首页 > 教学资源 > 教学设计
不等式教学设计
编辑:落花人独立 识别码:69-967066 教学设计 发布时间: 2024-04-18 22:27:28 来源:网络

第一篇:不等式教学设计

§9.1 不等式教学设计 教材分析:

本节内容主要有:不等式及其解集、不等式的性质。教材首先以实际问题为例,结合问题中的不等关系,引出不等式及其解集的概念;然后类比一元一次方程,引出一元一次不等式的概念.为进一步讨论不等式的解法,教材接着对不等式的性质进行了讨论,得出不等式的三个性质,并运用它们解简单的不等式.解不等式就是求出对其中未知数的大小的限制,有了这样的目标,再加上对不等式性质的认识,解不等式的方法就能很自然的产生.这一节的框架结构与一元一次方程的相应部分类似,教学中可以类比方程、等式的性质来讨论不等式、不等式的性质等.【课时分配】2课时 §9.1.1不等式及其解集 【教学重点与难点】

教学重点:正确理解不等式、不等式解与解集的意义,把不等式的解集正确地表示到数轴上.教学难点:正确理解不等式解集的意义.【教学目标】

1.知道不等式概念,能正确表示不等式的解集;

2、经历由具体实例建立不等模型的过程,经历探究不等式解与解集的不同意义的过程,渗透数形结合思想.【教学方法】

采用启发诱导、实例探究、小组合作的教学方法,揭示知识的发生和形成过程.这种教学方法以“生动探索”为基础,先“引导发现”,后“讲评点拨”,让学生在克服困难与障碍的过程中充分发挥自己的观察力、想像力和思维力.【教学过程】

一、创设情境 导入新课

(设计说明:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,激发他们的学习兴趣。)

问题:

1、两个体重相同的孩子正在跷跷板上做游戏.现在换了一个小胖子上去,跷跷板发生了倾斜,游戏无法继续进行下去了.这是什么原因呢?

2、一辆匀速行驶的汽车在11:20时距离A地50千米。要在12:00以前驶过A地,车速应该具备什么条件? 分析:若设车速为每小时x千米,能用一个式子表示吗? 从时间上看,这个车速行驶50千米所用时间不到小时,列式为:;从路程上看,以这个车速行驶小时的路程要超过50千米,列式为:.(教学说明:问题1中,原来的平衡状态被破坏了,产生了一种不等关系;问题2中汽车当然是跑得越快越好,但显然汽车的速度又必须在某一个速度以上。如何表示这两种状态呢?我们知道相等关系可以用等式来表示,那么,不等关系又怎样表示呢?引导学生列出,两个式子,像这样的式子叫做不等式,这节课我们来研究不等式的相关知识,由此导入新课。)

二、师生互动,探索新知

(一)不等式、一元一次不等式的概念

1、不等式的定义

问题1:请同学们举出一些不等式的例子,试着给出不等式的定义.如:5〉3,-1〈0,x≠0等都是不等式。用“<”或“>”表示大小关系的式子叫做不等式;用“≠”表示不等关系的式子也是不等式。

问题2:用不等式表示下列数量关系:

①a比1大;②x的4倍与5的和是负数;③a是非负数;④x与4的和最多为6;

学生容易列出:①a〉1;②4x+5〈0;③a0;④x+46.其中③④可能有点困难,在学生独立思考的基础上,相互讨论得出正确答案。

补充说明:用“”、“”表示不等关系的式子也是不等式。问题3:下列式子中哪些是不等式?(1)a+b=b+a(2)-3>-5(3)2m≠n(4)x+3〈6(5)x1(6)2x-3 很明显(2)、(3)、(4)、(5)是不等式。注意:有些不等式含有未知数,有些不含未知数。

(教学说明:通过实例让学生对不等式有个初步感知,在有了感性认识的基础上举出不等式的例子,再给出不等式的定义,由具体到抽象,层层递进,符合学生的认知规律。为了使不等式的定义更完善,出示了问题2,教师要特别说明“”、“”的含义。

五种不等号的读法及意义:

(1)“≠”读作“不等于”,它说明两个量之间的关系是不相等的,但不能明确哪个大哪个小;

(2)“>”读作“大于”,表示其左边的量比右边的量大;(3)“<”读作“小于”,表示其左边的量比右边的量小;

(4)“≥”读作“大于或等于”,即“不小于”,表示左边“不小于”右边;(5)“≤”读作“小于或等于”,即“不大于”,表示左边“不大于”右边.)

2、一元一次不等式

上述不等式中,有些不含未知数,有些含有未知数.我们把那些类似于一元一次方程,含有一个未知数且未知数的次数是1的不等式,叫做一元一次不等式.

(教学说明:

1、一元一次不等式与一元一次方程有很多类似的地方,所以这里采取类比教学的方法学习一元一次不等式;

2、让学生在上述不等式中找出一元一次不等式,特别注意:不是一元一次不等式,因为未知数x在分母中,通过后面有关分式的学习可知,这里x的次数是-1.)

(二)不等式的解、不等式的解集和解不等式

问题1:当x分别取下列数值时,不等式x+3〈6是否都成立?-4,3.5, 4,-2.5, 3, 0, 2.9 经过学生验证得出并不是所有的数都适合上述不等式.我们曾经学过“使方程两边相等的未知数的值就是方程的解”,我们也可以把使不等式成立的未知数的值叫做不等式的解。如上面问题中-4,-2.5,0,2.9均是不等式x+3〈6的解,而3.5,4,3则不是不等式x+3〈6的解。

问题2:你能找出不等式x+3〈6的其它解吗?它到底有多少个解?你从中发现了什么规律? 讨论后得出:

用小于3的任何数替代x,不等式x+3〈6 均成立;用大于3或等于3的任何数替代x,不等式x+3〈6均不成立,这就是说,任何一个小于3的数都是不等式x+3〈6的解,这样的解有无数个.因此x〈3表示了能使不等式x+3〈6成立的x的取值范围,叫做不等式x+3〈6的解的集合,简称不等式x+3〈6的解集,记作x〈3.最后请学生总结出不等式的解集及解不等式的概念: 一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集.求不等式的解集的过程叫做解不等式.

(教学说明:让学生充分发表意见,并通过计算、动手验证、动脑思考,初步体会不等式解的意义以及不等式解与方程解的不同之处.处理不等式的解与解集的关系时可以通过一些通俗的事例使学生认识到不等式的解集包括了不等式的全体的解,解集中任何一个数都是不等式的一个解.)

(三)用数轴表示不等式解集

例题: 在数轴上表示下列不等式的解集(1)x>-1;(2)x≥-1;(3)x<-1;(4)x≤-1 分析:按画数轴,定界点,走方向的步骤答 解:

注意:1.有等号画实心圆点,无等号画空心圆圈 2.大于向右走,小于向左走.(教学说明:通过数轴表示,可以直观反映不等式的解集,这正体现了数形结合的思想,通过学习,使学生熟练掌握不等式解集的表示,做到能将解集的数学式子表示与几何图形表示互相“翻译”.)

三、巩固训练,熟练技能:

1、指出下列关系式中的不等式:

(1)1〉0(2)a≤20(3)2y+1(4)1≠3-4k(5)3x+20=0

2、用不等式表示下列数量关系(1)a与1的和是正数;(2)y的2倍与1的和大于3;(3)x的一半与x的2倍的和是非正数;(4)c与4的和的30%不大于-2;(5)x除以2的商加上2,至多为5;(6)a与b两数的和的平方不可能大于3.3、下列说法中正确的是()A.x=3是不等式2x>1的解 B.x=3是不等式2x>1的唯一解;C.x=3不是不等式2x>1的解;D.x=3是不等式2x>1的解集

4、如图,表示的是不等式的解集,其中错误的是()

5、在数轴上表示下列不等式的解集(1)x>3(2)x<2(3)y≥-1(4)y≤0(5)x≠4(教学说明:练习1是巩固不等式的定义的,通过这一题让学生对不等式、方程、代数式三个概念辨析清楚;练习2是不等式应用的基础,可以类比列方程和列代数式的方法,来列不等式,关键是把“是正数”“大于”“是非正数”“不大于”等翻译成数学符号.练习3考察了学生对不等式的解和解集的理解,练习4、5考察了不等式的解集在数轴上的表示,是数形结合的体现,注意实心圆点与空心圆圈的区别,向左还是向右画线也要考虑清楚.)

四、总结反思,情意发展

(设计说明:设计了以下三个问题,让学生围绕这三个问题,先反悟,后谈自身的收获和疑问,最后师生共同归纳总结)

1.什么是不等式?什么是不等式的解、不等式的解集和解不等式? 2.不等式的解和不等式的解集有何区别? 3.在数轴上表示不等式解集时应注意什么?(教学说明:通过对以上三个问题的思考引导学生回顾整节课的学习历程,巩固所学知识,不断完善自己的认识,形成完整的知识结构.)

五、课堂小结

1.本节主要学习了不等式、不等式的解和解集、不等式解集的表示方法 2.主要用到的思想方法是类比思想和数形结合思想。3.注意的问题:(1)不等式的解集是个范围,而不等式的解是这个范围中的个体(2)画数轴表示不等式的解集时要注意方向和空心、实心之分.

六、布置课后作业:

1、课本123页练习

2、课本128习题9.1的1、2、3题(教学说明:进一步巩固本节课所学知识.)

七、拓展练习

1、下列数值中哪些是不等式>50的解?哪些不是? 76,73,79,80,74.9,75.1,90,60

2、直接想出不等式的解集,并在数轴上表示出来:(1)x+3>6(2)2x< 8(3)x-2>0

3、不等式x< 5有多少个解?有多少个正整数解?

4、写出一个不等式,使它的某一个解是100.(教学说明:这是一组提高性练习,练习3可以借助数轴来理解,这样形象直观,练习4是个开放性题,答案不唯一,只要满足某一个解是100即可.)

【评价与反思】

本课设置了丰富的实际情境,比如跷跷板游戏、爆破问题等,研究这些问题,可以使学生体会到现实生活中存在着大量的不等关系,不等式是现实世界中不等关系的一种数学表示形式,它也是刻画现实世界中量与量之间关系的有效模型.

教学中要突出知识之间的内在联系.不等式与方程一样,都是反映客观事物变化规律及其关系的模型.在教学中,类比已经学过的方程知识,引导学生自己去探索、发现、甄别,从而得出一元一次不等式、不等式的解与解集的意义.

教学过程也是学生的认知过程,只有学生积极地参与教学活动才能收到良好的效果.因此,本课采用启发诱导、实例探究、讲练结合的教学方法,揭示知识的发生和形成过程.这种教学方法以“生动探索”为基础,先“引导发现”,后“讲评点拨”,让学生在克服困难与障碍的过程中充分发挥自己的观察力、想像力和思维力,再加上多媒体的运用,使学生真正成为学习的主体。

第二篇:不等式教学设计

9.1 不等式

教材分析:本课由实际问题中的不等关系引出不等式的概念;类比方程的解,明确不等式解和解集的概念,以及不等式解集的两种表示方法。

教学目标:了解不等式概念,理解不等式的解和解集。教学重难点:不等式及解集概念的理解。教学过程: 一:引出新知。

现实世界中存在大量的数量关系,包括相等关系和不等关系。用等式(包括方程),我们可以研究相等关系,而研究不等关系需要用本章的不等式,如引言中选择购物商场问题.二:探索新知。

问题1 一辆匀速行驶的汽车在11:20距离A地50 km,要在12:00之前驶过A地.你能用式子表示出车速应满足的条件吗?

1、汽车在12:00之前驶过A地的意思是什么? 从时间上看,汽车要在12:00之前驶过A地,则 以这个速度行驶50 km所用的时间不到。

从路程上看,汽车要在12:00之前驶过A地,则以这个速度行驶的路程要超过50 km。

2、如何用式子表示以上不等关系? 设:车速为x km/h. 从时间上看: 从路程上看:

(1)对于不等式 而言,车速可以是80 km/h吗?78 km/h呢?75 km/h呢?72 km/h呢?

(2)类比方程的解,什么叫不等式的解?

使不等式成立的未知数的值.(3)不等式还有其他解吗?如果有,这些解应满足什么条件?

一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集.求不等式的解集的过程叫做解不等式.(4)除了用不等式表示取值范围,还有其他表示方法吗? 数轴

三、运用新知。例1 请用不等式表示:

(1)是负数;

(2)与5的和小于-7;

(3)的一半大于3.例2 直接说出不等式的解集,并在数轴上表

示出来.四、归纳总结(1)什么叫不等式?

(2)什么叫不等式的解?不等式的解和方程的解的区别?(3)什么叫不等式的解集?不等式的解和不等式的解集的区别?

五、布置作业

教科书习题9.1 第1、2、3题。

第三篇:不等式性质教学设计

202_-202_学第二学期关集中心校七年级数学组导学案专用纸 主备人:胡伟 审核人: 使用人:

第11周 讨论时间:

不等式的基本性质(1)

教学设计

学习目标

1、理解、掌握不等式的基本性质;

2、能够运用不等式的基本性质解决有关问题.重点难点

重点:不等式的三个性质.难点:不等式性质3的探索及运用.解决办法:不等式的基本性质3的导出,采用通过学生自己动手实践、观察、归纳猜想结论、验证等环节来突破的.并在理解的基础上加强练习,以期达到学生巩固所学知识的目的.教学方法

先学后教、讨论、探究、讲练结合 教具准备

多媒体,或小黑板 教学设计流程

问题:等式有哪些性质?(学生交流3-5分钟)学生回答等式的性质:

性质1 等式两边同时加(或减)同一个数(或式子),结果仍相等.性质2 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.此次活动中教师应重点关注:

(1)学生对已学过的等式性质内容的记忆,及叙述语言的准确性;(2)学生对等式性质得出过程的回顾.探讨不等式的基本性质.(学生读文8-10分钟后,研讨并解决下面问题)如果a>b,那么,在数轴上表示a的点A位于表示b的点B的右侧,画图表示.(一)做做

1.请你在上面的数轴上画出表示a+3和b+3的点来,哪个点在右侧?并用不等号连接下面的式子: a+3______b+3.类似地,应有 a+c______b+c.2.如果在a>b的两边都减去同一个数或同一个整式,你认为应该有怎样的结论? 让学生多举出几组数据,结合数轴来比较出两组数的大小关系.(以小组为单位,充分讨论,通过交流得出结论).不等式的基本性质1:如果a>b,那么 a+c>b+c,a-c>b-c.就是说,不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.(二)探究

1.根据8>3,用“>”或“<”填空:

8×2_______3 × 2; 8×(-2)_______3×(-2).8× _______3× ; 8×(-)_______3×(-).8×0.01______3×0.01; 8×(-0.01)_______3×(-0.01).2.对于8>3,在不等式两边乘同一个正数,不等号方向改变吗? 3.对于8>3,在不等式两边乘同一个负数,不等号方向改变吗? 4.你有什么发现?再举几例,验证你的结论.通过多组数据,观察、思考、一起探究两组数的大小关系.学生在填空的基础上分组探索不等式的性质.教师深入小组参与活动,观察指导学生的探究方法,并倾听学生的讨论.此次活动是本节课的核心活动,对学生有一定的难度,有些学生可能会直接把等式的性质加以修改,推广得到不等式的性质,而忽略了不等式的两边乘或除以同一个正数或同一个负数时的不同结论,此时教师应引导学生注意观察题目,并继续举几个例子让学生观察对比,体会不等式性质与等式性质的异同,用自己的语言描述发现的规律.不等式的基本性质2:如果a>b,并且c>0,那么ac>bc.不等式的基本性质3:如果a>b,并且c<0,那么ac

例 根据不等式的基本性质,把下列不等式化成x>a或x2;(2)2x20.学生独立完成,举手回答问题.教师填写答案,并对学生出现的问题给予指导,进一步巩固不等式的性质.此次活动中教师应重点关注:

(1)学生能否说出填空根据的是不等式的哪一条性质;(2)学生对不等式性质3的掌握情况.解:(1)x-l>2,x-l+l>2+1(不等式的基本性质1),x>3.(2)2x20(不等式的基本性质3),x<-4.根据不等式的基本性质,可以把不等式化成x>a或x

1.如果a”或“<”填空:(1)a-2_____b-2;(2)3a______3b;(3)a+c_____b+c;(4)- a_____- b.2.把下列不等式化成x>a或x8x+1;(3)x>-4;(4)-10x<-5.(五)当堂训练

1.在下列各题横线上填入不等号,使不等式成立.并说明是根据哪一条不等式基本性质.(1)若a-3<9,则 a ______12;

(2)若-a<10,则a______ -10; 答:(1)a<12,根据不等式基本性质1.(2)a>-10,根据不等式基本性质3. 2.已知a<0,则

(1)a+2 ______2;

(2)a-1 ______ -1;

(3)3a______ 0;(4)a-1______0;

(5)|a|______0. 答:(1)a+2<2,根据不等式基本性质1.(2)a-1<-1,根据不等式基本性质1.(3)3a<0,根据不等式基本性质2.

(4)因为a<0,两边同加上-1,由不等式基本性质1,得a-1<-1. 又已知,-1<0,所以 a-1<0.

(5)因为a<0,所以a≠0,所以|a|>0.

(本题除了进一步运用不等式的三条基本性质外,还涉及了一些旧的基础知识.如a<0表示a是负数;a>0表示a是正数;|a| 是非负数等.)3.判断下列各题的推导是否正确?为什么?(投影)(请学生口答)(1)因为7.5>5.7,所以-7.5<-5.7;(2)因为a+8>4,所以a>-4;(3)因为4a>4b,所以a>b;

(4)因为-1>-2,所以-a-1>-a-2;(5)因为3>2,所以3a>2a.

答:(1)正确,根据不等式基本性质3.(2)正确,根据不等式基本性质1.(3)正确,根据不等式基本性质2.(4)正确,根据不等式基本性质1.(5)不对,应分情况逐一讨论.

当a>0时,3a>2a.(不等式基本性质2)当 a=0时,3a=2a.

当a<0时,3a<2a.(不等式基本性质3)

(学生在回答本题的过程中,当遇到困难或问题时,教师应做适当引导、启发、帮助)

4.按照下列条件,写出仍能成立的不等式:(1)由-2<-1,两边都加-a;(2)由7>5,两边都乘以不为零的-a. 5.用不等号填空:

(1)当a-b<0时,a______ b;(2)当a<0,b<0时,ab ______0;(3)当a<0,b>0时,ab ______0;(4)当a>0,b<0时,ab ______ 0;(5)若a ______ 0,b<0,则ab>0;

(六)教后反思

第四篇:基本不等式教学设计

基本不等式

一、教学设计理念:

注重学生自主、合作、探究学习,用新课程理念打造新的教学模式.二、教学设计思路: 1.教学目标确定

这节课的目标定位分为三个层面:

第一层面:知识与技能层面,①了解两个正数的算术平均数和几何平均数的概念;②要创设几何和代数两个方面的背景,从数形结合的高度让学生了解基本不等式;③引导学生从不同角度去证明基本不等式;④用基本不等式来证明一些简单不等式.第二层面:过程与方法,通过掌握公式的结构特点,适当运用公式的变形,能够提高学生分析问题和解决问题的能力,加强学生的实践能力,渗透数学的思想方法.第三层面:情感、态度与价值观,①通过具体问题的解决,让学生去感受日常生活中存在大量的不等关系,鼓励学生用数学观点进行归纳,抽象,使学生感受到数学美,走进数学,培养学生严谨的数学学习习惯和良好的思维方式;②通过问题的解决,激发学生探究精神和科学态度,同时去感受数学的运用性,体会数学的奥妙,数学的简洁美,激发学生学习数学的兴趣.2.教学过程

本节课我设计了五个环节:

第一个环节:创设情境,引入新课.我设计了两个情境:一个是天平测量的问题,另一个是让学生动手操作折纸试验,从不同的角度体验和理解基本不等式,让学生能够体会数学与生活紧密联系,激发学生学习兴趣,为后面学习作铺垫.第二个环节:探究交流,发现规律.我在问题的情境中,让学生带着不同的数据去比较几何平均数和算术平均数的大小,并通过小组折纸试验,通过这样合作交流的方式让学生初步感受到几何平均数和算术平均数之间的大小关系.第三个环节:启发引导、形成结论.本节课的重要任务就是对基本不等式进行严格的证明,包括了比较法,综合法和分析法,而学生对作差比较法是比较熟悉的,综合法和分析法的过程要加强引导,并组织学生去探究这两种方法之间的关系,并规范证明过程,为今后学习证明方法打下基础.第四个环节:训练小结,巩固深化.学习基本不等式最终的目的体现在它的运用上,首先在例题选择上,注重让学生充分认识 和 间的关系,给出一般的结论,在练习中我选择了题组形式,目的是与让学生强化对基本不等式成立条件包括等号成立的条件.第五个环节:研究拓展,提高能力.我设计了一道关于例题的变式题,目的是让学生感受到,通过适当的变形将其化为例题中出现的形式,体现化归的思想,最后设计三道思考题,两道进一步巩固化归思想及应用基本不等式的条件,一道需要分类讨论,让学有余力的学生提供更好展示自己能力的机会,得到进一步提高.最后我通过问题式的小结,让学生自行归纳我们这节课当中学到的知识,特别是最后一问中,让学生去总结在使用基本不等式的时候要注意哪些条件.虽然我没有点出“一正二定三相等”这样的结论,但已潜移默化为我们下一节课使用基本不等式求最值问题作了铺垫,起到承前启后的作用.三、本节课重点

重点:应用数形结合的思想和日常生活中例子理解基本不等式,并从不同的角度探索不等式的证明过程.难点:灵活使用化归思想把问题转化为运用基本不等式,以及基本不等式成立条件中包括等号成立的条件.在这一节中的主要任务就是让学生从不同的角度去探索基本不等式的证明过程,包括它的成立条件,在这一节课中我的总体想法是通过互动,发现规律,直接猜想,指定验证,得出结论,最后灵活运用这个结论来解决问题.四、本节课亮点:

1.积极引导学生自主探究问题,解决问题.2.灵活运用转化与化归的思想.3.实现课堂三大转变:

①变教学生学会知识为指导学生会学知识;

②变重视结论的记忆为重视学生获取结论的体验和感悟; ③变模仿式学习为探究式学习.4.课堂小结采取问题式小结给学生留下满口香.导入新课

探究:上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客,你能在这个图中找出一些相等关系或不等关系吗??

(教师用投影仪给出第24届国际数学家大会的会标,并介绍此会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客.通过直观情景导入有利于吸引学生的注意力,激发学生的学习热情,并增强学生的爱国主义热情)?? 推进新课

师 同学们能在这个图中找出一些相等关系或不等关系吗?如何找??

【三维目标】:

一、知识与技能

1.能够运用基本不等式解决生活中的应用问题 2.进一步掌握用基本不等式求函数的最值问题;

3.审清题意,综合运用函数关系、不等式知识解决一些实际问题. 4.能综合运用函数关系,不等式知识解决一些实际问题.

二、过程与方法

本节课是基本不等式应用举例的延伸。整堂课要围绕如何引导学生分析题意、设未知量、找出数量关系进行求解这个中心。

三、情感、态度与价值观

1.引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德。

2.进一步培养学生学习数学、应用数学的意识以及思维的创新性和深刻性

【三维目标】:

一、知识与技能

1.探索并了解基本不等式的证明过程,体会证明不等式的基本思想方法; 2.会用基本不等式解决简单的最大(小)值问题;

3.学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;

4.理解两个正数的算术平均数不小于它们的几何平均数的证明以及它的几何解释;

二、过程与方法

1.通过实例探究抽象基本不等式;

2.本节学习是学生对不等式认知的一次飞跃。要善于引导学生从数和形两方面深入地探究不等式的证明,从而进一步突破难点。变式练习的设计可加深学生对定理的理解,并为以后实际问题的研究奠定基础。两个定理的证明要注重严密性,老师要帮助学生分析每一步的理论依据,培养学生良好的数学品质

三、情感、态度与价值观

1.通过本节的学习,体会数学来源于生活,提高学习数学的兴趣

2.培养学生举一反三的逻辑推理能力,并通过不等式的几何解释,丰富学生数形结合的想象力、知识结构解读

1.教材对基本不等式 的推导给出了三种证法,即作差法、分析法和综合法,同时引导同学们探讨基本不等式的几何解释.

2.基本不等式主要应用于求某些函数的最值及证明不等式.应用基本不等式时一定要注意其成立的条件.基本不等式的应用过程蕴涵了函数思想、方程思想、数形结合思想、分类讨论思想及化归与转化等数学思想.

二、重点、难点解读

本节的重点内容是掌握“两个正数的算术平均数不小于它们的几何平均数”;掌握“两个正数的和为定值时积有最大值,积为定值时和有最小值”的结论. 难点是正确理解和使用基本不等式求某些函数的最值或证明不等式.

三、知识点精析

1.基本不等式的定义(详见课本)

基本不等式可表述为:两个正实数的几何平均数小于或等于它们的算术平均数. 注意:不等式 成立的条件是 . 2.基本不等式的几何证明

已知在 中,如右图所示,为斜边 上的高,为 的外接圆的圆心,的延长线交 于点 .,证明: .

一、教学目标

1.知识与技能

探究基本不等式的证明过程,初步理解基本不等式

2.过程与方法

通过对基本不等式的不同角度的探究,渗透数形结合及转化的数学思想.

3.情感、态度与价值观:

通过本节学习,激发学生学习和应用数学知识的兴趣,形成积极探索的学习风气.

二、教学重点 用数形结合的思想理解基本不等式,并从不同角度探索不等式 的证明过程

教学难点 对基本不等式 的探究

三、教学资源 普通高中数学课程标准(实验)人教A版教材必修5

中学数学周刊202_年第10期 百度

四、教学方法与手段

启发学生探究,多媒体辅助教学

五、教学过程

(一)创设情境:

如图1是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表着中国人民的热情好客.

你能在这个图中找出一些相等关系或不等关系吗?

设计意图:创设问题情境,为问题的引出做铺垫

(二)新知探究: 图1

将风车抽象成图2

设直角三角形的两条边长为a、b,那么正方形 的边长为.这样,4个直角三角形的面积和为2ab,正方形面积为.由于4个直角三角形的面积和小于正方形ABCD的 面积,我们就得到了一个不等式

当直角三角形变为等腰直角三角形, 图2

即 时,正方形EFGH缩为一个点,这时有

此时,a、b代表正方形的边长,显然是正数,如果我们推广到一般情况,对于任意的实数.知识与技能:学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;

2.过程与方法:通过实例探究抽象基本不等式;

3.情态与价值:通过本节的学习,体会数学来源于生活,提高学习数学的兴趣

【教学重点】

应用数形结合的思想理解不等式,并从不同角度探索不等式 的证明过程;

【教学难点】

基本不等式 等号成立条件

【教学过程】

1.课题导入

基本不等式 的几何背景:

如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能在这个图案中找出一些相等关系或不等关系吗?

教师引导学生从面积的关系去找相等关系或不等关系

2.讲授新课

1.探究图形中的不等关系

将图中的“风车”抽象成如图,在正方形ABCD中右个全等的直角三角形。设直角三角形的两条直角边长为a,b那么正方形的边长为。这样,4个直角三角形的面积的和是2ab,正方形的面积为。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:。

当直角三角形变为等腰直角三角形,即a=b时,正方形EFGH缩为一个点,这时有。

2.得到结论:一般的,如果

3.思考证明:你能给出它的证明吗?

证明:因为

所以,即

4.1)从几何图形的面积关系认识基本不等式

特别的,如果a>0,b>0,我们用分别代替a、b,可得,通常我们把上式写作:

2)从不等式的性质推导基本不等式

用分析法证明:

要证(1)

只要证 a+b(2)

要证(2),只要证 a+b-0(3)

要证(3),只要证(-)(4)

显然,(4)是成立的。当且仅当a=b时,(4)中的等号成立。

3)理解基本不等式 的几何意义

探究:课本第110页的《基本不等式》说课稿

一、教材分析

1、本节课的地位、作用和意义

基本不等式又称为均值不等式,选自普遍高中课程标准实验教科书(北京师范大学出版社出版)必修5,第3章第3节内容。学生在初中学习了完全平方公式、圆、初步认识了不等式,同时,在本章前面两节学习了比较大小、一元二次不等式等,这些给本节课提供了坚实的基础;基本不等式是后面基本不等式与最大(小)值的基础,在高中数学中有着比较重要的地位,在工业生产等有比较广的实际应用。

2、本节课的教学重点和难点

我通过解读新课标和分析教材,认为:

重点:通过对新课程标准的解读,教材内容的解析,我认为结果固然重要,但数学学习过程更重要,它有利于培养学生的数学思维和探究能力,所以均值不等式的推导是本节课的重点之一;再者,均值不等式有比较广的应用,需重点掌握,而掌握均值不等式,关键是对不等式成立条件的准确理解,因此,均值不等式以及其成立的条件也是教学重点。

突出重点的方法:我将采用①用分组讨论,多媒体展示、引导启发法来突出均值不等式的推导;用重复法(在课堂的每一环节,以各种方式进行强调均值不等式和其成立的条件),变式教学来突出均值不等式及其成立的条件。

难点:很多同学对均值不等式成立的条件的认识不深刻,在应用时候常常出错误,所以,均值不等式成立的条件是本节课的难点。

突破难点的方法:我将采用用重复法(在课堂的每一环节,以各种方式进行强调均值不等式和其成立的条件),变式教学等等来突破均值不等式成立的条件这个难点。

二、教学目标分析

1、知识与技能目标

(1)学会推导基本不等式:。

(2)理解 的几何意义。

(3)能3分钟内写出基本不等式,并说明其成立的条件,准确率为95%

2、过程方法与能力目标

(1)探索并了解均值不等式的证明过程。

(2)体会均值不等式的证明方法。

3、情感、态度、价值观目标

(1)通过探索均值不等式的证明过程,培养探索、研究精神。

(2)通过对均值不等式成立的条件的分析,养成严谨的科学态度,勇于提出问题、分析问题的习惯。“探究” 基本不等式的证明(1)

【三维目标】:

一、知识与技能

1.探索并了解基本不等式的证明过程,体会证明不等式的基本思想方法;

2.会用基本不等式解决简单的最大(小)值问题;

3.学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;

4.理解两个正数的算术平均数不小于它们的几何平均数的证明以及它的几何解释;

二、过程与方法

1.通过实例探究抽象基本不等式;

2.本节学习是学生对不等式认知的一次飞跃。要善于引导学生从数和形两方面深入地探究不等式的证明,从而进一步突破难点。变式练习的设计可加深学生对定理的理解,并为以后实际问题的研究奠定基础。两个定理的证明要注重严密性,老师要帮助学生分析每一步的理论依据,培养学生良好的数学品质

三、情感、态度与价值观

1.通过本节的学习,体会数学来源于生活,提高学习数学的兴趣

2.培养学生举一反三的逻辑推理能力,并通过不等式的几何解释,丰富学生数形结合的想象力

【教学重点与难点】:

重点:应用数形结合的思想理解不等式,并从不同角度探索不等式 的证明过程;

难点:理解基本不等式 等号成立条件及 “当且仅当 时取等号”的数学内涵

【学法与教学用具】:

1.学法:先让学生观察常见的图形,通过面积的直观比较抽象出基本不等式。从生活中实际问题还原出数学本质,可积极调动地学生的学习热情。定理的证明要留给学生充分的思考空间,让他们自主探究,通过类比得到答案

2.教学用具:直角板、圆规、投影仪(多媒体教室)

【授课类型】:新授课

【课时安排】:1课时

【教学思路】:

一、创设情景,揭示课题

1.提问: 与 哪个大?

2.基本不等式 的几何背景:

如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能在这个图案中找出一些相等关系或不等关系吗?(教师引导学生从面积的关系去找相等关系或不等关系)。

二、研探新知

重要不等式 :一般地,对于任意实数、,我们有,当且仅当 时,等号成立。

证明:

所以

第五篇:基本不等式教学设计

基本不等式教学设计

10141510244 数学与应用数学 钟林

课题:人教A版必修5第3章4节,基本不等式

【教学目标】

1.通过两个探究实例,引导学生从几何图形中获得两个基本不等式,了解基本不等式的几何背景,体会数形结合的思想。

2.进一步提炼、完善基本不等式,并从代数角度给出不等式的证明,组织学生分析证明方法,加深对基本不等式的认识,提高逻辑推理论证能力。3.结合课本的探究图形,引导学生进一步探究基本不等式的几何解释,强化数形结合的思想。

4.借助例1尝试用基本不等式解决简单的最值问题,通过例2及其变式引导学生

ab领会运用基本不等式ab的三个限制条件(一正二定三相等)在解决最

2值中的作用,提升解决问题的能力,体会方法与策略。

【重点难点】

重点:应用数形结合的思想理解基本不等式,并从不同角度探索不等式abab的证明过程。

2难点:在几何背景下抽象出基本不等式,并理解基本不等式。

【教学设计】

(一)问题导入

欣赏202_年国际数学家大会会徽,会徽是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能发现它是什么图形构成的吗?请根据会徽探索一些常见相等或不等关系。

探究一:在这张“弦图”中能找出一些相等关系和不等关系吗? 在正方形ABCD中有4个全等的直角三角形.设直角三角形两条直角边长为,a,b。

22ab那么正方形的边长为。

于是,4个直角三角形的面积之和S12ab。正方形的面积S2a2b2。由图可知S2S1,即a2b22ab。

当直角三角形变为等腰直角三角形,即时,正方形EFGH缩为一个点,这时 a2b22ab

所以a2b22ab。

探究二:如下图所示的梯形中,EF是梯形ABCD的中位线,梯形ABGH相似于梯 形GHDC。

梯形ABCD的上底是a,下底是b。让同学们自主研究GH和EF的大小关系。

ab因为EF是中位线,所以EF,2由相似,可以得出GHab,同样因为相似,有

AGABa,GDGHb又因为ab,所以AGGD,即AGAE,ab。2显然,当AB逐渐趋近CD的时候,GH也逐渐向EF靠近,当AB=CD的时候,即ABCD是矩形的时候,GH与EF重合。

ab即,当且仅当ab时,ab。

2ab所以,ab,当且仅当ab时,等号成立。

2所以GHEF,即ab

(二)概念深入

根据上述两个几何背景,初步形成不等式结论:

若a,bR,则a2b22ab。(当且仅当a=b时,等号成立)

ab。(当且仅当a=b时,等号成立)2请同学们运用代数法证明: 作法一(作差法): 若a,bR,则aba2b22ab(ab)20ab2ab22

当且仅当a=b时,等号成立。且发现这里且a和b可以是全体实数、单项式、多项式。

作法二(分析法):

要证明abab,2只需证明ab2ab,即证ab-2ab0,即为a-b20,该式显然成立,所以,当ab时取等号。

于是有这样的结论:

称ab为a,b的几何平均数;称基本不等式abab为a,b的算术平均数,2ab又可叙述为: 2两个正数的几何平均数不大于它们的算术平均数

作法三(几何法):

如图,AB是圆O的直径,点C是AB上一点,AC=a,BC=b.过点C作 垂直于AB的弦DE,连接AD,BD。从而有CDab,ODab。2ab。2ab当且仅当C点与圆心O点重合时,即a=b时,ab

2故再次证明:

aba0,b0,ab,当且仅当a=b时,等号成立。

2ab也说明了ab的几何意义:半径不小于半弦。

2由于直角三角形COD中,直角边CD<斜边OD,即ab

(三)例题讲解

例1.(1)用篱笆围一个面积为100平方米的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短,最短的篱笆是多少?

(2)一段长为36米的篱笆围成一个矩形菜园,问这个矩形的长、宽为多少时,菜园的面积最大,最大面积是多少?

(通过例1的讲解,总结归纳利用基本不等式求最值问题的特征,实现积与和的转化)

对于x,yR,(1)若xyp(定值),则当且仅当xy时,xy有最小值2p;

s2(2)若xys(定值),则当且仅当xy时,xy有最大值。

4(鼓励学生自己探索推导,不但可使他们加深基本不等式的理解,还锻炼了他们的思维,培养了勇于探索的精神。)

1例2.求yx(x0)的值域。

x1变式1.若x2,求x的最小值.

x21在运用基本不等式解题的基础上,利用几何画板展示yx(x0)的函数

x图象,使学生再次感受数形结合的数学思想。

ab并通过例2及其变式引导学生领会运用基本不等式ab的三个限制

2条件(一正二定三相等)在解决最值问题中的作用,提升解决问题的能力,体会方法与策略。

(四)归纳小结&课后作业 基本不等式:

若a,bR,则a2b22ab。(当且仅当a=b时,等号成立)

ab。(当且仅当a=b时,等号成立)2(1)基本不等式的几何解释(数形结合思想);(2)运用基本不等式解决简单最值问题的基本方法。

作业:A组第4题,B组第1题,第2题

若a,bR,则ab

不等式教学设计
TOP