首页 > 精品范文库 > 1号文库
高数:总结求极限的常用方法5篇
编辑:独影花开 识别码:10-1119026 1号文库 发布时间: 2024-08-27 15:24:47 来源:网络

第一篇:高数:总结求极限的常用方法

总结求极限的常用方法,详细列举,至少4种

极限定义法 泰勒展开法。洛必达法则。

等价无穷小和等价无穷大。

极限的求法 1.直接代入法

适用于分子、分母的极限不同时为零或不同时为

例 1.求

极限分为 一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种)

2解决极限的方法如下 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用 但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。

(x趋近无穷的时候还原成无穷小)

2落笔他 法则

首先他的使用有严格的使用前提!!!

必须是 X趋近而不是N趋近!!!必须是 函数的导数要存在!!!!必须是 0比0 无穷大比无穷大!!!!!

当然还要注意分母不能为0 落笔他 法则分为3中情况0比0 无穷比无穷 时候 直接用 0乘以无穷 无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以 无穷大都写成了无穷小的倒数形式了。通项之后 这样就能变成1中的形式了0的0次方 1的无穷次方 无穷的0次方

对于(指数幂数)方程 方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0)

3泰勒公式(含有e的x次方的时候,尤其是含有正余旋 的加减的时候要 特变注意!!)

E的x展开 sina 展开 cos 展开 ln1+x展开

对题目简化有很好帮助

4面对无穷大比上无穷大形式的解决办法

取大头原则 最大项除分子分母!!!!!!

看上去复杂处理很简单!!!!!

5无穷小于有界函数的处理办法

面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。

面对非常复杂的函数 可能只需要知道它的范围结果就出来了!!

6夹逼定理(主要对付的是数列极限!)

这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。

7等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)

8各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)

可以使用待定系数法来拆分化简函数

9求左右求极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化 2 个重要极限的应用。这两个很重要!!!对第一个而言是X趋近0时候的sinx与x比值。地2个就如果x趋近无穷大 无穷小都有对有对应的形式

(地2个实际上是 用于 函数是1的无穷的形式)(当底数是1 的时候要特别注意可能是用地2 个重要极限)还有个方法,非常方便的方法

就是当趋近于无穷大时候

不同函数趋近于无穷的速度是不一样的!!!!!!!!

x的x次方 快于 x!快于 指数函数 快于 幂数函数 快于 对数函数(画图也能看出速率的快慢)!!!

当x趋近无穷的时候 他们的比值的极限一眼就能看出来了 换元法 是一种技巧,不会对模一道题目而言就只需要换元,但是换元会夹杂其中

13假如要算的话 四则运算法则也算一种方法,当然也是夹杂其中的

14还有对付数列极限的一种方法,就是当你面对题目实在是没有办法 走投无路的时候可以考虑 转化为定积分。一般是从0到1的形式。

15单调有界的性质

对付递推数列时候使用 证明单调性!!!

16直接使用求导数的定义来求极限,(一般都是x趋近于0时候,在分子上f(x加减麽个值)加减f(x)的形式。)

第二篇:经典求极限方法

求极限的各种方法

1.约去零因子求极限

x41例1:求极限lim x1x1

【说明】x1表明x与1无限接近,但x1,所以x1这一零因子可以约去。【解】lim(x1)(x1)(x21)

x1x1limx1(x1)(x21)6=4

2.分子分母同除求极限

例2:求极限limx3x2

x3x31 【说明】

型且分子分母都以多项式给出的极限,可通过分子分母同除来求。x3

【解】limx211

x1

x3x31limx3

x33

【注】(1)一般分子分母同除x的最高次方;

axnan10mn

(2)limnn1xa0

xbmm1mn

mxbm1xb0an

bmn

n

3.分子(母)有理化求极限

例3:求极限xlim(x23x21)

【说明】分子或分母有理化求极限,是通过有理化化去无理式。【解】lim(x22(x23x21)(x23x21)

x3x1)xlimx23x21 xlim2x23x210

例4:求极限limtanxsinx

x0x3 【解】limtanxsinxtanxsin

x0x3limxx0x3tanxsinx

lim

x0

tanxsinx1tanxsinx1

lim 33x0x024xxtanxsinx

lim

【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子是解...........题的关键

4.应用两个重要极限求极限

sinx11

1和lim(1)xlim(1)nlim(1x)xe,第两个重要极限是lim

x0xnx0xxn

一个重要极限过于简单且可通过等价无穷小来实现。主要考第二个重要极限。

x1

例5:求极限lim

xx1

【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑数部分。

x1122122x12【解】limlim1lim1x11e xx1xxx1x1

x

x

x,最后凑指X

1x2a

例6:(1)lim12;(2)已知lim8,求a。

xx

xxa5.用等价无穷小量代换求极限 【说明】

(1)常见等价无穷小有:

1x)~e1, 当x0 时,x~sinx~tanx~arcsinx~arctanx~ln(12b

x,1ax1~abx; 2

(2)等价无穷小量代换,只能代换极限式中的因式; ..

1cosx~

x

xx

(3)此方法在各种求极限的方法中应作为首选。.....

xln(1x)

x01cosxxln(1x)xx

【解】limlim2.x01cosxx02

x2

sinxx

例8:求极限lim

x0tan3x

例7:求极限lim

1xsinxxsinxxcosx11limlimlim【解】lim 322x0tan3xx0x0x06x3x3x

6.用罗必塔法则求极限

例9:求极限limlncos2xln(1sin2x)

x0x2

【说明】



或0

0型的极限,可通过罗必塔法则来求。2sin2x【解】limlncos2xln(1sin2x)sin2x

2x0x2limx02x

lim

sin2xx02x2cos2x1

1sin2x

3 【注】许多变动上显的积分表示的极限,常用罗必塔法则求解

x

例10:设函数f(x)连续,且f(0)0,求极限lim

0

(xt)f(t)dt

x0

xx.f(xt)dt

u【解】 由于

x

x

f(xt)dtx

t

x

f(u)(du)0

f(u)du,于是

x

x

x

lim

(xt)f(t)dt

lim

x0

f(t)dt0

tf(t)dt

x0

xxx

f(xt)dt

x0

x0f(u)du

x

xf(x)xf(x)

=lim

0

f(t)dtx

f(t)dt

x0

x

=lim)duxf(x)

x0

x

f(u0

f(u)duxf(x)

x

f(t)dt

=lim

f(0)x0

x

=

f(0)f(0)1

.f(u)du

xf(x)

7.用对数恒等式求limf(x)g(x)极限

2例11:极限limx

x0

[1ln(1x)]

x)]

【解】limx

x

ln[1ln(1x)]lim

2ln[1ln(10

x

x0

[1ln(1x)]=limx0

e

=e

xe

xlim

2ln(1x)

0

x

e2.【注】对于1型未定式limf(x)g(x)的极限,也可用公式

limf(x)g(x)(1)=elim(f(x)1)g(x)

因为

limf(x)g(x)elimg(x)ln(f(x))elimg(x)ln(1f(x)1)elim(f(x)1)g(x)

例12:求极限lim1

2cosxxx0x

31.

xln2cosx

2cosx

3

【解1】 原式lim

e

1lnx0

x3

lim3x0x1

limln(2cosx)ln3sinx)

x0x2limx02x112lim

x02cosxsinxx1

xlne

2cosx

2cosx

3

【解2】 原式lim

1ln

x0

x3

lim3x0x2

ln(1

cosx1)

lim

cosx0

x

2limx11x03x26 8.利用Taylor公式求极限

13求极限 limaxax例2

x0x

2,(a0).【解】axe

xlna

xlnax212

ln2

a(x2),a

x

1xlnax2ln2

a(x22);

axax2x2ln2a(x2).limaxax2x0x2limx2ln2a(x2)x0x

2ln2

a.例14求极限lim11x0x(x

cotx).【解】limx0

111sinxxcosx

(cotx)lim x0xxxxsinx

x3x23

x(x)x[1(x2)]lim 3x0x113

)x(x3)

lim3x0x3.(9.数列极限转化成函数极限求解

1

例15:极限limnsin

nn

【说明】这是1形式的的数列极限,由于数列极限不能使用罗必塔法则,若直接求有一定难度,若转化成函数极限,可通过7提供的方法结合罗必塔法则求解。

1

【解】考虑辅助极限limxsin

xx

x2

n2

lime

x

1

x2xsin1

x

lime

y0

11

siny12yy

e

1

所以,limnsin

nn

n2

e

10.n项和数列极限问题

n项和数列极限问题极限问题有两种处理方法(1)用定积分的定义把极限转化为定积分来计算;(2)利用两边夹法则求极限.111

例16:极限lim22nn222n2n2n1

 

【说明】用定积分的定义把极限转化为定积分计算,是把f(x)看成[0,1]定积分。

11

limfnnn2

fn1n

ff(x)dx 0n

1111

【解】原式=lim

222nn12n

11

nnn

 



121

dxln

2221x

 

111

例17:极限lim2nn22n2nn1

112n

【说明】(1)该题遇上一题类似,但是不能凑成limfffnnnnn的形式,因而用两边夹法则求解;

(2)两边夹法则需要放大不等式,常用的方法是都换成最大的或最小的。

111

【解】lim2nn22n2nn1

因为

 

nnn

n

1n1

1n2nn1



1nn

nn1

又lim

n

nn

lim

n

1

=1 

所以lim

111

2nn22n2nn1

12.单调有界数列的极限问题

例18:设数列xn满足0x1,xn1sinxn(n1,2,)

(Ⅰ)证明limxn存在,并求该极限;

n

xn1xn(Ⅱ)计算lim.n

xn

【分析】 一般利用单调增加有上界或单调减少有下界数列必有极限的准则来证明数列极限的存在.【详解】(Ⅰ)因为0x1,则0x2sinx11.可推得 0xn1sinxn1,n1,2,,则数列xn有界.于是

xn1sinxn

sinxx)1,(因当x0时,则有xn1xn,可见数列xn单

xnxn

n

调减少,故由单调减少有下界数列必有极限知极限limxn存在.imxn0.设limxnl,在xn1s得 lsinl,解得l0,即linxn两边令n,n

n

x

(Ⅱ)因 limn1

n

xn

2xn

sinxnxn2

,由(Ⅰ)知该极限为1型,limn

xn

11sinx1xx

sinxx2

1

limsinxx0x

xlime

x0

lime

x0

x

e(使用了罗必塔法则)

x

故 limn1

n

xn

xn

1sinxnxnlime6.n

xn

第三篇:高数极限

1.代入法, 分母极限不为零时使用.先考察分母的极限,分母极限是不为零的常数时即用此法.【例1】lim[x-->√3](x^2-3)/(x^4+x^2+1)lim[x-->√3](x^2-3)/(x^4+x^2+1)=(3-3)/(9+3+1)=0 【例2】lim[x-->0](lg(1+x)+e^x)/arccosx lim[x-->0](lg(1+x)+e^x)/arccosx =(lg1+e^0)/arccos0 =(0+1)/1 =1 2.倒数法,分母极限为零,分子极限为不等于零的常数时使用.【例3】 lim[x-->1]x/(1-x)∵lim[x-->1](1-x)/x=0 ∴lim[x-->1] x/(1-x)= ∞ 以后凡遇分母极限为零,分子极限为不等于零的常数时,可直接将其极限写作∞.3.消去零因子(分解因式)法,分母极限为零,分子极限也为零,且可分解因式时使用.【例4】 lim[x-->1](x^2-2x+1)/(x^3-x)lim[x-->1](x^2-2x+1)/(x^3-x)=lim[x-->1](x-1)^2/[x(x^2-1)=lim[x-->1](x-1)/x =0 【例5】lim[x-->-2](x^3+3x^2+2x)/(x^2-x-6)lim[x-->-2](x^3+3x^2+2x)/(x^2-x-6)= lim[x-->-2]x(x+1)(x+2)/[(x+2)(x-3)] = lim[x-->-2]x(x+1)/(x-3)=-2/5 【例6】lim[x-->1](x^2-6x+8)/(x^2-5x+4)lim[x-->1](x^2-6x+8)/(x^2-5x+4)= lim[x-->1](x-2)(x-4)/[(x-1)(x-4)] = lim[x-->1](x-2)/[(x-1)=∞

【例7】lim[h-->0][(x+k)^3-x^3]/h lim[h-->0][(x+h)^3-x^3]/h = lim[h-->0][(x+h)–x][(x+h)^2+x(x+h)+h^2]/h = lim[h-->0] [(x+h)^2+x(x+h)+h^2] =2x^2 这实际上是为将来的求导数做准备.4.消去零因子(有理化)法,分母极限为零,分子极限也为零,不可分解,但可有理化时使用.可利用平方差、立方差、立方和进行有理化.【例8】lim[x-->0][√1+x^2]-1]/x lim[x-->0][√1+x^2]-1]/x = lim[x-->0][√1+x^2]-1] [√1+x^2]+1]/{x[√1+x^2]+1]} = lim[x-->0][ 1+x^2-1] /{x[√1+x^2]+1]} = lim[x-->0] x / [√1+x^2]+1] =0 【例9】lim[x-->-8][√(1-x)-3]/(2+x^(1/3))lim[x-->-8][√(1-x)-3]/(2+x^(1/3))=lim[x-->-8][√(1-x)-3] [√(1-x)+3] [4-2x^(1/3)+x^(2/3)] ÷{(2+x^(1/3))[4-2x^(1/3)+x^(2/3)] [√(1-x)+3]} =lim[x-->-8](-x-8)[4-2x^(1/3)+x^(2/3)]/{(x+8)[√(1-x)+3]} =lim[x-->-8] [4-2x^(1/3)+x^(2/3)]/[√(1-x)+3] =-2 5.零因子替换法.利用第一个重要极限:lim[x-->0]sinx/x=1,分母极限为零,分子极限也为零,不可分解,不可有理化,但出现或可化为sinx/x时使用.常配合利用三角函数公式.【例10】lim[x-->0]sinax/sinbx lim[x-->0]sinax/sinbx = lim[x-->0]sinax/(ax)*lim[x-->0]bx/sinbx*lim[x-->0]ax/(bx)=1*1*a/b=a/b 【例11】lim[x-->0]sinax/tanbx lim[x-->0]sinax/tanbx = lim[x-->0]sinax/ sinbx*lim[x-->0]cosbx =a/b 6.无穷转换法,分母、分子出现无穷大时使用,常常借用无穷大和无穷小的性质.【例12】lim[x-->∞]sinx/x ∵x-->∞ ∴1/x是无穷小量 ∵|sinx|∞]sinx/x=0 【例13】lim[x-->∞](x^2-1)/(2x^2-x-1)lim[x-->∞](x^2-1)/(2x^2-x-1)= lim[x-->∞](1-1/x^2)/(2-1/x-1/ x^2)=1/2 【例14】lim[n-->∞](1+2+……+n)/(2n^2-n-1)lim[n-->∞](1+2+……+n)/(2n^2-n-1)=lim[n-->∞][n(n+1)/2]/(2n^2-n-1)=lim[n-->∞][(1+1/n)/2]/(2-1/n-1/n^2)=1/4 【例15】lim[x-->∞](2x-3)^20(3x+2)^30/(5x+1)^50 lim[x-->∞](2x-3)^20(3x+2)^30/(5x+1)^50 = lim[x-->∞][(2x-3)/(5x+1)]^20[(3x+2)/(5x+1)]^30 = lim[x-->∞][(2-3/x)/(5+1/ x)]^20[(3+2/ x)/(5+1/ x)]^30 =(2/5)^20(3/5)^30=2^20*3^30/5^50

第四篇:高数_极限

求函

摘要: 本文就关于求函数极限的方法和技巧作了一个比较全面的概括、综合。

关键词:函数极限

引言

在数学分析与微积分学中,极限的概念占有主要的地位并以各种形式出现而贯穿全部内容,因此掌握好极限的求解方法是学习数学分析和微积分的关键一环。本文就关于求函数极限的方法和技巧作一个比较全面的概括、综合,力图在方法的正确灵活运用方面,对读者有所助益。

主要内容

一、求函数极限的方法

1、运用极限的定义 例: 用极限定义证明: limx3x2x22x21

证: 由 x23x2x21x24x4x2

x22x2x2

0 取 则当0x2 时,就有

x23x2x21

由函数极限定义有: 2limx3x2x2x21

2、利用极限的四则运算性质

若 limf(x)A limg(x)B

xx0xx0(I)limf(x)g(x) limf(x)xxlimg(x)AB

0xx0xx0(II)limf(x)g(x)limf(x)limg(x)AB

xx0xx0xx0(III)若 B≠0 则:

limlimf(x)xf(x)0Axxg(x)x0limxxg(x)B

0IV)limcf(x)climf(x)cA(c为常数)

xx0xx0上述性质对于x,x,x时也同样成立

例:求 limx3x5x422 2x2解: limx3x523255x2x4=

242

3、约去零因式(此法适用于xx0时,00型例: 求32limxx16x20x37x216x12

x2解:原式=limx33x210x(2x26x20)x2x35x26x(2x210x12)

lim(x2)(x23x10)(x2)(x x225x6)=(x2lim3x10)5)(x2)x2(x25x6)=

xlim(x2(x2)(x3)=x5x37

xlim

24、通分法(适用于型)例: 求 lim(41x24x22x)

解: 原式=lim4(2x)(2x)(2x)

x2=lim(2x)(2x)(2x)

x23

=

=lim12xx214

5、利用无穷小量性质法(特别是利用无穷小量与有界量之乘积仍为无穷小量的性质)

设函数f(x)、g(x)满足:(I)limf(x)0

xx0(II)g(x)M(M为正整数)则:limg(x)f(x)0

xx0例: 求 limxsin1x

x0 解: 由 lim0 而 sin1x1

x0x故 原式 =limxsin1x0x0

6、利用无穷小量与无穷大量的关系。

(I)若:limf(x) 则 lim1f(x)0

(II)若: limf(x)0

f(x)≠0 lim1f(x)

例: 求下列极限 ① lim1lim1xx5 ②x1x1

则4

解: 由 lim(x5) 故 limx1x5x0

由 lim(x1)0

x1lim1x1x1=

7、等价无穷小代换法

设,',,' 都是同一极限过程中的无穷小量,且有:

'' 则 lim~,~,lim'' 存在,= lim'' 也存在,且有lim1cosxxsinx222

例:求极限lim 解: sinx22x0

2~x, 1cosx~(x)222

(x) lim221cosxxsinx222x0=

12222xx

注: 在利用等价无穷小做代换时,一般只在以乘积形式出现时可以互换,若以和、差出现时,不要轻易代换,因为此时经过代换后,往往改变了它的无穷小量之比的“阶数”

8、利用两个重要的极限。

(A)limsinx1(B)lim(11x0xx)xex

但我们经常使用的是它们的变形:

(A')limsin(x)(x)1,((x)0)

(B')lim(11x))(x)(e,((x))例:求下列函数极限

x(1)、lima1(2)、limlncosaxx0xlncosbx

x0x1u,则 xln(1u)ax 解:(1)令a1alna 于是xulnln(1u)又当x0时,u0x故有:lima1lnax0xlimulnau0ln(1u)limlnau0ln(1u)limu01lnauln(1u)u(2)、原式limln[(1(cosax1)]ln[1(cosbx1)]

x0limln[(1(cosax1)]cosbxx0cosax11cosax1 ln[1(cosbx1)]cosbx1limcosbx1x0cosax1

2sin2sinlimx02a2x)2x(bx)222b2xlimxx0(a222sin2sin(b222ba2ax(x)222b

x)

9、利用函数的连续性(适用于求函数在连续点处的极限)。

(i)若f(x)在xx0处连续,则(ii)若f[(x)]是复合函数,又f(u)在ua处连续,则xx0xx0limf(x)f(x0)xx0lim(x)a且xx0

limf((x))f[lim(x)]f(a)例:求下列函数的极限

(1)、limecosx51xln(1x)2xx0

(2)

f(x)ecosx5xln1(x)limx0x

解:由于x0属于初等函数故由函数的连续性定义limecosx51xln(1x)ln(1x)x12x1xln(1x)2的定义域之内。有:f(0)61x0

(2)、由ln(1x)x令x(1x)x故有:limln(1x)x11x0limln(1x)xln(lim(1x)x)lne1x0x010、变量替换法(适用于分子、分母的根指数不相同 的极限类型)特别地有:

llimxkn1x1mlnk m、n、k、l 为正整数。

xm1例:求下列函数极限 ① lim11nmxxx1(m、n N)②lim(2x3)

x1x2x1 解: ①令 t=原式=limt1mnx 则当x1 时 t1,于是

mn1t1tlim(1t)(1ttt(1t)(1ttt22x12)x12m1n1))t12mn

②由于lim(2x3)=lim(1x1x2x1x

令:2x11 则 x111

2ttlim(x2x32x1)x1=lim(1x22x11t)x1=lim(1t)t0111t2

=lim(1t)t0lim(1t)2e1e

t0

11、利用函数极限的存在性定理

定理: 设在x的某空心邻域内恒有 g(x)≤f(x)≤0h(x)且有: limxx0g(x)limh(x)A

xx0 则极限 lim

xx0f(x)

存在, 且有

xx0limf(x)A

xanx例: 求 limx(a>1,n>0)解: 当 x≥1 时,存在唯一的正整数k,使 k ≤x≤k+1 于是当 n>0 时有:

xanx(k1)akakn

kank及

xanxnk11a

又 当x时,k 有 lim(k1)akaknklim(k1)akankk1nka0a0

及 lim nkk1 lim=0 k1a01a0

xlimxanx

12、用左右极限与极限关系(适用于分段函数求分段点处的极限,以及用定义求极限等情形)。定理:函数极限lim左极限lim xx0xx0f(x)存在且等于A的充分必要条件是

A。即有: f(x)及右极限limf(x)都存在且都等于

xx0

limf(x)Alimx)=A xxxxf(x)=limf(00xx012ex,x0例:设f(x)=xx,0x1 求limf(x)及limf(x)xx0x1x2,x1解:limxf(x)lim(12e)1x0x0limx)limxx)limx1)1x0f(x0(xx0(由limx)limx)1x0f(x0f(limf(x)1

x0又limxxf(x)limlim(x1)0x1x1xx1 lim(x)lim21x1fxx1

由f(10)f(10)lim1f(x)不存在x13、罗比塔法则(适用于未定式极限)定理:若

(i)limxxf(x)0,limg(x)00xx0(ii)f与g在xu0(x'0的某空心邻域0)内可导,且g(x)0(iii)limf'(x)xxg'(x)A(A可为实数,也可为或),则

0limf(x)limf'(x)xx0g(x)xxg'(x)A0此定理是对00型而言,对于函数极限的其它类型,均有类似的法则。

注:运用罗比塔法则求极限应注意以下几点:

1、要注意条件,也就是说,在没有化为0,时不可

0求导。

2、应用罗比塔法则,要分别的求分子、分母的导数,而不是求整个分式的导数。

3、要及时化简极限符号后面的分式,在化简以后检查是否仍是未定式,若遇到不是未定式,应立即停止使用罗比塔法则,否则会引起错误。

4、当limf(x)g(x)''xa 不存在时,本法则失效,但并不是说极限不存在,此时求极限须用另外方法。

例: 求下列函数的极限 ①lime(12x)ln(1x)2x12x0 ②lime(12x)12x12lnxxax(a0,x0)

解:①令f(x)=

f(x)e(12x)'x, g(x)= ln(1x)

2, g“'(x)2x1x2

2f(x)e(12x)”x32,g(x)2(1x)(1x)'22

由于但f “f(0)f(0)0,g(0)g(0)0”'

(0)2,g(0)2

从而运用罗比塔法则两次后得到

lime(12x)ln(1x)2x12x0lime(12x)2x1x2x12x0lime(12x)2(1x)(1x)222x32x0221

② 由lim法则有: xlnx,limxxa 故此例属于型,由罗比塔1xlimlnxxalimxaxa1xlim1axax0(a0,x0)

14、利用泰勒公式

对于求某些不定式的极限来说,应用泰勒公式比使用罗比塔法则更为方便,下列为常用的展开式:

1、ex1xx22!x3xnn!o(x)

n2、sinxx3!x2x55!x4(1)n1x2n1(2n1)!no(x2n)

3、cosx12!4!2(1)x2n(2n)!o(x2n1)

4、ln(1x)x

5、(1x)

6、11xx2(1)n1xnno(x)n

n!xo(x)nn1x2(1)2!xnn2(1)(n1)

 1xxxo(x)n

上述展开式中的符号o(x)都有:

nlimo(x)x0xn0

例:求lima2xaxx(a0)

x0解:利用泰勒公式,当x0 有

1x1x2o(x)

于是 lima2xax0x

x=a(12xlima1xa)0x

xa1(2x)o(x)11x=1lim2a2ao(x)0x

x(x)=ax(x)1lim2aoxlim2axox0x1

x02a

15、利用拉格朗日中值定理 定理:若函数f满足如下条件:(I)f 在闭区间上连续(II)f 在(a ,b)内可导 则在(a ,b)内至少存在一点,使得f'()f(b)f(a)ba

此式变形可为: f(b)f(a)baf(a(ba))(01)'

例: 求 limxeexsinxx0xsinx

解:令f(x)e 对它应用中值定理得

eexsinxf(x)f(sinx)(xsinx)f(sinx(xsinx))(01)''即: eexsinxxsinx'f(sinx(xsinx))(01)

f(x)e'x连续

'limf(sinx(xsinx))f(0)1

x0从而有: limeexsinxx0xsinx1

16、求代数函数的极限方法(1)有理式的情况,即若: R(x)P(x)Q(x)a0xmna1xm1n1ambnb0xb1x(a00,b00)

(I)当x时,有

mnm1n1limP(x)Q(x)xlima0xa1xambnxb0xb1xa0 mnb00 mn mn

(II)当x0 时有:

①若Q(x②若Q(x③若Q(x0)0 则 lim0P(x)Q(x)x0P(x0)Q(x0)

P(x)Q(x))0 而 P(x0)0 则lim0

x0)0,P(x0)0,则分别考虑若x0)P1(x)s为P(x)0的s重根,即:P(x)(xx0 也为Q(x)0的r重根,即: Q(x)(xx0)Q1(x)r 可得结论如下:

0 , srsr(xx0)P1(x)P1(x0)P(x)limlim , sr xx0Q(x)xx0Q1(x)Q1(x0) ,sr例:求下列函数的极限

①lim(2x3)20(3x2)5030x(2x1)②limx3x2x4x343x1

解: ①分子,分母的最高次方相同,故

lim(2x3)20(3x2)5030x(2x1)3=

220350302330()2

②P(x)x43x2,P(1)0

Q(x)x4x3,Q(1)0

P(x),Q(x)必含有(x-1)之因子,即有1的重根 故有: limx3x2x4x343x1lim(x1)(x2)(x1)(x2x3)222x1limx2x2x32x112

(2)无理式的情况。虽然无理式情况不同于有理式,但求极限方法完全类同,这里就不再一一详述.在这里我主要举例说明有理化的方法求极限。

例:求lim解: limxx(xxxxx)

(xxxxx)

limxxxxxxxx1x1x3xxlim

xxxx1limx11211x

二、多种方法的综合运用

上述介绍了求解极限的基本方法,然而,每一道题目并非只有一种方法。因此我们在解题中要注意各种方法的综合运用的技巧,使得计算大为简化。例:求 lim1cosxxsinx222x0

[解法一]: lim1cosxxsinx222x0

lim2xsinx2222x02xxcosx2xsinxsinx2

limsinx2222x0xcosxsinx

limx22x0cosxsinxx22=1

2注:此法采用罗比塔法则配合使用两个重要极限法。

[解法二]: lim1cosxxsinx222x0=lim2sin2x2x02lim22x0xsinxsinxx2221sinxx22sin2x22122x2

2注:此解法利用“三角和差化积法”配合使用两个重要

极限法。

[解法三]: lim1cosxxsinx222x0lim1cosxxx222x0lim2xsinx4x32x02xsinxlim2x04xx212

注:此解法利用了两个重要极限法配合使用无穷小代换

法以及罗比塔法则

[解法四]:

(x)lim1cosxxsinx222x022lim1cosxx42x0x22sinxlimx024xx22sinx12

注:此解法利用了无穷小代换法配合使用两个重要极限的方法。

[解法五]: 1cosxxsinx2222sinlimx02x2limx02lim2lim242222x0x(x)x0xsinxx2(x2)21x412

注:此解法利用“三角和差化积法”配合使用无穷小代换法。

[解法六]: 令ux 2lim1cosxxsinx222x0limcosu1cosuusinuu0lim12sinusinuucosuu0

limu0cosucosuusinu注:此解法利用变量代换法配合使用罗比塔法则。

[解法七]: lim1cosxxsinx222x0limsinx2222x0xcosxsinxlim11x22x012

tgx注:此解法利用了罗比塔法则配合使用两个重要极限。

(作者: 黄文羊)

第五篇:高数极限

极限分为 一般极限(发散的),还有个数列极限(前者的一种),解决极限的方法如下 1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用 但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。全部熟记(x趋近无穷的时候还原成无穷小)

2洛必达 法则(大题目有时候会有暗示 要你使用这个方法)

首先他的使用有严格的使用前提!必须是 X趋近而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点 数列极限的n当然是趋近于正无穷的 不可能是负无穷!)必须是 函数的导数要存在!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!)必须是 0比0 无穷大比无穷大!;当然还要注意分母不能为0

洛必达 法则分为3种情况

(1)0比0 无穷比无穷 时候 直接用 ;(2)0乘以无穷 无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以 无穷大都写成了无穷小的倒数形式了。通项之后 这样就能变成1中的形式了;(3)0的0次方 1的无穷次方 无穷的0次方

对于(指数幂数)方程 方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0)3泰勒公式(含有e的x次方的时候,尤其是含有正余旋 的加减的时候要 特变注意!)E的x展开 sina 展开 cos 展开 ln1+x展开(对题目简化有很好帮助)

4面对无穷大比上无穷大形式的解决办法取大头原则 最大项除分子分母!5无穷小于有界函数的处理办法

面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。(面对非常复杂的函数 可能只需要知道它的范围结果就出来了!)

6夹逼定理(主要对付的是数列极限!)

这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。

7等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)

8各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)

可以使用待定系数法来拆分化简函数

9求左右求极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化 10 2 个重要极限的应用。这两个很重要!对第一个而言是X趋近0时候的sinx与x比值。地2个就如果x趋近无穷大 无穷小都有对有对应的形式(地2个实际上是 用于 函数是1的无穷的形式)(当底数是1 的时候要特别注意可能是用地2 个重要极限)当趋近于无穷大时候,不同函数趋近于无穷的速度是不一样的!

x的x次方 快于 x!快于 指数函数 快于 幂数函数 快于 对数函数(画图也能看出速率的快慢)当x趋近无穷的时候 他们的比值的极限一眼就能看出来了换元法 是一种技巧,不会对模一道题目而言就只需要换元,但是换元会夹杂其中13假如要算的话 四则运算法则也算一种方法,当然也是夹杂其中的14当你面对题目实在是没有办法 走投无路的时候可以考虑 转化为定积分。一般是从0到1的形式。

15单调有界的性质对付递推数列时候使用 证明单调性!

16直接使用求导数的定义来求极限,一般都是x趋近于0时候,在分子上f(x加减麽个值)加减f(x)的形式,看见了有特别注意

(当题目中告诉你F(0)=0时候 f(0)导数=0的时候 就是暗示你一定要用导数定义!!)

高数:总结求极限的常用方法5篇
TOP