首页 > 实用范文 > 其他范文
虚拟声学信号采集系统设计论文(合集)
编辑:九曲桥畔 识别码:130-1144537 其他范文 发布时间: 2024-09-19 09:34:43 来源:网络

第一篇:虚拟声学信号采集系统设计论文

1虚拟声学信号采集分析系统设计研究

1.1系统前面板的设计

虚拟仪器的前面板设计是否合理对虚拟仪器的使用效果有着重要的影响,它直接面向使用者,使用者对其分布的合理程度也有着很高的要求。

1.2系统的程序框图设计

对各个的功能模块进行分割编写,采用模块式的编写方式逐个进行分割,然后将分割编写的模块整理集合以构成一个新的系统控制程序。程序模块主要包括三个模块,第一种是实时信号采集模块;第二种是信号处理分析模块;第三种是仿真信号模块。这三种模块对系统都有着很重要的影响,它们以不同的角色为系统提供服务,满足用户的需求,产生令用户满意的信号。另外,对这三种模块的编写整合构成新的程序框图。

1.2.1实时信号采集模块实时信号采集模式可以通过对信号的有效分析处理对所采集的数据进行系统的分析,并且实时信号采集模式可以根据用户所设置的声音格式从声卡中得到相关数据,然后对数据进行保存。这种模块在开始采集数据前要注意,参数的设置要根据实际的情况和参数设置好以后将信号选择的按钮调制实时信号档上。开始设置各个快捷按钮,如停止按钮、退出按钮、对信号的采集保存等按钮。

1.2.2信号处理分析模块设置完成应用信号处理分析模块一般是对数据进行时域分析以及频域分析。其中时域分析可分为对参数的测量、对谐波失真分析、最后是自相关分析。在对信号进行分析处理的过程中,如果单单只对信号进行频域分析,信号所具有的全部特征并不能完全的显示出来,也就是时域分析有时候不能完全满足对信号的分析,这就需要对信号进行频域分析,以更加全面完整的分析出信号所具有的全部性质。在LabVIEW中,如果要对信号进行频域分析,就要以FFT为分析的基础,才能进行具体分析。

1.2.3仿真信号模块的完成应用仿真信号模块的作用我们不可忽视,生活中并不是所有的信号都能用实际的仪器产生,当无法获得实际的信号时,可以用仿真信号作为任意频率的信号,也可以用仿真信号作为标准的信号源,对其产生的信号做信号的检测系统。这种仿真信号模块包含波形显示以及噪声的添加等功能。仿真信号可以产生一些日常生活中我们常见的信号,如正弦波、方波以及三角波等。并且用户可以很据自身的需要对信号的频率、幅值、以及采样频率进行调节,从而产生用户所需要的信号。

2研究应用

整流电路中应用虚拟声学采集分析系统研究采集系统的采集性能。在整流电路中应用虚拟采集分析系统时,应该注意采样的频率要保持20Hz~20kHz之间,如果想得到更加完整较好的波形,就可以将频率控制在100Hz~15kHz之间。在整流点路中要进行对正弦先好进行整流的过程中,可应用二极管半波整流电路对其进行整流。输出信号以后接入虚拟信号采集分析系统,可以得到一些波形。事实证明,虚拟仪器的信号采集分析系统的采集性能可以达到人们所需要的理想信号。实践证明,虚拟仪器信号采集分析系统已经被广泛的应用在噪声监测、信号分析以及实验教学当中。

3结语

当前,虚拟仪器已经被广泛的应用到对各种信号的采集分析,作用不容小视。虚拟仪器与传统仪器相比,优点远远比传统仪器多的多。例如,与传统仪器相比,虚拟仪器的智能化程度远比传统仪器的高,处理能力比传统仪器的处理能力强;虚拟仪器的系统费用要比传统仪器的系统费用低,并且虚拟仪器的复用性较强;从可操作性能上看,虚拟仪器的可操作性比传统仪器的可操作性强。文中还对虚拟声学信号采集系统做了研究,主要研究了系统前面板的设计和程序框图设计,程序框图设计中,对三种模块进行编写,最后组合成一个完整的新的程序框图。随着科技的不断发展进步,虚拟仪器在各个领域会有更大的影响。

第二篇:数据采集系统设计研究论文

摘要:针对LabVIEW及MSP430F5529单片机构成的多路数据采集系统研究及设计,分为上位机和下位机两个主要模块来进行阐述。MSP430F5529作为前端数据采集系统进行数据采集,采集到的电压通过串口传到上位机LabVIEW界面。

关键词:MSP430F5529,单片机,数据采集,LabVIEW

LabVIEW程序设计方面相对来说比较简单,但是,Lab-VIEW的使用灵活性和功能完整性也很强大。MSP430F5529单片机多路电压数据采集系统的设计,从结构上来看比较简单,此类单片机工作电压区间比较低,耗能相对较低,内部集成了许多功能模块,功能完整性比较强大。结构简单的单片机系统与LabVIEW上位机的串行通信的功能结合,增加了系统灵活性。同时,又利用了MSP430F5529的超低耗功能,降低成本,使用简便。另外,虚拟仪器除了在物理形式上实现之外,也可以实现系统内的软件、硬件资源共享。将两者结合的多路电压数据采集系统无论是从运行效率还是编程方式,都展现了强大的优势。

1数据采集系统

1.1数据采集系统需求基于LabVIEW及单片机构成的多路电压数据采集系统研究和设计,其中MSP430F5529单片机、ADC转换器组成的下位机数据采集系统实现采集电压的功能;采集到的多路电压信号被发送至LabVIEW程序功能模块进行分析和处理,并显示数据处理的结果;研究电平的转换。下位机的TTL电平转换成上位机能够接收的RS232电平。首先系统进行初始化,然后单片机通过串口进行多路数据采集,打开ADC转换器,开始转换,读取转换结果。然后发送到上位机界面,显示得到的数据处理结果。1.2数据采集系统方案设计的采集系统以上位机数据显示界面和数据采集系统实物的形式呈现,研究上位机与下位机的数据交互机制,实现数据的交互。方案:在上位机与下位机之间需要研究一个电平转换,采用MSP430系列单片机作为下位机采集模块,LabVIEW作为上位机处理模块;两个模块之间加入电平转换模块,采用的是CP2102转换芯片。此方案编程简单且方便,成本也相对较低,从整体来说也比较严谨。系统初始设计时,第一部分设计下位机单片机模块,启动A/D转换,得到的转换结果发送到单片机处理。并且加入了LCD显示模块;第二部分设计上位机LabVIEW程序处理模块,将采集到的结果上传到上位机显示。设计方案的流程图如图1所示。

2下位机采集系统设计此次设计采用

MSP430F5529Launchpad,MSP430F5529开发板内部集成A/D转换模块,多路电压采集系统下位机的重点在于A/D转换,所谓A/D转换即指模拟量等转换为数字量。MSP430F5529单片机可以自定义参考电压,此次设计的参考电压设计的是3.3V。所以本数据采集系统可采集的电压范围是0~3.3V。本设计是采集多路电压,转换的方法模式是采用转换速度较快的序列通道多次转换,提高转换速率。在程序设计里面是用ADC12CONSEQ_3来选择采样模式。同时,定义了ADC12SHP等于1,来定义信号的来源是采样定时器。ADCMEMx存储器用来存储转换结果。此类存储器是CSTARTADDx位定义的。参考电压和通道是需要经过定义才能工作的,一般是通过ADC12MCTLx寄存器。多路电压数据采集的下位机流程图如图2所示。首先执行端口初始化,第一步便是关闭看门狗,在MSP430单片机中,主程序首先要关闭看门狗,如果不关闭看门狗,程序执行一段时间后,可能会导致程序无法运行。因为看门狗有定期重置CPU的功能。然后端口定义,ADC转换和串口通信的工作模式的初始化,之后进入中断采集数据,在有信号输入的时候才会进入中断,如果没有外部电压信号的输入不会进行中段。采集电压信号后开始转换,转换完成之后数据被传送两个方向:一是传送到LCD显示,二是发送到上位机LabVIEW程序界面显示。在AD转换的过程中是进入中断进行数据测量的,此次多路数据采集系统的下位机设计的中断标志位采用ADC12IFG寄存器设置。MSP430单片机的中断可以说是非常大的一个亮点。想要有效提高程序运行的速率,在程序中加入中断便可实现。MSP430单片机的每个片上运行后,CPU便被唤醒,此时低功耗模式是不存在的,中断完成后,CPU脱离唤醒模式。此时的单片机回到低功耗状态。在下位机串口发送方面,U-CA0CTL控制寄存器来定义了时钟源,需要通过相应的时钟源来确定波特率,此控制寄存器的第0位是USCWRST,它具有软件复位的功能,在设计中需要使它置1,那么逻辑将会在复位状态一直保持。第6到7位的UCSSEL,用来选择时钟源,时钟源选择的是AMCLK,那么UCSSEL的状态是01,此时的波特率需要求出相应的分频细数来定义,AMCLK的频率是32768Hz。跟据定义,在低频时钟的情况下,分频参数是时钟频率与波特率的比重,此次设计的波特率是9600,因此可以得出的是分频参数是3.41,所以,UCA0BR0等于3。

3显示界面上位机设计

3.1上位机LabVIEW设计此次多路电压数据采集系统的上位机LabVIEW程序流程图如图3所示。上位机的部分,首先设计了单路的电压数据采集系统,其程序框图如图4所示。上位机LabVIEW的设计首先是配置串口参数,参数的配置与下位机端要保持一致,参数配置完成后要进入while循环中的VISAREAD,读取从下位机传来的数据。单路数据采集就是直接显示电压。加入while循环的目的是使程序可以一直运行,而且是直接只运行读取缓冲区数据部分,不用每次都配置串口参数,提高了程序运行速率。3.2TTI与RS232电平转换MSP430单片机输出的L电平与上位机接收的电平不是同一种,分别为TTL和RS232。所以上位机与下位机之间需要进行转换,15V~5V指的是RS232电平逻辑1时的状态,而逻辑0的话,是在+5V~+15V,而TTL电平逻辑0在0~0.8V之间,逻辑1在2.4V~5V之间,所以在TTL电平与RS232之间,需要进行正负逻辑的转换。在此次设计中选用的是主要由CP2102转换芯片构成的转换模块。同时里面也集成了MAX2485和MAX232通信芯片。CP2102是一种品质较好,工作比较稳定的且性能强大的转换芯片。整个转换模块体积小,便于移动。此次设计用MSP430F5529专门用于串口发送的P3.3口与RX引脚连接。如图5所示。CP2102的RX引脚专门用来接收TTL电平。CP2102的另一端与电脑相连,打开上位机LabVIEW程序,串口信息配置好之后,便可以显示采集的电压数据。

4多路电压数据采集系统测试

为了便于系统能够成功采集数据,采集的电压采取就近原则,直接采集单片机管脚电压,此次测试三次电压分别为:3.3V电源管脚电压、普通管脚电压(1.78V)以及GND管脚电压(0V)。由于误差作用,系统不能准确测到3.3V,以及3.3V会对旁边线路产生影响,所以第二路电压信号会从1.78V拉高到2.76V,第三路接地,所以是0.00V。除去显示结果以外,增加了波形显示,使采集到的电压变化变得一目了然。此外加入了串口工作灯指示,在串口正常工作的情况下,串口灯是绿色,在串口工作异常的情况下,串口灯是红色。改变某一路电压后,把第三路采集电压的管脚从接地端拔了下来,悬空时的电压是1.78V,同样会被3.3V的电压拉高,电压的变化直接在上位机界面呈现出来,直观明了,如图7所示。波形显示的坐标是可以自动变换的,根据数据的大小智能变换,改变采集管脚的电压后,如图8所示。

5结束语

基于MSP430F5529和LabVIEW进行多路电压数据采集系统,实际应用的结果,下位机与上位机的通信功能正常,操作也非常简单方便,完成了设计之初的要求,可以实现的功能有:①采集三路0V~3.3V的电压;②采集到的电压在LCD屏显示;③采集到的电压上传至LabVIEW上位机数据采集编写模块显示;④上位机LabVIEW界面显示电压数据及电压波形。研究并实现了MSP430F5529单片机的数据采集及处理、ADC转换、TTL电平转RS232电平、上位机与下位机之间的串口通信。同时,此次设计也存在些许不足:①只能采集三路数据;②不能调取历史采集数据。

参考文献

[1]陈美玉.基于单片机及LabVIEW的多路数据采集系统设计[J].企业技术开发,202_,36(1):69-71

[2]王克胜.系统软件设计及控制分析[J].科技与企业,202_(4):81-81

[3]段新燕.单片机液晶显示系统的设计[J].电子科技,202_,25(8):13

[4]周丽,裴东兴.基于MSP430单片机的超低功耗温度采集系统设计[J].电子测试,202_(10):35-38

第三篇:信息采集系统设计说明书

信息采集系统概要设计

整体网络拓扑

信息采集系统的总体网络拓扑如下图所示:

工程师站服务器公网采集站1采集站2...网络结构说明

设备与采集站属于厂区内的同一个私有网络。

采集站/工程师站与公网直连,或者通过路由器间接地与公网连接。

终端状态管理

工程师站可以看到采集站的在线状态。选择采集站后,可以看到采集站下各个终端的在线状态。如果网络连接正常,所有采集站和终端都应该是在线的状态。采集站和终端注册

为了显示采集站和终端的在线状态,用户需要在工程师站上注册所有的采集站以及采集站下的终端信息。

用户在注册采集站时,需要填写采集站的标识符,该标识符不可重复,目的是让用户区分不同的采集站,且该标识符需要在采集站和工程师站上保持一致。

用户注册完采集站后,就可以在该采集站下添加终端信息。添加终端时需要填写终端的标识符和描述信息。其中,唯一标识符应当是终端内部可以取到的,可以区分同一个采集站下的不同终端;描述信息的目的是帮助用户区分不同的终端。

采集站和终端信息注册完成后,需要上传到服务器。当其他工程师站连接上服务器时,可以读取到这些信息,无需重复注册。

数据采集过程

本系统采集的数据有三种类型,分别是组态数据,运行数据和故障报警。其中,故障报警又分为实时故障和历史故障。下面分别阐述这三种类型数据的采集过程。

组态数据

每个终端都有一份组态数据,用户可以在终端上直接修改该组态。工程师站可以实时查看终端的最新组态信息,也可以修改并下发该组态信息。

查看终端组态

工程师站可以查询某个终端的最新组态。查询的详细过程如下:

1.2.3.4.5.6.工程师站发送查询命令给服务器

服务器从查询命令中解析出目的采集站,并将查询命令发送给采集站 采集站收到查询命令后向指定终端查询最新组态数据 终端回复最新组态数据

采集站将得到的组态数据回复给服务器

服务器将组态数据回复给发起查询的工程师站

数据流如下所示:

1.工程师站发送组态查询命令6.返回最新组态服务器工程师站2.服务器转发组态查询5.采集站返回最新组态采集站4.终端返回最新组态3.采集站向终端查询最新组态终端

修改终端组态

工程查询到终端的最新组态后,可以修改某些参数,然后将修改好的组态下发到终端设备。查询的详细过程如下:

1.工程师站发送写组态的消息给服务器,消息中需要包含组态和终端标识,可以有多个终端,这些终端的组态将更新为同一份组态。注意,多个终端必须属于同一个厂区,即由同一个采集站管理。

2.服务器从写组态消息中解析出目的采集站,并将写组态消息转发给采集站。3.采集站收到写组态的消息后,将组态下发给指定终端。4.终端回复组态更新结果给采集站。5.采集站将更新结果回复给服务器

6.服务器将组态更新结果转发给工程师站 数据流如下所示:

1.发送写组态消息6.返回组态更新结果服务器工程师站2.服务器转发写组态消息5.采集站返回写组态结果采集站3.采集站向终端写组态4.终端返回组态更新结果终端

运行数据

工程师站可以查询指定终端的当前运行数据,以了解终端的运行状态。查询过程与组态查询过程类似,此处不再赘述。

故障数据

终端运行过程中,如果发生故障,则需要将故障信息发送给采集站。采集站收到故障数据后,需要将此数据保存到本地数据库中。如果采集站此时能连接上服务器,则需要将故障信息发送给服务器。服务器接收到此故障报警后,需要将此故障报警推送给当前在线的工程师站。如果没有工程师站在线,则丢弃此条报警。

从上面的描述可知,工程师站被动接收到的故障报警都是实时故障报警。工程师站也可以通过历史报警功能查询历史报警信息。

实时故障

实时故障由终端主动上报给在线的工程师站,故障上报流程如下: 1.终端检测到故障,上报故障给采集站

2.采集站收到故障后,将故障信息发送给服务器

3.服务器查看是否有在线的工程师站,如果有,则将故障信息推送给工程师站,如果没有在线的工程师站,则丢弃该条故障报警。数据流如下图所示:

3.服务器推送故障报警服务器工程师站2.采集站上报该条故障报警采集站1.上报故障信息给采集站终端

历史故障

用户可以通过工程师站查询终端的历史故障信息,以了解终端的历史运行状态。历史故障查询时需要指定采集站和查询的时间范围,查询得到的结果为指定采集站下所有终端的某一时间段内的历史报警。

历史故障查询的详细过程如下:

1.工程师站向服务器发起历史故障查询,查询消息中包含了待查询的采集站和查询时间段。

2.服务器将查询消息转发到指定的采集站。

3.采集站根据查询消息中的时间范围查询本地数据库,采集站将查询到的结果返回给服务器

4.服务器将查询到的历史故障转发给发起查询的工程师站 数据流如下图所示:

2.将查询命令转发给采集站1.发起历史故障查询工程师站服务器3.服务器转发查询结果3.采集站返回查询结果采集站 各组件功能设计

工程师站

操作界面

需要展示的信息有:

1.已注册的采集站和终端的在线状态 2.终端的组态数据、运行数据和故障数据 需要编辑的数据有:

1.采集站和终端的注册信息 2.终端的组态数据

历史故障查询时需要指定时间范围,时间范围太长有可能会导致网络响应缓慢。

信息读写和接收

用户可以通过工程师站主动查询指定设备的各类数据,包括组态数据、运行数据和历史故障。可主动查询的信息有:

1.2.3.4.5.各采集站的在线状态

采集站下的终端的在线状态 指定终端的组态数据 指定终端的运行数据 指定采集站下的历史故障

实时故障由于对实时性要求比较高,需要由服务器主动推送给工程师站,工程师站接收到实时故障后,需要给用户提示,用户可以查看工程师站接收到的实时故障的详细信息。终端信息注册和组态修改

用户编辑好后终端和采集站的信息后,通过网络模块将组态保存到服务器上。组态修改完成后,通过网络模块将组态下发到各个终端上。

采集站

采集站标识符

采集站的功能生效之前,需要在界面上输入该采集站的标识符。该标识符需要与工程师站注册采集站时所用的标识符保持一致,这样工程师站才能将该采集站的信息正确的显示出来。

终端状态管理

采集站在启动后,需要根据采集站标识符从服务器上下载该采集站下面所有的终端信息。采集站监测各终端的在线状态,当状态发生变化时,需要将此状态更新到服务器,以便工程师站上可以实时反应出各终端的在线状态。

故障报警

采集站收到终端的故障报警时,需要将此条故障报警保存在本地数据库中,以备后续的历史故障查询。

组态模板

当工程师站向采集站下的某个终端发起过组态查询时,采集站需要将此终端的组态保存到本地数据库中,后续可能需要导出此组态信息,用于其他厂区的组态模板信息。

查询响应

采集站需要响应服务器的查询和下发命令。查询的信息类型有:组态数据、运行数据和历史故障。如果是组态数据和运行数据,采集站需要从终端中取得最新的结果,然后返回。历史故障数据从数据库中根据一定的条件返回。采集站还需要下发组态给终端。采集站与终端之间的交互接口

服务器

查询中转

工程师站查询终端信息时,需要服务器将这些查询指令转发给对应的采集站;采集站将结果返回给服务器时,服务器需要再将结果转发给工程师站。

报警推送

服务器接收到采集站的故障报警时,需要检查当前是否有在线的工程师站,如果有,则需要推送故障报警到工程师站。如果没有,则丢弃此条故障报警。

采集站注册信息管理

工程师站上注册好采集站和终端的信息后,需要保存到服务器中。当其他工程师站开启时,需要从服务器上获取到最新的采集站和终端注册信息。

采集站状态管理

每个厂区的采集站在上线时都要向中转服务器汇报在线状态,并开启保活机制,一段时间后,如果保活失败,则判定采集站的状态为离线。

采集站下的终端在线信息发生变化时,需要将此信息发送给服务器。

网络组件的接口

与工程师站之间的接口

工程师站的UI层通过网络组件来实现数据采集和下发。网络组件主要提供的功能包括终端在线状态管理、组态读写、运行数据查询、历史故障查询和实时故障接收这几个方面,下面是这几类功能的主要接口:

终端在线状态管理

1.增删采集站及终端信息 2.获取所有采集站的在线状态

3.获取指定采集站中所有终端的在线状态

组态读写

1.获取指定终端的组态

2.写入组态,可以指定采集站下的一个或者多个终端

运行数据查询

1.获取指定终端的运行数据

历史故障查询

1.获取指定采集站下的历史故障,查询条件是时间范围

实时故障接收

1.设置故障接收的回调对象(该回调对象有可能被频繁调用,需要确认终端的故障推送间隔时间)

与终端之间的接口

采集站与终端之间的通信有下面四种:

1.2.3.4.采集站向终端读取组态数据 采集站向终端写入组态数据 采集站向终端读取运行数据 终端推送故障报警给采集站

具体的通信协议待定。

第四篇:扩场系统音质声学设计论文

摘要:音乐厅建筑作为精神文明建设的重要方面,正受到各方面的重视。目前国内各大城市正在建设或筹建中的音乐厅为数甚多。由于音乐厅均为自然场演出、且音质要求很高,因而有别于国内大量建造的、采用扩场系统的厅堂,设计难度大,又缺乏经验。对此,本文就已竣工交付使用的广东星海音乐厅的声学设计作出一概要介绍,并就其中的一些声学问题提出个人的见解,供设计参考

关键词:扩场系统音质声学问题

星海音乐厅是以人民音乐家冼星海的名字命名的。音乐厅建于珠江之畔风光旖旎的二沙岛上。它与已建成的美术馆和正在建设中的博物馆等建筑构成广东省相当规模的文化中心。

星海音乐厅包括1437座的交响乐大厅,462座的室内乐厅,96座的视听音乐欣赏室,排练室,琴房和音乐资料馆,以及水上演奏台和音乐喷泉、各种配套用房。建筑面积1800m2,是我国目前规模最大、设备先进和音质优异的现代化音乐厅。也是我国第一座采用“葡萄园”形(或称山谷梯田形)配置方式的音乐厅。

星海音乐厅交响乐厅、室内乐厅的各项声学设计指标*

星海音乐厅于1998年6月13日――冼星海诞生日正式使用。广州交响乐团和中国交响乐团合唱团进行首场演出。演奏了钢琴协奏曲《黄河》和贝多芬第九交响曲《欢乐颂》,获得成功,著名音乐家、指挥家和教育家李德伦、吴祖强出席了首演式。相继一周内,中国交响乐团,以色列交响乐团,澳大利亚交响乐团和德国管风琴演奏家,在该厅献艺。音乐家们对大厅良好的音质均给予高度的评价。

一、星海音乐厅的设计宗旨和各项声学指标

星海音乐厅这座华丽的艺术殿堂是为满足广大观众欣赏高雅音乐的殷切的需求、并作为国内外文化交流的基地和窗口而建造的。音乐厅设计始终把音质效果放在首位,以继承传统音乐厅的良好品质、而又能适应现代生活提出的各种需求为设计的宗旨。

声学设计指标是根据国际上获得“顶级”音质效果的音乐厅为参照对象,广泛听取我国音乐家和声学家的意见确定的。交响乐厅、室内乐厅的各项“最佳”。

为实现上述指标、确保获得良好的音质,分别在设计、施工、竣工后调试的不同阶段,采取了一系列的保证措施:

·初步设计阶段:通过计算机模型和1/40缩尺实体声学模型试验与声学估算相结合,分析体形、了解声场状况和可能出现音质缺陷的部位;

·技术设计和施工图阶段:用1/10缩尺实体声学模型试验和围护结构的隔声量试验,以及各种声学构件声学性能的实验室测定,确定声学构造的部位、尺度和装修用材。并进行较为详细的声学计算;

·施工阶段:在没有专业施工队的条件下,主要是施工交底和监理,检查隐蔽工程,并在交响乐大厅主体结构完成后,进行首次混响和声场分布的现场测定;

·竣工调试阶段:用以解决声学计算、缩尺模型试验与实际效果存在的差距。要修正客观存在的偏差,就必须采用声学测定与乐团试用的主观感受相结合的方法。作多次调试、修改装修、直至达到预期的效果。星海音乐厅通过三个月的调试工作,才实现所要求的演奏和听闻效果。

二、交响乐大厅的声学设计

交响乐大厅是星海音乐厅的主体。容纳1437名听众,有效容积效期2400m3,每座占容积8。6m3。大厅采用“葡萄园”形的配置方式,即在演奏台四周逐渐升起的部位设置听众席。这种形式的最大优点是在大容量厅堂内缩短后排听众至演奏台的距离,从而确保在自然声演奏的条件下,有足够强的响度。此外,利用演奏台四周厢座的栏板和楼座的矮墙,可使听众席获得足够强、且有较大覆盖面的早期侧向反射声。近期的研究表明,这是传统音乐厅所以能获得良好音质的重要原因。而传统音乐厅则是通过窄跨度的侧墙实现的。因此,这种形式不仅继承了传统音乐厅所具有的良好品质,又能适应现代大容量音乐厅的各种需求。它自1963年德国柏林“爱乐”交响乐大厅首创至今,在国际上已被广泛采用。但在国内尚属首次。

大厅的屋盖选用“马鞍”形壳体。所有横剖面均为凹弧形面而引起声聚焦,从而造成声场不均。通过1/40缩尺实体模型试验和三维计算机模型试验充分证实了这一点。图2即为大厅横剖面计算机模型显示的声反射图,可见声聚焦的状况。

此外,在大厅壳体拆模后的现场测定均表明,顶部不悬吊抽射板时,厅内声场分布不均和存在回声现象。

对此,在演奏台上悬吊了12个弦长3.2m,曲率半径为2.6m的球切面反射体,其目的除了消除回声和声聚焦以外,还可加强乐师间的相互听站,提高演奏的整体性。同时也使堂座前区和厢座听众获得较强的顶部早期反射声。

为加强听众席后座的声强,在球切面反射体周围设置了锥状和弧形定向反射板。以此获得厅内均匀的声场分布。

为使大厅达到中频(500z)满场1。8s的混响时间,并使低频(125Hz)混响提升1。15倍(相对于中频),即2。07s。采取如下几项措施:

·增大容积,每座容积取8。6e

·厅内所有界面均不用吸声材料,在容易引起不利声反射的部位(后墙和后部吊顶)设置锥状扩散体;壳顶拆模后上刷涂料;墙面为35mm厚硬木板实贴在18mm厚的多层板上;地面均为实贴木地板,仅演奏台设木筋架空地板;所有悬吊的反射体采用刚度大的阻燃玻璃钢结构。

·减低座椅的声吸收,并使其吸声时接近听众的吸声量,从而减少厅内空、满场混响时间的差值。

根据以上确定的容积和内装修构造,进行了混响时间的计算和1/10缩尺实体声学模型试验,其结果见图7所示。由图可见,缩尺模型的测定结果仅中频较为接近,其它频率偏差较大,这是因为模拟材料不可能在很宽的频度范围内有一对一应的吸场性能。

大厅的扬扩散是除混响时间以外的另一个重要音质指标。当听众感到乐声似乎以相等的幅度来四面八方时,扩散是最好的,表征声扩散的指标是d,它定义为;厅内声场扩散值与自由场扩散值之比,即

d=1-m/m(1)

式中m-为厅内声场的扩散值;

m0-为在自由声场的扩散值;

m-△M(声强的平均差值)/M(各方位角的平均声强);

m0-的求同m,只是在自由声场中。

交响乐大厅的声扩散是通过多边的形体、差落的包厢和楼座栏板,以及顶部悬吊的反射体实现的。缩尺模型试验测定的结果表明,大厅具有良好的声扩散,d值均大于0.85,最大达0。93。

对于音乐厅来说,厅内希望获得良好的声扩散,但又不要求完全扩散(即d=1),因为听众在要求乐场来自各方的同时,还希望有一定的方向感,即乐声来自演奏台。

传统音乐厅所以能获得良好的音质,除了有最佳的混响时间和良好的声扩散以外,早期侧向反射声起着重要的作用,它加强了直达声的强度和提高了亲切感。因此近年所建音乐厅无不考虑早期侧向反射的设计,星海交响乐厅是通过侧墙、厢座栏板、楼座矮墙对所覆盖的听众席提供早期侧向反射的;此外,壳顶下悬吊的反射体也给听众席提供顶部的早期反射声。

早期反射声的状况,可以通过脉冲声测定获得测点的反射声序列,并能计算求得声能密度,为了便于定量比较。目前常用早期声能与后期声能之比的C值作为评价指标。时间的分界为80ms(以音乐丰满为主的厅堂)和50ms(以清晰为主的厅堂).声能比C80,C50又称明晰度,这是一项与早期声能相关的指标。L.L.Beranek建议以500Hz,1000Hz和2000Hz,C80的平均值C80(3)作为评价音乐厅指标,其最佳值为0~-4.0。

交响乐大厅的噪声控制,主要解决单层壳顶的隔声和空调系统的消声和减振两方面:

交响乐大厅的墙体均为内隔重墙,只有壳顶暴露在室外,单层230mm厚的钢筋混凝土壳体,具有足够的空气隔声量(基地噪声为67~71dBLeq(A))。但大雨冲击的撞击隔声量却很低,对此做了隔离撞击声的构造,并在实验室内做了测定,其结果表明。实施的构造可以隔离大雨时的冲击声。

空调系统的消和减振,是大厅获得良好的听闻条件的最基本的保证,开启空调时内噪声不得大于28dBA,也即以听不到的空调噪声为设计指标。对此,采取了如下措施:

(1)在空调系统的管路系统内设置阻、抗复合型消场器,减低风机噪声沿管路传至厅内;

(2)防止气流噪声,限止流速:主风道低于6m/s,支风道低于3。5m/s。出风口低于1。5m/s。为实现这一目标,采用侧送、局部顶送(演奏台上方球切面,反射体间),座席地面下回风的方式。

(3)送风与回风量相适应,也即采用1:1的送回风比例。

(4)全部空调、制冷设备均作隔振处理,水泵、冷水机组采用SD型橡胶隔振装置;风机采用弹簧隔振器;管道用软接管,并用弹簧吊架。

有关其它的工程设备和需要隔声的构件,均采用常规的做法处理。

三、交响乐大厅的声学测量和音质调试

在交响乐即将竣工的前后,曾对所有各项声学指标进行了测量,并在竣工后的试用阶段,听取了乐团的意见进行了音质调试。

(一)声学测量

声学测量的内容包括响度、混响时间、早期反射声、声扩散、声场分布、频率响应和噪声第七项。明晰度(声能比)C80和低音比BR(温暖感)是分别根据脉冲响应和混响时间测定的结果计算求得。现将混响时间和早期反射声的测定结果分述如下:

(1)混响时间(RT):

混响时间菜测定了四次,测定频率为63Hz~8000Hz八个倍频程的中心频率。其结果是中频(50Hz)满场为1.82s,空场为2.19s。

(2)早期反射声测定:

早期反射声测定是在演奏台上配置脉冲声源。在大厅的七个区内,选择有代表性的座席测定其反射声序列。时标为100ms,由图内可观察早期反射声的状况、反射声的时延间隙(t1)和计算求得明晰度C80和C50。在演奏台上声源取2个位置,S1和S2,在厅内各区分别测定27个点。计54幅图。为压缩篇幅。在图9内列出S1和S2各7个测点结果。由反射声列图见,时延间隙(t1)为3~7ms。

由早期反射声测定结果,可用式(2)求得500Hz,1000Hz和2000Hz三个频率的C80值,然后取其平均值。即C80(3)的值。交响大厅七个区的明晰度C80(3)求得C50(3)见图10所示。C80(3)的平均值-1.43。

通过声学指标的测定结果表明:交响乐大厅的声学设计达到了预期的指标。

(二)音质调试

声学设计的最终目的是为乐师和听众创造优异的演奏和听闻环境。各项声学参数虽然达到了国际上“顶有”音乐厅的指标,但是能否获得同等的主观评价呢?对此,由广州交响乐团进行多次配合演出,召开座谈会,听取各方面的意见,经归纳有如下几点:

·普通反映混响时间长,因而层次不够,清晰度差;

·弦乐器部位(小提琴、中音提琴区)缺乏反射声,得不到演奏台侧墙的支持;

·打击乐和钢管乐声级过高,相应地弦乐声较低,影响乐声的平衡。

根据上述意见,采取了如下的改善措施:

(1)在演奏台上方的球切面反射上,配置人工翻动的锥状可调吸声结构,使大厅混响时间可在1.66~1.82s之间调节,适应习惯于较短混响条件下演奏的国内乐团,满足层次和清晰度的要求。可调吸声构造见图11所示,图12为实测可调混响幅度。

(2)在演奏台两侧凹进的演员入口处,设置凸弧形活动声屏障,增加提琴区的侧向反射声,改善乐师的自我感觉。

(3)在演奏台和合唱队的两个后墙上,按原设计配置锥关扩散体,并在两个锥面上插入可调吸声板,(一面为七合板,另一面为6mm厚阻燃毯),用以加强演奏台的声扩散,以及必要时降低打击乐和铜管乐的声级,求得乐声的平衡和融合。

(4)在堂座走道和演奏台两侧楼梯上设地毯夹,以便在必要时,铺设地毯,进一步降低混响至1.5s。

四、室内乐厅的声学设计

星海音乐厅室内乐厅是以室内乐演奏为主,兼供戏剧演出、会议和立体声电影所用的多功能厅。容纳462名听众,有效容积3400m3,每座占容积分7。4m。大厅采用不对称的扇表平面,右侧设在厢座,左侧二层有挑廊,大厅后部设有三排座席的小楼座,大厅的平、剖面见图13所示。图16为大厅内景。

大厅的不规则形体有助于厅内的声扩散,池座有左侧墙和厢座矮墙提供早期侧向反射声、厢座和楼座主要由吊顶供给早期反射声。

为满足多功能使用的要求,同时使每种功能都有“最佳”的混响时间,故采用计算机调控的可调混响装置。可调的上限值取1.3s,供室内乐演奏使用;下限值是根据立体声电影的要求,确定为0.8s,故可调幅度为0.5s(0.8~1.3s)。并要求125Hz~400Hz的频率范围内均有接近相同的调辐量。

为了使用人员便于操作,把可调幅度设定为五个档次,即1.3s,1.2s,1.1s,1.0s,和0.8s.,根据选定的方式用计算机在15s内(圆柱体旋转3600需30s)即可调至要求的混响时间。也可以无级调至幅值范围内的任何一个值。

可调吸声结构采用旋转圆住体和平移的帘幕相结合的形式:圆柱体直径为800mm,一半为反射面,另一半为宽频带吸声面,配置左侧墙的上、下部位和后墙上,共设29个转体,(侧墙14个,后墙15个);可调帘幕分三道,配置在厢座侧墙木格栅内,共计可调面积为大厅总表面积的十分之一。

室内乐厅内除了可调吸声结构以外,其余的墙面均为25mm厚的木板墙,榉木三合板贴面;木地板;吊顶为轻钢龙骨石膏板刷涂料;座椅采用相当于听众声吸收的澳大利亚“西贝”(Sebel)公司产品。座垫和椅背可根据需要调节倾角。

室内乐厅的噪声控制同样包括隔声和空调系统的消声和减振两部分。厅内的周墙均为内隔断重墙,屋顶为双层结构,不存在屋面冲击声的问题。空调系统采用上送、下回的传统方式,消声和减振做法同交响乐大厅。

五、室内乐厅的声学测量和评价

室内乐厅竣工后曾对设计的八项指标进行了测定。混响时间和早期反射声的测定结果如下:

(1)混响时间(RT)

混响时间的测定是按设定的五种可调混响方式中三种进行的;即:1)转体和帘幕均为暴露反射面,即厅内具有最长的混响;2)转体和帘幕吸声面暴露,厅内混响处于最短的情况;3)转体和帘幕的吸声面各暴露一半,即处于1)2)的中间状态。测定结果和测定点配置分别见图14,最大可调幅度为0。48s(空场)和0.42s(满场)

(2)早期反射声测定:

早期反射声测定结果,可用式(2),式(3)求得500Hz,1000Hz和2000Hz三个频率的C80和C50的值,然后取其平均值:即C80(3),室内乐厅8测点的C80(3)值为2.55~4.93dB,平均值为3.77dB;C50(3)为-0.02~2.38dB,平均值为1.06dB。

星海音乐厅内乐厅的9项声学指标测定结果表明:全部达到预期效果,该厅在调试期间曾进行了广东省少年钢琴比赛,以及古筝独奏会,无论是乐师和听众均反映厅内音质效果极佳。

六、音乐厅声学设计中几个总是的探讨

通过星海音乐厅声学设计的实践和调试、试用过程中我国音乐家们反映的各种意见,笔者认为有些问题值得研讨,以便给今后音乐厅的设计提供参考。

(一)关于交响乐大厅的“最佳”混响时间

世界著名的传统音乐厅混响时间都比较长。这无疑对我国音乐厅设计有较大的影响。星海音乐厅交响乐大厅的满场混响时间也是参考了传统音乐厅而确定为1.8s的。

但长的混响时间不适合国情,原因首先是我国的交响乐团,习惯于在较短混响条件下演奏,这是因为国内的自然声演奏的厅堂没有达到满场1.8s混响时间的;其次是我国音乐家常以清晰为主要目的。正如我国著名指挥家严良堃先生在深圳音乐厅国际招标会上对音乐厅提出的音质要求是:“清晰、圆润、宏亮”。这在很大程度上代表了我国音乐界的意见。

国外的音乐家们也未必都喜爱长混响的,例如:维也纳音乐厅的混响时间为2.5s,音乐家也有不同的意见:著名音乐家’、指挥家卡拉扬(H.V.Karajan)就提出:“……大厅唯一不足之处是难以显示出一些弓上和嘴唇上的技巧,相继的音符彼此被相互吞没”,这明确表明混响太长了。

星海音乐厅交响乐大厅在调试过程中就是追加了人工调控混响而同时满足了国内、外音乐家的要求,而获得好评的。

(二)音乐厅的形体

音质良好的传统音乐厅均为“鞋盒”式形体,尽端配置演奏台,由于跨度窄、容积小(座椅宽度和排距小)因而有较强的早期侧向反射声,且覆盖面较大,近年的研究表明:它是传统音乐厅所以能获得良好音质的重要因素之一。而控音乐厅,由于容座大、又要求有舒适的座椅,势必容积大,在这种情况下,试图按“鞋盒”式音乐厅的比例增大其尺寸去再现传统音乐厅的特色,是不可能的。这将改变直达声和射声到达的时间和方向,从要命上削弱和恶化其效果,英国皇家节日音乐厅和台北文化中心音乐厅即为典型的例证。因此,对于大容积的交响乐大厅应在继承传统音乐厅良好品质的前提下,突破“鞋盒”式形体。“葡萄园”式(或称“山谷梯田”形)即为一咱比较适用的形式。它有可能缩短听众席后排至演奏台的距离,从而获得足够响度,这对于自然声演奏的大厅来说是至关重要的。如果演奏台周围逐渐升起的厢座和楼座栏板或矮墙设计得当,同样可以获得足够强的、覆盖面较大的侧向早期反射声。

致于音乐厅围护结构的几何形式(圆、椭圆、扇形、三角形等……)并不重要,不应约束建筑师的创作,但厅内装修所构成的空间形式应有利于声的扩散,这一点必须做到。

(三)关于音质效果的评价

音乐厅声学设计的最终目的是获得良好的听音效果,也即满足听众主观感受的要求。因此音乐厅建成后,通过声学测量核对测定数据是否达到设计指标,仅完成了客观量的评价,还须进行主观评价。有关音乐厅音质的主观评价,国内外有很多方法,但较为简易有效的方法是通过乐团多种节目的演出,听取各方面的意见,进行统计分析,求得评价结果。但在评价的实际工作中,应注意如下两点:

(1)乐队在演奏厅内空场排练不能作为主观评价的依据。

这首先是因为乐队经常在容积小,混响短(一般为1.0s)的排练厅练习,。因而在混响长达2.0s以上的演奏厅内排练,反差太大;其次是空场时,演奏台四周的座席是空的,座椅有反射而影响乐师的相互听闻。此外,空场排练只能反映光师在演奏台上的自我感受而不能评价大在的听音效果。因此,主观评价时,至少组织1/3满座的听众。既缩短了混响,又有听众和乐师两方面意见。

(2)正确、公正的评价需要时间

对新建音乐厅最初作评价是配合声学调试的乐队指挥和乐师,他们反映的实际上是演奏台上的自我感觉。而不是大厅的音质。如果是空场排练,则他们反映的意见多数是不可靠的;大厅公开演出后,厅内达到设计的声学状态,音乐家、音乐评价家和听众反映的才是真实的时质效果。但由于音乐家、指挥家的知名度,新闻媒界报导大厅的音质效果主要听取这些权威的评论。很少来自参加音乐会的听众。但更为正确、公正的评价最终应取决于包括音乐家在内的广大听众;但这需要时间,一上音质优异的音乐厅,应经得起时间的考验。

(四)音乐厅屋顶结构的选择应多方考虑

音乐厅的屋顶采用何种形式绘声绘色是结构工程师的事。但不论选用何种形式,必须考虑音乐厅某些特殊的要求:

(1)演奏台上方的屋架应能承重较大的局部荷载,以便吊置重的反射体、灯具和一些机械设备;

(2)演奏台上方应有足够的高度,使台上的声反射板和照明灯有升降的空间,在音乐会开演前一般将反射板悬吊在高处,以便使听众看到演奏台的全景,特别当设置管风琴时,更希望大部分听众都能看到。演奏开始时,才降下反射板和灯具。

(3)在承重的屋顶下,音乐厅的吊顶上应设置一个工作层,以便配置和操作升降的机械设备的设置通风管道。同时,还可使屋顶有足够的空气声和撞击声的隔声能力。

星海音乐厅选用“马鞍”形壳体,从结构上没有体现壳体的优越性(壳体厚达220mm)同时又不能满足上述所提的要求。无论在声学和使用上带来很多麻烦。

七、结语

星海音乐厅的声学设计自1990年3月与广东省文化厅和华南理工大学签约承接任务至1998年6月13日启用,历经八年之久,在这期间进行了三次模型试验,四次现场测定,以及大量的声学构件实验室测定和计算工作。存积了大量资料,本文因受篇幅所限,仅作概要的介绍,供今后音乐厅设计参考。

星海音乐厅首演月的多场国内、外乐团演奏的结果表明,该厅具有良好的音质,受到了一致的好评,祈望能在国际优异的音乐厅行列中,占有一席之地。

第五篇:KTV声学设计

在KTV设计中,音响设计是很重要的一部分。设计到音效,隔音等等问题,下面我们就来普及一下KTV设计中的声学知识。

什么叫隔音:隔声是利用质密的材料将声音隔绝于某个空间。隔声材料所具有的降噪作用叫做隔声性能,假设某KTV音响的声音是90dB,传到与之相隔一墙的包间后降到50dB,则该墙体的隔声性能可以说是40dB。墙壁越厚材质越硬隔音性能就越好,相反材质疏松墙壁很薄隔音性能就差。KTV包间主要是为演唱卡拉OK提供的娱乐场所,所以隔声尤为重要。

什么叫噪声:就是人们生活和工作娱乐等所不需要的声音。噪声在娱乐场所的产生主要来自空调、换气系统和外界的各种干扰噪声,KTV设计如:发电机、空调机组、交通等。有些音响系统质量不好也会产生噪声。噪声会给人的心理和生理带来伤害,严重的噪声会干扰人们的睡眠和工作和娱乐,强噪声会使人听力损失。这种损失是累计性的,在强噪声下呆一天,只要噪声不是过强(120分贝以上),事后只产生暂时性的听力损失,经过休息虽然可以恢复;但如果长期在强噪声下娱乐,每天虽可以恢复,经过一段时间后,就会产生永久性的听力损失,过强的噪声还能伤害人体的器官,如超低音会伤害人的心脏器官,老年人和有心脏病的人是不能够在大声压级和低音多环境中娱乐的KTV设计。

什么叫混响时间:是指声源停止发声后,在声场中还存在着来自各个界面的迟到的反射声形成的声音“残留”现象。这种残留现象的长短以混响时间来表征。混响时间公认的定义是声能密度衰减60dB所需的时间。房间的混响时间只是决定于室内空间的大小,墙壁表面吸声材料的性能,结构和分布,以及室内的设备,包括在室内的演唱人员对声能的吸收和反射,他与是否装有扩声系统是没有关系的。KTV设计比较通俗的理解就是混响时间长声音就会混乱,时间长了就会产生疲劳感;混响时间适中清晰度就高,演唱就轻松,适合长时间演唱;混响时间短演唱就会很吃力,通常我们说的唱歌“累”。

虚拟声学信号采集系统设计论文(合集)
TOP