首页 > 实用范文 > 其他范文
不锈钢覆面焊缝脉冲涡流热成像检测技术研究论文(大全)
编辑:清幽竹影 识别码:130-793547 其他范文 发布时间: 2023-11-12 15:13:21 来源:网络

第一篇:不锈钢覆面焊缝脉冲涡流热成像检测技术研究论文(大全)

【摘 要】不锈钢覆面广泛应用于核电站各种高放射性水池、高放射性工具存放间、核燃料转运通道,是隔离和阻挡放射性的第一道重要屏障。国内外核电站不锈钢覆面泄漏失效时有发生,查漏修复技术难度高,代价高昂。众多案例表明泄漏事故大多直接或间接与建造期间焊接原始缺陷相关。受钢覆面结构限制和渗透、目视、真空罩气泡法等常规无损检测方法本身的局限,大量焊缝内部缺陷无法有效检出,成为覆面泄漏失效的敏感部位。本文介绍了开展不锈钢覆面焊缝脉冲涡流检测技术研究的相关工作,研究表明该技术具有缺陷直观可测,干扰因素小,检测效率高等优点,解决了不锈钢覆面焊缝内部缺陷无法有效检出的问题,可用于建安阶段不锈钢覆面焊缝的焊接质量控制。

【关键词】核电站;不锈钢覆面;脉冲涡流热成像技术;无损检测、0 前言

不锈钢覆面广泛应用于核电站各种高放射性水池、高放射性工具存放间、核燃料转运通道,例如反应堆堆腔水池、反应堆换料水池、乏燃料水池、核燃料转运舱、容器装载井、容器准备井、RPE系统集水坑等,是隔离和阻挡放射性的第一道重要屏障。水池一旦泄漏,放射性物质泄漏引发的核安全风险巨大;钢覆面泄漏定位检测技术及水下焊接技术尚不成熟,水池修复代价极高。据统计几乎国内每个核电厂在不同阶段都发生过水池泄露的问题或事故,例如秦山一期、二期核电厂水池泄漏[1-2],岭澳核电站1号机组乏燃料贮存水池在投入运行前夕出现泄漏,同样的问题在美国的佐治亚电厂哈奇1号机组、巴基斯坦的恰希玛核电厂以及日本某些电厂的钢覆面泄漏失效问题报告中也多次提到[3-4]。众多水池失效案例表明泄漏事故大多直接或间接与建造期间焊接原始缺陷相关,因此在建安阶段加强对焊缝焊接缺陷的控制对保证钢覆面运行质量意义重大。

不锈钢覆面施工采用手工钨极氩弧焊工艺将3~6mm厚度的不锈钢薄板焊接在混凝土侧的埋件上,焊接组装而成。受不锈钢覆面结构的限制,大量对接焊缝只能进行渗透、目视、真空罩气泡法检测。受检测方法的限制,焊缝内部缺陷无法有效检出,成为覆面泄漏失效的敏感部位。如何有效检测出不锈钢薄板对接焊缝的内部缺陷成为保证钢覆面建造质量的关键。下面将介绍基于脉冲涡流热成像检测技术开展不锈钢覆面焊缝无损检测技术的相关研究,包括技术原理,仿真模拟,系统构建,试样测试,结论等。检测原理

脉冲涡流热成像技术(Eddy Current Pulsed Thermography,ECPT)是一种新型红外热成像无损检测技术,其原理是基于电磁学中的涡流现象与焦耳热现象,运用高速高分辨率红外热像仪,获取导电试件在涡流激励下由焦耳热产生的温度场分布,并通过对红外热图像序列的分析处理来检测结构缺陷及材料电磁热特性变化。由于具有不受提离及边缘效应影响,检测结果为图像,直观易懂,单次检测面积大,效率高检测时无需接触被测件表面,可利用涡流效应检测表面及近表面缺陷,利用热效应检测更深层缺陷等优势,该方法一经提出,便被作为复杂构件缺陷的一种潜在的可视化绿色无污染无损检测手段,受到了广泛关注,目前已被成功应用于碳纤维复合材料、发动机叶片、铁轨等无损检测。

脉冲涡流热成像检测过程主要涉及以下物理过程,①脉冲电磁感应产生涡流;

②涡流受到表面和近表面缺陷的扰动分布发生变化,并通过焦耳热在金属导体上产生热量;

③热量在导体中由高到低传递,其传递过程同样受到缺陷的影响;

④热成像仪采集热量分布的变化过程,并揭示缺陷的存在。仿真模拟

采用COMSOL Multiphysics软件以有限元法为基础,通过求解偏微分方程(单场)或偏微分方程组(多场)来实现真实物理现象的仿真,可评估检测技术的可行性,优化检测工艺。在脉冲涡流热成像仿真模拟中涉及如下物理公式(1),(2)。

感应电流:

σ—电导率,μ—磁导率,ρ—密度,CP—比热容,K—导热率。

2.1 不同深度矩形槽脉冲涡流热成像仿真

热成像仪可以连续动态的采集试件温度场分布变化的图像,将图像缺陷点与参考点的温度变化信息采集出来,进行对比可以用于判断是否存在缺陷。此外,在同条件激励热源下若能将同尺寸不同深度的缺陷的温度变化信息采集出来矩形对比分析,则可能对缺陷深度位置进行评估。模拟仿真主要模拟缺陷点与参考点的温度场信息,以及同尺寸不同深度缺陷的温度变化信息。

2.2 仿真分析及结论

从图1可以直观看出由于缺陷的存在,感应电流绕过缺陷流动,感应电流密度在缺陷边界出现了变化,导致温度分布发生变化,通过热成像技术获取的温度分布图可以用于判断缺陷的形状和测量缺陷尺寸。从图2可以看出不同深度的缺陷缺陷点与参考点温度变化缺陷存在差异该差异可用与评估缺陷的深度。从仿真结果来看,脉冲涡流热成像检测技术用于钢覆面焊缝无损检测是可行的。

第二篇:激光熔覆技术研究的论文

介绍了激光熔覆技术的发展、应用、设备及工艺特点,简述了激光熔覆技术的国内外研究现状,指出了激光表面改性技术存在的问题,展望了激光熔覆技术的发展前景。

0引言

激光熔覆技术是20世纪70年代随着大功率激光器的发展而兴起的一种新的表面改性技术,是指激光表面熔敷技术是在激光束作用下将合金粉末或陶瓷粉末与基体表面迅速加热并熔化,光束移开后自激冷却形成稀释率极低,与基体材料呈冶金结合的表面涂层,从而显著改善基体表面耐磨、耐蚀、耐热、抗氧化及电气特性等的一种表面强化方法[1~3]。如对60#钢进行碳钨激光熔覆后,硬度最高达2200HV以上,耐磨损性能为基体60#钢的20倍左右。在Q235钢表面激光熔覆CoCrSiB合金后,将其耐磨性与火焰喷涂的耐蚀性进行了对比,发现前者的耐蚀性明显高于后者[4]。

激光熔覆技术是一种经济效益很高的新技术,它可以在廉价金属基材上制备出高性能的合金表面而不影响基体的性质,降低成本,节约贵重稀有金属材料,因此,世界上各工业先进国家对激光熔覆技术的研究及应用都非常重视[1-2、5-7]。

1激光熔覆技术的设备及工艺特点

目前应用于激光熔覆的激光器主要有输出功率为1~10kW的CO2激光器和500W左右的YAG激光器。对于连续CO2激光熔覆,国内外学者已做了大量研究[1]。近年来高功率YAG激光器的研制发展迅速,主要用于有色合金表面改性。据文献报道,采用CO2激光进行铝合金激光熔覆,铝合金基体在CO2激光辐照条件下容易变形,甚至塌陷[1]。YAG激光器输出波长为1.06μm,较CO2激光波长小1个数量级,因而更适合此类金属的激光熔覆。

同步注粉式激光表面熔覆处理示意图[8]

激光熔覆按送粉工艺的不同可分为两类:粉末预置法和同步送粉法。两种方法效果相似,同步送粉法具有易实现自动化控制,激光能量吸收率高,无内部气孔,尤其熔覆金属陶瓷,可以显著提高熔覆层的抗开裂性能,使硬质陶瓷相可以在熔覆层内均匀分布等优点。

激光熔覆具有以下特点[2、9]:

(1)冷却速度快(高达106K/s),属于快速凝固过程,容易得到细晶组织或产生平衡态所无法得到的新相,如非稳相、非晶态等。

(2)涂层稀释率低(一般小于5%),与基体呈牢固的冶金结合或界面扩散结合,通过对激光工艺参数的调整,可以获得低稀释率的良好涂层,并且涂层成分和稀释度可控;

(3)热输入和畸变较小,尤其是采用高功率密度快速熔覆时,变形可降低到零件的装配公差内。

(4)粉末选择几乎没有任何限制,特别是在低熔点金属表面熔敷高熔点合金;

(5)熔覆层的厚度范围大,单道送粉一次涂覆厚度在0.2~2.0mm,(6)能进行选区熔敷,材料消耗少,具有卓越的性能价格比;

(7)光束瞄准可以使难以接近的区域熔敷;

(8)工艺过程易于实现自动化。

很适合油田常见易损件的磨损修复。

2激光熔覆技术的发展现状

激光熔覆技术是—种涉及光、机、电、计算机、材料、物理、化学等多门学科的跨学科高新技术。它由上个世纪60年代提出,并于1976年诞生了第一项论述高能激光熔覆的专利。进入80年代,激光熔覆技术得到了迅速的发展,近年来结合CAD技术兴起的快速原型加工技术,为激光熔覆技术又添了新的活力。

目前已成功开展了在不锈钢、模具钢、可锻铸铁、灰口铸铁、铜合金、钛合金、铝合金及特殊合金表面钴基、镍基、铁基等自熔合金粉末及陶瓷相的激光熔覆。激光熔覆铁基合金粉末适用于要求局部耐磨而且容易变形的零件。镍基合金粉末适用于要求局部耐磨、耐热腐蚀及抗热疲劳的构件。钴基合金粉末适用于要求耐磨、耐蚀及抗热疲劳的零件。陶瓷涂层在高温下有较高的强度,热稳定性好,化学稳定性高,适用于要求耐磨、耐蚀、耐高温和抗氧化性的零件。在滑动磨损、冲击磨损和磨粒磨损严重的条件下,纯的镍基、钴基和铁基合金粉末已经满足不了使用工况的要求,因此在合金表面激光熔覆金属陶瓷复合涂层已经成为国内外学者研究的热点,目前已经进行了钢、钛合金及铝合金表面激光熔覆多种陶瓷或金属陶瓷涂层的研究[1、10]。

3激光熔覆存在的问题

评价激光熔覆层质量的优劣,主要从两个方面来考虑。一是宏观上,考察熔覆道形状、表面不平度、裂纹、气孔及稀释率等;二是微观上,考察是否形成良好的组织,能否提供所要求的性能。此外,还应测定表面熔覆层化学元素的种类和分布,注意分析过渡层的情况是否为冶金结合,必要时要进行质量寿命检测。

目前研究工作的重点是熔覆设备的研制与开发、熔池动力学、合金成分的设计、裂纹的形成、扩展和控制方法、以及熔覆层与基体之间的结合力等。

目前激光熔敷技术进一步应用面临的主要问题是:

①激光熔覆技术在国内尚未完全实现产业化的主要原因是熔覆层质量的不稳定性。激光熔覆过程中,加热和冷却的速度极快,最高速度可达1012℃/s。由于熔覆层和基体材料的温度梯度和热膨胀系数的差异,可能在熔覆层中产生多种缺陷,主要包括气孔、裂纹、变形和表面不平度[1]。

②光熔敷过程的检测和实施自动化控制。

③激光熔覆层的开裂敏感性,仍然是困扰国内外研究者的一个难题,也是工程应用及产业化的障碍[1、11]。目前,虽然已经对裂纹的形成扩进行了研究[1],但控制方法方面还不成熟。

4激光熔覆技术的应用和发展前景展望

进入20世纪80年代以来,激光熔敷技术得到了迅速的发展,目前已成为国内外激光表面改性研究的热点。激光熔敷技术具有很大的技术经济效益,广泛应用于机械制造与维修、汽车制造、纺织机械、航海[12]与航天和石油化工等领域。

目前激光熔覆技术已经取得一定的成果,正处于逐步走向工业化应用的起步阶段。今后的发展前景主要有以下几个方面:

(1)激光熔覆的基础理论研究。

(2)熔覆材料的设计与开发。

(3)激光熔覆设备的改进与研制。

(4)理论模型的建立。

(5)激光熔覆的快速成型技术。

(6)熔覆过程控制的自动化。

第三篇:低温压力容器无损检测技术研究论文

摘要:在压力容器中,低温压力容器是十分常见的一种压力容器,在液氧、液氮、液化二氧化碳以及天然气这些液化气体的运输和存储中都发挥着极其重要的作用。本文将对目前情况下低温环节中对压力容器的检测的不足之处进行探讨,对无损检测技术在应用中的优势进行全面分析,介绍无损检测技术的类型,希望能对低温压力容器的安全使用有所帮助。

关键词:低温压力容器;无损检测技术;应用研究

低温条件下压力容器存储的通常都是危险性比较高的气体,因此在运输和储存的过程中一定要对其安全性进行全面的检查。在低温压力容器中应用无损检测技术,能有效提高检测工作的工作效率,并使检测的准确性大大提高。

1使用无损检测技术的优势

使用无损检测技术进行低温压力容器的安全性检测,能在很大程度上提高检测工作的精准程度,但是在实际应用中是存在很多限制因素的,会直接导致无损检测技术在使用的时候有一定的缺陷存在。为了更好的解决这些问题,相关检验人员要综合使用更多的技术方式来对工作效率进行提高。也就是说,无损检测技术的应用是一个独立的个体,不能独立存在,但是能保证不给容器本身的结构和使用产生损害,这就是这项技术使用的明显优势。在使用无损检测技术的时候要结合压力容器的检查项目,来选择最合适的检测方式,同时还要对制造使用的工艺和性能进行检测,确保其质量上没有问题存在。综合做到以上几点能更好的保证压力容器的检测结果。也有相关研究证明,如果只使用无损检测技术通常不能顺利的找出压力容器内部存在的问题,所以为了更好的完成检测工作,保证压力容器的质量安全,检测人员应该使用多种容器检测的方式帮组无损检测技术在使用中可能出现的漏洞进行检查。

2无损检测技术的分类

低温压力容器的环境通常是在零度以下的不同温度下,因为其主要作用就是运输和储存气体,而不同气体使用的容器不论在介质、温度、罐体结构等方面都是大不相同的,所以在检测的时候也应该使用不同的检测方式。目前使用范围比较广泛的无损检测技术如下:声发射检测技术、超声检测技术、红外热检测技术以及磁记忆检测技术。其中第一种和第二种技术主要使用在容器内部缺陷的检测中,红外检测技术以及磁记忆检测技术主要针对的是容器外表面的检测工作。

3检测低温压力容器过程中无损检测技术的使用方法

3.1声发射检测技术

声发射检测技术在低温压力容器中的应用原理是因为物体在受到作用力的情况下会产生一定的能量。这种技术能检测的材料范围很大,不会被材料的大小和形状影响,除此之外,低温压力容器不管是发生气体的泄漏、液体渗漏还是构件的轴承出现滑动,都可以使用声发射技术进行检测,而且在容器的应用过程中,可以实现对容器使用情况的长期监控。还有一点,一旦容器材料出现的缺陷超出安全范围,声发射检测系统还能自动报警,让维修人员在第一时间能够发现问题并进行解决。但是不容忽视的是,声发射检测技术不能对压力容器的剥离情况进行检测,如果需要检测容器的剥离情况,应该结合其他检测技术进行综合使用,这样才能保证低温容器的质量。

3.2超声检测技术

超声检测技术使用原理是利用罐内反应的频率获得容器内部相关的使用数据。这项技术在实际使用中检出率很高,因此相关研究人员也十分重视这项技术的使用。具体使用的优势还表现在,不但能检查低温容器表面存在的裂缝问题,还能检测容器内部的焊接情况。而在检测的过程中,容器的反应频率一旦出现异常的变动,就说明低温容器的运行出现了问题,提示工作人员应该及时采取有效措施解决问题。

3.3磁记忆检测技术

这种检测技术顾名思义,就是指铁磁材料在运行的过程中在介质容器中产生一种记忆。这种记忆包括其运行过程中的介质容器情况,也包括容器局部的磁场异常情况。而在磁记忆检测系统发现这些问题之后就会发出检测信号,检测人员根据这些信号可以发现磁场出现异常的具体位置,然后

采取最有针对性的解决措施。这种技术使用的时间比较短,因此需要改进的地方还有很多,能够提升的空间也很大。

3.4红外热检测技术

所谓红外热检测技术主要是指对红外射线的特点进行充分利用,照射低温压力容器,然后能对容器内部的情况进行充分的了解和掌握。这种技术的使用能够大大减少对容器的损害,并能有效提高容器的检测效率。并能由此使相关工作的检测人员利用在线检测的方式对压力容器进行热传导的信息进行完全掌握。热传导的过程信息能对容器的使用情况进行全面的展示,对出现异常的部位进行准确的标注。也就是说,红外线检测技术能对罐内的异常情况进行及时的发现,使用这种检测技术也能有效的避免压力容器在低温情况下出现安全事故。

4结语

压力容器在低温条件下储存的都是比较危险的气体,其安全性需要引起人们的广泛关注和重视。目前使用的无损检测技术有声发射检测技术、超声检测技术、红外热检测技术以及磁记忆检测技术。实际应用中能够证明,使用这些方式能有效提高低温压力容器在运输和存储过程中的稳定性和安全模型,也是在目前情况下改善压力容器安全隐患的最有效的方式。

参考文献:

[1]奥林巴斯艾因蒂克西南地区第十一届无损检测学术年会暨2011年(昆明)国际无损检测仪器展览会云南省机械工程学会无损检测分会第七届代表大会会议通知[J].无损检测.2011(07).[2]SecretariatofChineseSocietyforNondestructiveTesting.中国机械工程学会无损检测分会第八届全国年会、国际无损检测技术研讨会暨展览会在苏州成功举办[J].无损检测.2003(11).[3]刘小宁,刘岑,张红卫,刘兵,袁小会,杨帆.对“基于实测数据的特种球形压力容器爆破压力计算公式”一文的商榷[J].应用数学和力学.2016(05).[4]王淦刚,赵军,赵建仓,杨晓东,迟鸣声,甄佳威,李建勇,朱平,刘非凡,杨富.P92新型耐热钢焊接接头的力学性能研究及其工程应用[J].电力设备.2007(05).[5]沈功田,段庆儒,周裕峰,李帮宪,刘其志,李春树,蒋仕良.压力容器声发射信号人工神经网络模式识别方法的研究[J].无损检测.2001(04).

第四篇:P2P网络体系及检测技术研究论文

摘要:P2P网络是一个分布式网络模型,也叫对等网络,网络中的节点都有相同或相近的责任,其特点就是降低以服务器为核心的地位,充分整合分布在终端主机上的资源,如CPU资源、网络资源和存储资源等。跟传统的C/S模式有着巨大的区别,也就是说,在对等网络中,各个节点的地位是平等的,可以同时作为服务端又可以作为客户端。

关键词:P2P;结构化;流量识别

P2P(Peer-to-Peer)并非一种全新的技术,互联网最基本的协议TCP/IP并没有客户机和服务器的概念,所有的设备都是通讯平等的一端。由于受早期计算机性能、资源等因素的限制,大多数连接到互联网上的普通用户并没有能力提供网络服务,从而逐步形成了以少数服务器为中心的客户机/服务器(Client/Server)模式。但是,随着互联网跟人们生活的联系日益紧密和深入,人们需要更直接、更广泛的信息交流,P2P技术充分利用互联网广泛分布的资源,扩大了资源利用范围,改变共享方式,提高了资源共享效率,比C/S模式更具稳定性和健壮性,去中心化,使其应用日益丰富,流量迅速增长。

1、P2P基本概述

对等网络技术起源于最早的网络互联时代,当时的计算机可以不通过服务器而能直接互相访问,例如上世纪70年代的USENET和FidoNet网络就是基于资源共享的。随着计算机网络化进程的不断前进,互联网主要以客户机/服务器(C/S)为主体模式,在此应用中必须在网络中拥有服务器,信息则是通过服务器与客户端进行交流。服务器作为资源的拥有者,对各个客户端提供资源下载,这就是传统意义上的C/S模式。但是此种模式有一个共同的弊端:服务器端的资源有限,伴随着连接用户数的激增,服务器的性能和服务器的带宽将经受严重考验,这在一定程度上降低了服务质量,从而制约了客户数的增长。

对等网络的出现打破了传统C/S模式的概念,它允许各终端与另一个终端直接进行通信,上传或下载资源,并且随着加入P2P网络的节点的增多,上传或下载资源的速度就越快,这就远远增强了信息传输的速度和效率。所以,P2P网络是一种不通过中继设备直接交换资源和服务的技术,它允许网络用户直接获取对方的文件。所有的用户都能访问到别人的电脑资源,并进行文件的共享,而不需要链接到服务器上再进行浏览与下载。

2、P2P体系结构

P2P体系结构大致归纳为两种,一种是非结构化的P2P,另一种是结构化的P2P[1]。

结构化P2P采用纯分布式的消息传递机制和根据关键词查找的定位服务。分布式哈希表(DHT)[2]技术是如今主要采纳的技术,此类系统代表的有加州大学伯克利分校的CAN项目和TaPestry项目,麻省理工学院的Chord项目以及微软研究院的Pastry[3]项目等。

如今大多数P2P系统都是采用的非结构化的P2P网络,这种非结构化的P2P网络总共经历了四代的发展,现在就此四代的历程做以简述:

第三代混合式的结构。如图3所示,混合式P2P模型综合了以上两种结构的特点,在此模式中,依然去除集中服务器,只建立超级节点,也叫搜索节点,其他节点叫普通节点。搜索节点用来处理普通节点的搜索请求,拥有强大的处理器、硬盘空间、连接速率,和普通节点相互协作,共同管理整个网络,它们之间组成了一个自治的簇。所有的簇就构成了一个混合式的结构。每个簇内结构与集中服务器结构类似,如果普通节点要进行资源搜索,首先是在本地所在的簇内查询,仅当搜索结果不完全时,才在其他搜索节点之间采取有限的广播,得到查询的目的后,就可以同时对拥有资源的多个节点进行获取。这就要判断资源是否为相同资源,是的话就要对资源进行分片处理。

总的来说,采用这样的模式,普通节点受控于搜索节点,可以抑制病毒和恶意攻击等行为,并且可以减少网络堵塞,检索耗时等负面影响。

第五篇:包覆燃料颗粒制备技术研究论文

【摘要】本文首先介绍了高温气冷堆核燃料元件生产线工程(827工程)概况,然后讲述包覆燃料颗粒的构成,制备工艺流程及关键设备,最后调试结果表明此制备技术可以生产出各项性能都满足产品技术条件的包覆燃料颗粒。

【关键词】包覆燃料颗粒;流程;制备技术

0前言

827工程是国内首条高温气冷堆核电站燃料元件生产线,为示范电站提供首炉燃料元件和运行后换料所需的燃料元件,并为今后商用高温气冷堆核电厂的燃料元件生产积累技术经验。球形燃料元件由燃料区和无燃料区构成。燃料区是包覆燃料颗粒弥散在石墨基体里的直径为约50mm的球体。无燃料区是围绕燃料区的厚度约5mm(和燃料区相同的石墨基体材料)的球壳。燃料区和无燃料区间无物理上分界面。球形燃料元件的直径为60mm,每个球形燃料元件含7g铀,即约为12000个包覆燃料颗粒。包覆燃料颗粒是高温气冷堆核电站燃料元件的重要组成部分,它是利用化学气相沉积的原理,采用清华大学核能与新能源技术研究院专有技术制备的[1]。包覆燃料颗粒是由二氧化铀燃料核芯、疏松热解碳层、内致密热解碳层、碳化硅层和外致密热解碳层组成。

1工艺原理

合格的UO2燃料核芯在高温流化床沉积炉中采用气相沉积法制成包覆燃料颗粒。包覆基本化学过程:C2H2→2C+H2↑C3H6→3C+3H2↑CH3SiCl3→SiC+3HCl↑

2工艺流程简述

首先检查冷却水源、气源是否正常,水压为0.2~0.3MPa,压缩空气压力为0.5~0.6MPa,氩气、乙炔、丙烯、氢气和甲基三氯硅烷(MTS)供气压力为0.2~0.3MPa。然后抽真空,通氩气,升温,气体从包覆炉底部的喷嘴送入,在包覆炉升温达到一定温度后,将UO2燃料核芯从包覆炉顶部的装料器中放入。分四层进行包覆。第一层,疏松热解碳层。将包覆炉升温至1200℃,氩气作为稀释和载带气体,通入反应气体乙炔,生成疏松热解碳层。疏松热解碳层的密度小于1.1g/cm3,厚度为50~140μm,它的主要作用是储存气态裂变产物,吸收辐照引起的核芯肿胀,缓冲辐照以及温度变化引起的应力,防止裂变反冲核直接轰击致密热解碳层以及解脱燃料核芯与致密热解碳层间的机械耦合。第二层,内致密热解碳层。将包覆炉升温至1400℃,氩气作为稀释和载带气体,通入反应气体乙炔和丙烯,生成内致密热解碳层。内致密热解碳层的密度约1.9g/cm3,厚度为20~60μm,它作为SiC层沉积的基底,用来防止在包覆SiC层时产生的HCl和UO2核芯反应,延缓金属裂变产物对SiC层的腐蚀,承受辐照时对包覆层产生的内压。第三层,碳化硅层。将包覆炉升温至1500℃以上,氩气作为保护气体,氢气作为稀释和载带气体,通入反应气体甲基三氯硅烷(MTS),生成碳化硅层。碳化硅层的密度大于3.18g/cm3,厚度约为25~45μm,由于它的强度高、弹性模量大、具有耐腐蚀性,因此是承受包覆燃料颗粒内压以及阻挡裂变产物释放的关键层。它阻挡固态裂变产物的能力比热解碳层高1~3个量级,强度比热解碳层高好几倍。第四层,外致密热解碳层。将包覆炉降温至1400℃,氩气作为稀释和载带气体,通入反应气体乙炔和丙烯,生成外致密热解碳层。外致密热解碳层的密度约1.9g/cm3,厚度为20~60μm,它是阻挡裂变产物释放的又一道屏障,并且能够保护SiC层免受机械损伤。在完成疏松热解碳层和内致密热解碳层沉积之后要分别取样,用作性能检验。最后包覆炉降温冷却,卸出包覆燃料颗粒产品,进行滚筒筛的筛分和振动台的分选,除去尺寸和球形度不合格的包覆燃料颗粒次品,经性能检验,合格的包覆燃料颗粒送大球制备工序制造球形元件。不合格的包覆燃料颗粒送返品破碎煅烧工序处理。包覆第一、二和四层过程产生的尾气经炭黑除尘器(三级分离:旋风分离、布袋除尘、精密过滤)除去炭黑,剩余的可燃气体在点火装置点火后排入通风系统;包覆第三层(碳化硅层)过程产生的尾气经吸收塔吸收除去HCl气体,剩余的可燃气体在点火装置点火后排入通风系统,HCl吸收产生的NaCl废液排入天然蒸发池。在包覆颗粒的包覆过程中,是由水环真空机组对整个系统进行抽真空,确保包覆炉炉压为微负压(-1~1kPa),满足工艺生产要求。

3关键设备

整个包覆系统是由包覆炉、MTS供给系统、配气柜、炭黑除尘器、吸收塔、水环真空机组和点火器组成[2]。其中关键设备为包覆炉,包覆燃料颗粒的制备过程都是在包覆炉中完成的。包覆炉及辅助系统主要由包覆炉、真空系统、循环冷却水系统、加热电源及温控系统、装卸料系统、防爆管路等组成。

4结论

包覆燃料颗粒各包覆层的厚度、密度方面的性能主要受包覆各层时的反应气体流量、沉积温度、沉积时间的影响[3]。包覆颗粒制备工艺试验投料为贫料,设定好各包覆层的反应气体流量、沉积温度、沉积时间,进行包覆。包覆完毕,再根据制备出的包覆燃料颗粒各包覆层厚度、密度检测结果,调整工艺参数,经过多次试验,最终制备出各项性能都满足产品技术条件的包覆燃料颗粒,为下一步穿衣颗粒制备工序打下良好的基础。

【参考文献】

[1]高温气冷堆核电站示范工程燃料元件生产线工程初步设计输入资料[S].[2]包覆炉系统用户手册[S].[3]高温气冷堆核燃料元件生产线调试报告[R].

不锈钢覆面焊缝脉冲涡流热成像检测技术研究论文(大全)
TOP