首页 > 工作总结 > 其他总结
初二整式的乘法与因式分解知识点总结
编辑:落梅无痕 识别码:36-635676 其他总结 发布时间: 2023-08-14 18:02:14 来源:网络

初二整式的乘法与因式分解知识点总结

(含答案解析)

知识点:

1.基本运算:

⑴同底数幂的乘法:

⑵幂的乘方:

⑶积的乘方:

2.整式的乘法:

⑴单项式单项式:系数系数,同字母同字母,不同字母为积的因式.⑵单项式多项式:用单项式乘以多项式的每个项后相加.⑶多项式多项式:用一个多项式每个项乘以另一个多项式每个项后相加.3.计算公式:

⑴平方差公式:

⑵完全平方公式:;

4.整式的除法:

⑴同底数幂的除法:

⑵单项式单项式:系数系数,同字母同字母,不同字母作为商的因式.⑶多项式单项式:用多项式每个项除以单项式后相加.⑷多项式多项式:用竖式.5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个

子因式分解.6.因式分解方法:

⑴提公因式法:找出最大公因式.⑵公式法:

①平方差公式:

②完全平方公式:

③立方和:

④立方差:

⑶十字相乘法:

⑷拆项法

⑸添项法

常考题:

一.选择题(共12小题)

1.下列运算中,结果正确的是()

A.x3•x3=x6

B.3x2+2x2=5x4

C.(x2)3=x5

D.(x+y)2=x2+y2

2.计算(ab2)3的结果是()

A.ab5

B.ab6

C.a3b5

D.a3b6

3.计算2x2•(﹣3x3)的结果是()

A.﹣6x5

B.6x5

C.﹣2x6

D.2x6

4.下列各式由左边到右边的变形中,是分解因式的为()

A.a(x+y)=ax+ay

B.x2﹣4x+4=x(x﹣4)+4

C.10x2﹣5x=5x(2x﹣1)

D.x2﹣16+3x=(x﹣4)(x+4)+3x

5.下列多项式中能用平方差公式分解因式的是()

A.a2+(﹣b)2

B.5m2﹣20mn

C.﹣x2﹣y2

D.﹣x2+9

6.下列各式中能用完全平方公式进行因式分解的是()

A.x2+x+1

B.x2+2x﹣1

C.x2﹣1

D.x2﹣6x+9

7.下列因式分解错误的是()

A.x2﹣y2=(x+y)(x﹣y)

B.x2+6x+9=(x+3)2

C.x2+xy=x(x+y)

D.x2+y2=(x+y)2

8.把代数式ax2﹣4ax+4a分解因式,下列结果中正确的是()

A.a(x﹣2)2

B.a(x+2)2

C.a(x﹣4)2

D.a(x+2)(x﹣2)

9.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()

A.﹣3

B.3

C.0

D.1

10.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()

A.(a+b)2=a2+2ab+b2

B.(a﹣b)2=a2﹣2ab+b2

C.a2﹣b2=(a+b)(a﹣b)

D.(a+2b)(a﹣b)=a2+ab﹣2b2

11.图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)

那样拼成一个正方形,则中间空的部分的面积是()

A.ab

B.(a+b)2

C.(a﹣b)2

D.a2﹣b2

12.如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为()

A.(2a2+5a)cm2

B.(6a+15)cm2

C.(6a+9)cm2

D.(3a+15)cm2

二.填空题(共13小题)

13.分解因式:3x2﹣27=

14.分解因式:a2﹣1=

15.因式分解:x2﹣9y2=

16.分解因式:x3﹣4x=

17.因式分解:a3﹣ab2=

18.分解因式:x2+6x+9=

19.分解因式:2a2﹣4a+2=

20.分解因式:x3﹣6x2+9x=

21.分解因式:ab2﹣2ab+a=

22.分解因式:2a3﹣8a2+8a=

23.分解因式:3a2﹣12ab+12b2=

24.若m2﹣n2=6,且m﹣n=2,则m+n=

25.如图,边长为a、b的矩形,它的周长为14,面积为10,则a2b+ab2的值为

三.解答题(共15小题)

26.计算:(x﹣y)2﹣(y+2x)(y﹣2x)

27.若2x+5y﹣3=0,求4x•32y的值.

28.已知:a+b=3,ab=2,求下列各式的值:

(1)a2b+ab2

(2)a2+b2.

29.若x+y=3,且(x+2)(y+2)=12.

(1)求xy的值;

(2)求x2+3xy+y2的值.

30.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2.

31.若a2﹣2a+1=0.求代数式的值.

32.分解因式:

(1)2x2﹣x;

(2)16x2﹣1;

(3)6xy2﹣9x2y﹣y3;

(4)4+12(x﹣y)+9(x﹣y)2.

33.(2a+b+1)(2a+b﹣1)

34.分解因式:x3﹣2x2y+xy2.

35.分解因式:

(1)a4﹣16;

(2)x2﹣2xy+y2﹣9.

36.分解因式x2(x﹣y)+(y﹣x).

37.分解因式

(1)a2(x﹣y)+16(y﹣x);

(2)(x2+y2)2﹣4x2y2.

38.因式分解

(1)﹣8ax2+16axy﹣8ay2;

(2)(a2+1)2﹣4a2.

39.因式分解:

(1)3x﹣12x3

(2)6xy2+9x2y+y3.

40.若x2+2xy+y2﹣a(x+y)+25是完全平方式,求a的值.

初二整式的乘法与因式分解知识点总结

(含答案解析)

参考答案与试题解析

一.选择题(共12小题)

1.(2015•甘南州)下列运算中,结果正确的是()

A.x3•x3=x6

B.3x2+2x2=5x4

C.(x2)3=x5

D.(x+y)2=x2+y2

【分析】A、利用同底数幂的乘法法则计算得到结果,即可做出判断;

B、合并同类项得到结果,即可做出判断;

C、利用幂的乘方运算法则计算得到结果,即可做出判断;

D、利用完全平方公式展开得到结果,即可做出判断.

【解答】解:A、x3•x3=x6,本选项正确;

B、3x2+2x2=5x2,本选项错误;

C、(x2)3=x6,本选项错误;

D、(x+y)2=x2+2xy+y2,本选项错误,故选A

【点评】此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及幂的乘方,熟练掌握公式及法则是解本题的关键.

2.(2008•南京)计算(ab2)3的结果是()

A.ab5

B.ab6

C.a3b5

D.a3b6

【分析】根据积的乘方的性质进行计算,然后直接选取答案即可.

【解答】解:(ab2)3=a3•(b2)3=a3b6.

故选D.

【点评】本题考查积的乘方,把积中的每一个因式分别乘方,再把所得的幂相乘.

3.(2011•呼和浩特)计算2x2•(﹣3x3)的结果是()

A.﹣6x5

B.6x5

C.﹣2x6

D.2x6

【分析】根据单项式乘单项式的法则和同底数幂相乘,底数不变,指数相加计算后选取答案.

【解答】解:2x2•(﹣3x3),=2×(﹣3)•(x2•x3),=﹣6x5.

故选:A.

【点评】本题主要考查单项式相乘的法则和同底数幂的乘法的性质.

4.(2005•茂名)下列各式由左边到右边的变形中,是分解因式的为()

A.a(x+y)=ax+ay

B.x2﹣4x+4=x(x﹣4)+4

C.10x2﹣5x=5x(2x﹣1)

D.x2﹣16+3x=(x﹣4)(x+4)+3x

【分析】根据分解因式就是把一个多项式化为几个整式的积的形式,利用排除法求解.

【解答】解:A、是多项式乘法,故A选项错误;

B、右边不是积的形式,x2﹣4x+4=(x﹣2)2,故B选项错误;

C、提公因式法,故C选项正确;

D、右边不是积的形式,故D选项错误;

故选:C.

【点评】这类问题的关键在于能否正确应用分解因式的定义来判断.

5.(2017春•薛城区期末)下列多项式中能用平方差公式分解因式的是()

A.a2+(﹣b)2

B.5m2﹣20mn

C.﹣x2﹣y2

D.﹣x2+9

【分析】能用平方差公式分解因式的式子特点是:两项平方项,符号相反.

【解答】解:A、a2+(﹣b)2符号相同,不能用平方差公式分解因式,故A选项错误;

B、5m2﹣20mn两项不都是平方项,不能用平方差公式分解因式,故B选项错误;

C、﹣x2﹣y2符号相同,不能用平方差公式分解因式,故C选项错误;

D、﹣x2+9=﹣x2+32,两项符号相反,能用平方差公式分解因式,故D选项正确.

故选:D.

【点评】本题考查用平方差公式分解因式的式子特点,两平方项的符号相反.

6.(2013•张家界)下列各式中能用完全平方公式进行因式分解的是()

A.x2+x+1

B.x2+2x﹣1

C.x2﹣1

D.x2﹣6x+9

【分析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项分析判断后利用排除法求解.

【解答】解:A、x2+x+1不符合完全平方公式法分解因式的式子特点,故A错误;

B、x2+2x﹣1不符合完全平方公式法分解因式的式子特点,故B错误;

C、x2﹣1不符合完全平方公式法分解因式的式子特点,故C错误;

D、x2﹣6x+9=(x﹣3)2,故D正确.

故选:D.

【点评】本题考查了用公式法进行因式分解,能用公式法进行因式分解的式子的特点需熟记.

7.(2009•眉山)下列因式分解错误的是()

A.x2﹣y2=(x+y)(x﹣y)

B.x2+6x+9=(x+3)2

C.x2+xy=x(x+y)

D.x2+y2=(x+y)2

【分析】根据公式特点判断,然后利用排除法求解.

【解答】解:A、是平方差公式,故A选项正确;

B、是完全平方公式,故B选项正确;

C、是提公因式法,故C选项正确;

D、(x+y)2=x2+2xy+y2,故D选项错误;

故选:D.

【点评】本题主要考查了对于学习过的两种分解因式的方法的记忆与理解,需熟练掌握.

8.(2015•菏泽)把代数式ax2﹣4ax+4a分解因式,下列结果中正确的是()

A.a(x﹣2)2

B.a(x+2)2

C.a(x﹣4)2

D.a(x+2)(x﹣2)

【分析】先提取公因式a,再利用完全平方公式分解即可.

【解答】解:ax2﹣4ax+4a,=a(x2﹣4x+4),=a(x﹣2)2.

故选:A.

【点评】本题先提取公因式,再利用完全平方公式分解,分解因式时一定要分解彻底.

9.(2016秋•南漳县期末)如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()

A.﹣3

B.3

C.0

D.1

【分析】先用多项式乘以多项式的运算法则展开求它们的积,并且把m看作常数合并关于x的同类项,令x的系数为0,得出关于m的方程,求出m的值.

【解答】解:∵(x+m)(x+3)=x2+3x+mx+3m=x2+(3+m)x+3m,又∵乘积中不含x的一次项,∴3+m=0,解得m=﹣3.

故选:A.

【点评】本题主要考查了多项式乘多项式的运算,根据乘积中不含哪一项,则哪一项的系数等于0列式是解题的关键.

10.(2009•内江)在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()

A.(a+b)2=a2+2ab+b2

B.(a﹣b)2=a2﹣2ab+b2

C.a2﹣b2=(a+b)(a﹣b)

D.(a+2b)(a﹣b)=a2+ab﹣2b2

【分析】第一个图形中阴影部分的面积计算方法是边长是a的正方形的面积减去边长是b的小正方形的面积,等于a2﹣b2;第二个图形阴影部分是一个长是(a+b),宽是(a﹣b)的长方形,面积是(a+b)(a﹣b);这两个图形的阴影部分的面积相等.

【解答】解:∵图甲中阴影部分的面积=a2﹣b2,图乙中阴影部分的面积=(a+b)(a﹣b),而两个图形中阴影部分的面积相等,∴阴影部分的面积=a2﹣b2=(a+b)(a﹣b).

故选:C.

【点评】此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.

11.(2013•枣庄)图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()

A.ab

B.(a+b)2

C.(a﹣b)2

D.a2﹣b2

【分析】中间部分的四边形是正方形,表示出边长,则面积可以求得.

【解答】解:中间部分的四边形是正方形,边长是a+b﹣2b=a﹣b,则面积是(a﹣b)2.

故选:C.

【点评】本题考查了列代数式,正确表示出小正方形的边长是关键.

12.(2012•枣庄)如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为()

A.(2a2+5a)cm2

B.(6a+15)cm2

C.(6a+9)cm2

D.(3a+15)cm2

【分析】大正方形与小正方形的面积的差就是矩形的面积,据此即可求解.

【解答】解:矩形的面积是:(a+4)2﹣(a+1)2

=(a+4+a+1)(a+4﹣a﹣1)

=3(2a+5)

=6a+15(cm2).

故选B.

【点评】本题考查了平方差公式的几何背景,理解大正方形与小正方形的面积的差就是矩形的面积是关键.

二.填空题(共13小题)

13.(2015•黄石)分解因式:3x2﹣27= 3(x+3)(x﹣3).

【分析】观察原式3x2﹣27,找到公因式3,提出公因式后发现x2﹣9符合平方差公式,利用平方差公式继续分解.

【解答】解:3x2﹣27,=3(x2﹣9),=3(x+3)(x﹣3).

故答案为:3(x+3)(x﹣3).

【点评】本题主要考查提公因式法分解因式和利用平方差公式分解因式,熟记公式是解题的关键,难点在于要进行二次分解因式.

14.(2013•上海)分解因式:a2﹣1=(a+1)(a﹣1).

【分析】符合平方差公式的特征,直接运用平方差公式分解因式.平方差公式:a2﹣b2=(a+b)(a﹣b).

【解答】解:a2﹣1=(a+1)(a﹣1).

故答案为:(a+1)(a﹣1).

【点评】本题主要考查平方差公式分解因式,熟记公式是解题的关键.

15.(2013•邵阳)因式分解:x2﹣9y2=(x+3y)(x﹣3y).

【分析】直接利用平方差公式分解即可.

【解答】解:x2﹣9y2=(x+3y)(x﹣3y).

【点评】本题主要考查利用平方差公式分解因式,熟记公式结构是解题的关键.

16.(2017•大庆)分解因式:x3﹣4x= x(x+2)(x﹣2).

【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.

【解答】解:x3﹣4x,=x(x2﹣4),=x(x+2)(x﹣2).

故答案为:x(x+2)(x﹣2).

【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次因式分解,分解因式一定要彻底,直到不能再分解为止.

17.(2016•乐山)因式分解:a3﹣ab2= a(a+b)(a﹣b).

【分析】观察原式a3﹣ab2,找到公因式a,提出公因式后发现a2﹣b2是平方差公式,利用平方差公式继续分解可得.

【解答】解:a3﹣ab2=a(a2﹣b2)=a(a+b)(a﹣b).

【点评】本题是一道典型的中考题型的因式分解:先提取公因式,然后再应用一次公式.

本题考点:因式分解(提取公因式法、应用公式法).

18.(2013•三明)分解因式:x2+6x+9=(x+3)2 .

【分析】直接用完全平方公式分解即可.

【解答】解:x2+6x+9=(x+3)2.

【点评】本题考查了公式法分解因式,熟记完全平方公式法的结构特点是解题的关键.

19.(2017•咸宁)分解因式:2a2﹣4a+2= 2(a﹣1)2 .

【分析】原式提取2,再利用完全平方公式分解即可.

【解答】解:原式=2(a2﹣2a+1)

=2(a﹣1)2.

故答案为:2(a﹣1)2.

【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.

20.(2015•西藏)分解因式:x3﹣6x2+9x= x(x﹣3)2 .

【分析】先提取公因式x,再对余下的多项式利用完全平方公式继续分解.

【解答】解:x3﹣6x2+9x,=x(x2﹣6x+9),=x(x﹣3)2.

故答案为:x(x﹣3)2.

【点评】本题考查提公因式法分解因式和利用完全平方公式分解因式,关键在于需要进行二次分解因式.

21.(2008•大庆)分解因式:ab2﹣2ab+a= a(b﹣1)2 .

【分析】先提取公因式a,再对余下的多项式利用完全平方公式继续分解.

【解答】解:ab2﹣2ab+a,=a(b2﹣2b+1),=a(b﹣1)2.

【点评】考查提公因式法分解因式和利用完全平方公式分解因式,难点在于提取公因式后利用完全平方公式进行二次因式分解.

22.(2013•安顺)分解因式:2a3﹣8a2+8a= 2a(a﹣2)2 .

【分析】先提取公因式2a,再对余下的多项式利用完全平方公式继续分解.

【解答】解:2a3﹣8a2+8a,=2a(a2﹣4a+4),=2a(a﹣2)2.

故答案为:2a(a﹣2)2.

【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.

23.(2013•菏泽)分解因式:3a2﹣12ab+12b2= 3(a﹣2b)2 .

【分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解即可求得答案.

【解答】解:3a2﹣12ab+12b2=3(a2﹣4ab+4b2)=3(a﹣2b)2.

故答案为:3(a﹣2b)2.

【点评】本题考查了用提公因式法和公式法进行因式分解的知识.一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,注意因式分解要彻底.

24.(2013•内江)若m2﹣n2=6,且m﹣n=2,则m+n= 3 .

【分析】将m2﹣n2按平方差公式展开,再将m﹣n的值整体代入,即可求出m+n的值.

【解答】解:m2﹣n2=(m+n)(m﹣n)=(m+n)×2=6,故m+n=3.

故答案为:3.

【点评】本题考查了平方差公式,比较简单,关键是要熟悉平方差公式(a+b)(a﹣b)=a2﹣b2.

25.(2014•西宁)如图,边长为a、b的矩形,它的周长为14,面积为10,则a2b+ab2的值为 70 .

【分析】应把所给式子进行因式分解,整理为与所给周长和面积相关的式子,代入求值即可.

【解答】解:∵a+b=7,ab=10,∴a2b+ab2=ab(a+b)=70.

故答案为:70.

【点评】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.

三.解答题(共15小题)

26.(2006•江西)计算:(x﹣y)2﹣(y+2x)(y﹣2x)

【分析】利用完全平方公式,平方差公式展开,再合并同类项.

【解答】解:(x﹣y)2﹣(y+2x)(y﹣2x),=x2﹣2xy+y2﹣(y2﹣4x2),=x2﹣2xy+y2﹣y2+4x2,=5x2﹣2xy.

【点评】本题考查完全平方公式,平方差公式,属于基础题,熟记公式是解题的关键,去括号时要注意符号的变化.

27.(2013春•苏州期末)若2x+5y﹣3=0,求4x•32y的值.

【分析】由方程可得2x+5y=3,再把所求的代数式化为同为2的底数的代数式,运用同底数幂的乘法的性质计算,最后运用整体代入法求解即可.

【解答】解:4x•32y=22x•25y=22x+5y

∵2x+5y﹣3=0,即2x+5y=3,∴原式=23=8.

【点评】本题考查了同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.

28.(2009•十堰)已知:a+b=3,ab=2,求下列各式的值:

(1)a2b+ab2

(2)a2+b2.

【分析】(1)把代数式提取公因式ab后把a+b=3,ab=2整体代入求解;

(2)利用完全平方公式把代数式化为已知的形式求解.

【解答】解:(1)a2b+ab2=ab(a+b)=2×3=6;

(2)∵(a+b)2=a2+2ab+b2

∴a2+b2=(a+b)2﹣2ab,=32﹣2×2,=5.

【点评】本题考查了提公因式法分解因式,完全平方公式,关键是将原式整理成已知条件的形式,即转化为两数和与两数积的形式,将a+b=3,ab=2整体代入解答.

29.(2015•张家港市模拟)若x+y=3,且(x+2)(y+2)=12.

(1)求xy的值;

(2)求x2+3xy+y2的值.

【分析】(1)先去括号,再整体代入即可求出答案;

(2)先变形,再整体代入,即可求出答案.

【解答】解:(1)∵x+y=3,(x+2)(y+2)=12,∴xy+2x+2y+4=12,∴xy+2(x+y)=8,∴xy+2×3=8,∴xy=2;

(2)∵x+y=3,xy=2,∴x2+3xy+y2

=(x+y)2+xy

=32+2

=11.

【点评】本题考查了整式的混合运算和完全平方公式的应用,题目是一道比较典型的题目,难度适中.

30.(2014秋•德惠市期末)先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2.

【分析】首先根据单项式与多项式相乘的法则去掉括号,然后合并同类项,最后代入已知的数值计算即可.

【解答】解:3a(2a2﹣4a+3)﹣2a2(3a+4)

=6a3﹣12a2+9a﹣6a3﹣8a2

=﹣20a2+9a,当a=﹣2时,原式=﹣20×4﹣9×2=﹣98.

【点评】本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.

31.(2007•天水)若a2﹣2a+1=0.求代数式的值.

【分析】根据完全平方公式先求出a的值,再代入求出代数式的值.

【解答】解:由a2﹣2a+1=0得(a﹣1)2=0,∴a=1;

把a=1代入=1+1=2.

故答案为:2.

【点评】本题考查了完全平方公式,灵活运用完全平方公式先求出a的值,是解决本题的关键.

32.(2012春•郯城县期末)分解因式:

(1)2x2﹣x;

(2)16x2﹣1;

(3)6xy2﹣9x2y﹣y3;

(4)4+12(x﹣y)+9(x﹣y)2.

【分析】(1)直接提取公因式x即可;

(2)利用平方差公式进行因式分解;

(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;

(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.

【解答】解:(1)2x2﹣x=x(2x﹣1);

(2)16x2﹣1=(4x+1)(4x﹣1);

(3)6xy2﹣9x2y﹣y3,=﹣y(9x2﹣6xy+y2),=﹣y(3x﹣y)2;

(4)4+12(x﹣y)+9(x﹣y)2,=[2+3(x﹣y)]2,=(3x﹣3y+2)2.

【点评】本题考查了提公因式法与公式法分解因式,是因式分解的常用方法,难点在(3),提取公因式﹣y后,需要继续利用完全平方公式进行二次因式分解.

33.(2011春•乐平市期中)(2a+b+1)(2a+b﹣1)

【分析】把(2a+b)看成整体,利用平方差公式和完全平方公式计算后整理

即可.

【解答】解:(2a+b+1)(2a+b﹣1),=(2a+b)2﹣1,=4a2+4ab+b2﹣1.

【点评】本题考查了平方差公式和完全平方公式的运用,构造成公式结构是利用公式的关键,需要熟练掌握并灵活运用.

34.(2009•贺州)分解因式:x3﹣2x2y+xy2.

【分析】先提取公因式x,再利用完全平方公式分解因式.完全平方公式:a2±2ab+b2=(a±b)2;

【解答】解:x3﹣2x2y+xy2,=x(x2﹣2xy+y2),=x(x﹣y)2.

【点评】主要考查提公因式法分解因式和利用完全平方公式分解因式,本题难点在于要进行二次分解.

35.(2011•雷州市校级一模)分解因式:

(1)a4﹣16;

(2)x2﹣2xy+y2﹣9.

【分析】(1)两次运用平方差公式分解因式;

(2)前三项一组,先用完全平方公式分解因式,再与第四项利用平方差公式进行分解.

【解答】解:(1)a4﹣16=(a2)2﹣42,=(a2﹣4)(a2+4),=(a2+4)(a+2)(a﹣2);

(2)x2﹣2xy+y2﹣9,=(x2﹣2xy+y2)﹣9,=(x﹣y)2﹣32,=(x﹣y﹣3)(x﹣y+3).

【点评】(1)关键在于需要两次运用平方差公式分解因式;

(2)主要考查分组分解法分解因式,分组的关键是两组之间可以继续分解因式.

36.(2008春•利川市期末)分解因式x2(x﹣y)+(y﹣x).

【分析】显然只需将y﹣x=﹣(x﹣y)变形后,即可提取公因式(x﹣y),然后再运用平方差公式继续分解因式.

【解答】解:x2(x﹣y)+(y﹣x),=x2(x﹣y)﹣(x﹣y),=(x﹣y)(x2﹣1),=(x﹣y)(x﹣1)(x+1).

【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.

37.(2009秋•三台县校级期末)分解因式

(1)a2(x﹣y)+16(y﹣x);

(2)(x2+y2)2﹣4x2y2.

【分析】(1)先提取公因式(x﹣y),再利用平方差公式继续分解;

(2)先利用平方差公式,再利用完全平方公式继续分解.

【解答】解:(1)a2(x﹣y)+16(y﹣x),=(x﹣y)(a2﹣16),=(x﹣y)(a+4)(a﹣4);

(2)(x2+y2)2﹣4x2y2,=(x2+2xy+y2)(x2﹣2xy+y2),=(x+y)2(x﹣y)2.

【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.

38.(2009春•扶沟县期中)因式分解

(1)﹣8ax2+16axy﹣8ay2;

(2)(a2+1)2﹣4a2.

【分析】(1)先提取公因式﹣8a,再用完全平方公式继续分解.

(2)先用平方差公式分解,再利用完全平方公式继续分解.

【解答】解:(1)﹣8ax2+16axy﹣8ay2,=﹣8a(x2﹣2xy+y2),=﹣8a(x﹣y)2;

(2)(a2+1)2﹣4a2,=(a2+1﹣2a)(a2+1+2a),=(a+1)2(a﹣1)2.

【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.

39.(2011秋•桐梓县期末)因式分解:

(1)3x﹣12x3

(2)6xy2+9x2y+y3.

【分析】(1)先提取公因式3x,再对余下的多项式利用平方差公式继续分解;

(2)先提取公因式y,再根据完全平方公式进行二次分解.完全平方公式:a2±2ab+b2=(a±b)2..

【解答】解:(1)3x﹣12x3

=3x(1﹣4x2)

=3x(1+2x)(1﹣2x);

(2)6xy2+9x2y+y3

=y(6xy+9x2+y2)

=y(3x+y)2.

【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.

40.(2003•黄石)若x2+2xy+y2﹣a(x+y)+25是完全平方式,求a的值.

【分析】先把前三项根据完全平方公式的逆用整理,再根据两平方项确定出这两个数,利用乘积二倍项列式求解即可.

【解答】解:原式=(x+y)2﹣a(x+y)+52,∵原式为完全平方式,∴﹣a(x+y)=±2×5•(x+y),解得a=±10.

【点评】本题考查了完全平方式,需要二次运用完全平方式,熟记公式结构是求解的关键,把(x+y)看成一个整体参与运算也比较重要.

初二整式的乘法与因式分解知识点总结
TOP