室 汤 骥(统稿)
教学内容:人教版小学数学教材六年级上册第69~70页例3及相关练习。
教学目标:
1.结合具体情境认识与圆相关的组合图形的特征,掌握计算此类图形面积的方法,并能准确计算。
2.在解决实际问题的过程中,通过独立思考、合作探究、讨论交流等活动,培养学生分析问题和解决问题的能力。
3.结合例题渗透传统文化的教育,通过体验图形和生活的联系感受数学的价值,提升学习的兴趣。
教学重点:掌握计算组合图形面积的方法,并能准确计算。
教学难点:对组合图形进行分析。
教学准备:课件、学具、作业纸。
教学过程:
一、创设情景,谈话引入
1.师:古时候,由于人们的活动范围狭小,往往凭自己的直觉认识世界,看到眼前的地面是平的,以为整个大地是平的,并且把天空看作是倒扣着的一口巨大的锅。我国古代有“天圆如张盖,地方如棋局”的说法。(结合课件出示)虽然这种说法是错误的,却产生了深远的影响,尤其体现在建筑设计上。
2.课件展示:鸟巢和水立方等建筑,精美的雕窗。
【设计意图】由传统文化对建筑设计产生的影响导入课堂,自然地引出例题的教学,极大地激发了学生学习的兴趣和探索的热情。
二、探究新知,解决问题
1.实践操作(课件出示教材例3中的雕窗插图)
师:谁能说说这两种设计有什么联系和区别?
预设1:左边的雕窗外面是方的里面是圆的;右边的雕窗外面是圆的里面是方的。
师:我们可以将上述特征分别概括地称为外方内圆、外圆内方。
预设2:都是由圆和正方形这两个图形组成的。
师:也就是我们以前学过的什么图形?(组合图形)你能用学具组合出这两个图形吗?
学生操作,作品展示。
【设计意图】动手操作的过程是从实物中抽象出图形的过程,使学生充分体会图形的组合与位置关系,理解组合图形面积的产生。与此同时,激活了原有的关于组合图形的认识,找到了新知的生长点。2.解决问题
(1)阅读与理解
师:怎样计算正方形和圆之间部分的面积?需要什么条件?先想一想,再同桌交流。
预设1:正方形的面积减去圆的面积;圆的面积减去正方形的面积。
预设2:需要知道正方形的边长和圆的半径。
师:只告诉你这两个圆的半径都是1米,你能计算出这两部分的面积吗?
学生思考,尝试练习。
(2)分析与解答
师:谁来说说你是怎么计算左图中正方形和圆之间部分的面积的?
预设:正方形的面积是2×2=4(m),减去圆的面积(3.14 m),等于0.86 m。
师:你是怎么知道正方形的边长的?
根据学生回答课件展示:正方形的边长=圆的直径。
师:在右图中你能得出正方形的边长吗?(不能)该如何计算正方形的面积呢?
预设1:可以把右图中的正方形看成两个三角形。
追问:三角形的底和高分别是多少?相当于什么?(底是2 m,高是1 m,相当于圆的直径和半径。)
结合学生回答课件展示。
预设2:也可以看成四个三角形。
师:这样一来,每个三角形的底和高各是多少呢?相当于什么?(底和高都是1 m,相当于圆的半径。)
师:那么,圆与正方形之间部分的面积可以怎样计算?(学生练习,分析订正。)
【设计意图】让学生经历观察思考、分析推理等学习活动,得出公共边以及图形各要素之间的关系,自主地运用已有的知识达成问题的解决。教学过程中,注重把时间和空间还给学生,教师只用几个简单的设问,引出的却是学生自主学习的过程展示。
三、回顾反思,理解算法
师:如果两个圆的半径都是,结果又是怎样的?结合左图我们一起来算一算。
左图:。
师:像这样,你能计算出右图中正方形和圆之间部分的面积吗?
学生练习,反馈讲评。
右图:。
师:我们可以把题目中的条件=1 m代入上述的两个结果算一算,有什么发现?
预设:和之前计算的结果完全一致。
【设计意图】“授人以鱼,不如授人以渔”,在解决具体问题的基础上发现一般的数学规律是本堂课教学的重要内容。在层层深入的学习过程中,始终坚持为学生创设探索的情境,利用知识内在的魅力吸引学生主动投入到知识的发展过程中。
四、课堂练习,强化认识 1.基础练习
(1)有一块长20米,宽15米的长方形草坪,在它的中间安装了一个射程为5米的自动旋转喷灌装置,它不能喷灌到的草坪面积是多少?
师:求不能喷灌到的草坪面积,就是求什么?
(2)一件古代铜钱的模型(如图),已知外圆的直径是20cm,中间正方形的边长为6cm。这个模型的面积是多少?
师:可以用怎样的方法验证结果是否正确? 2.拓展练习
在每个正方形中分别作一个最大的圆,并完成下表。
采用四人小组合作的方式完成,小组汇报展示。
师:你发现了什么?如果正方形的边长为,你能得出怎样的结论?
正方形面积为,圆的面积为,面积之比为。
师:如果是在圆内作一个最大的正方形,又会有怎样的关系呢?这个问题就作为今天的课外作业。
【设计意图】基础练习的设计在于运用新知解决生活中的实际问题,并强调对结果进行验证的意识。拓展练习采用小组合作的方式解答,进一步揭示了圆与正方形的面积之间的关系,对于培养学生的合作交流意识、发展数学思维能力等方面具有重要的意义。
五、全课总结,畅谈收获
通过本节课的学习,你有什么收获?谁来说一说。