八年级数学下册
等腰三角形
课时训练
一、选择题
1.以下列各组数据为边长,可以构成等腰三角形的是()
A.1,1,2
B.1,1,3
C.2,2,1
D.2,2,5
2.如图,在Rt△ABC中,∠BCA=90°,∠A=30°,CD⊥AB,垂足为D,则AD与BD的长度之比为()
A.2∶1
B.3∶1
C.4∶1
D.5∶1
3.如图,在等腰三角形中,若∠1=110°,则∠2的度数为()
A.35°
B.70°
C.110°
D.35°或55°
4.如图,已知直线l垂直平分线段AB,P是l上一点,已知PA=1,则PB()
A.等于1
B.小于1
C.大于1
D.最小为1
5.如图,在△ABC中,∠C=90°,∠B=30°,AC=3,P是BC边上的动点,则AP的长可能是()
A.2
B.5.2
C.7.8
D.8
6.具备下列条件的三角形为等腰三角形的是()
A.有两个角分别为20°,120°
B.有两个角分别为40°,80°
C.有两个角分别为30°,60°
D.有两个角分别为50°,80°
7.如图,在△ABC中,AB=AC,AD,CE分别是△ABC的中线和角平分线.若∠CAD=20°,则∠ACE的度数是()
A.20°
B.35°
C.40°
D.70°
8.如图,AC=AD,BC=BD,则有()
A.CD垂直平分AB
B.AB垂直平分CD
C.AB与CD互相垂直平分
D.CD平分∠ACB
9.下列条件不能得到等边三角形的是()
A.有两个内角是60°的三角形
B.有一个角是60°的等腰三角形
C.腰和底相等的等腰三角形
D.有两个角相等的等腰三角形
10.如图,在△ABC中,∠BAC=72°,∠C=36°,∠BAC的平分线AD交BC于点D,则图中有等腰三角形()
A.0个
B.1个
C.2个
D.3个
二、填空题
11.如图,等腰三角形ABC中,AB=AC=12,∠A=30°,则△ABC的面积等于________.
12.等腰三角形的两边长分别为6
cm,13
cm,其周长为________
cm.13.如图,在△ABC中,AB=AC,E为BC的中点,BD⊥AC,垂足为D.若∠EAD=20°,则∠ABD=________°.14.如图所示,OP平分∠AOB,∠AOP=15°,PC∥OA,PD⊥OA于点D,PC=4,则PD=________.15.如图所示,在△ABC中,DE是AC的垂直平分线,AE=5
cm,△ABD的周长为18
cm,则△ABC的周长为.三、解答题
16.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.求证:DF=2DC.17.如图,已知Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∠BAC的平分线分别交BC,CD于点E,F.求证:△CEF是等腰三角形.
18.如图,上午8时,一条船从海岛A出发,以15海里/时的速度向正北方向航行,上午10时到达海岛B处,从A,B望灯塔C,测得∠NAC=30°,∠NBC=60°.(1)求海岛B到灯塔C的距离;
(2)这条船继续向正北方向航行,在什么时间小船与灯塔C的距离最短?
19.已知:如图所示,锐角三角形ABC的两条高BD,CE相交于点O,且OB=OC.(1)求证:△ABC是等腰三角形;
(2)判断点O是否在∠BAC的平分线上,并说明理由.20.如图①,在△ABC中,AB=AC,P为底边BC上一点,PE⊥AB,PF⊥AC,CH⊥AB,垂足分别为E,F,H.易证PE+PF=CH.证明过程如下:
连接AP.∵PE⊥AB,PF⊥AC,CH⊥AB,∴S△ABP=AB·PE,S△ACP=AC·PF,S△ABC=AB·CH.又∵S△ABP+S△ACP=S△ABC,∴AB·PE+AC·PF=AB·CH.∵AB=AC,∴PE+PF=CH.如图②,若P为BC延长线上的点,其他条件不变,PE,PF,CH之间又有怎样的数量关系?请写出你的猜想,并加以证明.
八年级数学下册
等腰三角形
课时训练-答案
一、选择题
1.【答案】C
2.【答案】B [解析]
∵在Rt△ABC中,∠BCA=90°,∠A=30°,CD⊥AB,∴2BD=BC,2BC=AB.∴AB=4BD.∴AD∶BD=3∶1.3.【答案】A
4.【答案】A
5.【答案】B [解析]
根据垂线段最短,可知AP的长不能小于3.∵在△ABC中,∠C=90°,∠B=30°,AC=3,∴AB=6.∴AP的长不能大于6.6.【答案】D
7.【答案】B
8.【答案】B
9.【答案】D [解析]
有两个内角是60°的三角形,有一个角是60°的等腰三角形,腰和底相等的等腰三角形均可以得到等边三角形,而有两个角相等的等腰三角形不能得到等边三角形.
10.【答案】D [解析]
∵∠BAC=72°,∠C=36°,∴∠ABC=72°.∴∠BAC=∠ABC.∴CA=CB.∴△ABC是等腰三角形.
∵∠BAC的平分线AD交BC于点D,∴∠DAB=∠CAD=36°.∴∠CAD=∠C.∴CD=AD,∴△ACD是等腰三角形.
∵∠ADB=∠CAD+∠C=72°,∴∠ADB=∠B.∴AD=AB.∴△ADB是等腰三角形.
二、填空题
11.【答案】36 [解析]
过点B作BD⊥AC于点D.∵∠A=30°,AB=12,∴在Rt△ABD中,BD=AB=×12=6.∴S△ABC=AC·BD=×12×6=36.12.【答案】32 [解析]
由题意知,应分两种情况:
(1)当腰长为6
cm时,三角形的三边长为6
cm,6
cm,13
cm,6+6<13,不能构成三角形;
(2)当腰长为13
cm时,三角形的三边长为6
cm,13
cm,13
cm,能构成三角形,周长=2×13+6=32(cm).
13.【答案】50 [解析]
∵AB=AC,E为BC的中点,∴∠BAE=∠EAD=20°.∴∠BAD=40°,又∵BD⊥AC,∴∠ABD=90°-∠BAD=90°-40°=50°.14.【答案】2 [解析]
过点P作PE⊥OB于点E.∵∠AOP=∠BOP,PD⊥OA,PE⊥OB,∴PE=PD.∵∠BOP=∠AOP=15°,∴∠AOB=30°.∵PC∥OA,∴∠BCP=∠AOB=30°.∴在Rt△PCE中,PE=PC=×4=2.∴PD=PE=2.故答案是2.15.【答案】
cm
三、解答题
16.【答案】
证明:∵△ABC是等边三角形,∴∠A=∠B=∠ACB=60°.∵DE∥AB,∴∠EDC=∠B=60°,∠DEC=∠A=60°.∵EF⊥DE,∴∠DEF=90°.∴∠F=90°-∠EDC=30°.∵∠ACB=∠EDC=∠DEC=60°,∴△EDC是等边三角形.∴DE=DC.∵∠DEF=90°,∠F=30°,∴DF=2DE=2DC.17.【答案】
证明:∵∠ACB=90°,∴∠B+∠BAC=90°.∵CD⊥AB,∴∠CAD+∠ACD=90°.∴∠ACD=∠B.∵AE是∠BAC的平分线,∴∠CAE=∠EAB.∵∠EAB+∠B=∠CEF,∠CAE+∠ACD=∠CFE,∴∠CFE=∠CEF.∴CF=CE.∴△CEF是等腰三角形.
18.【答案】
解:(1)∵∠NBC=60°,∠NAC=30°,∴∠ACB=30°.∴AB=BC.∵AB=15×2=30(海里),∴BC=30
海里,即从海岛B到灯塔C的距离为30海里.
(2)过点C作CP⊥AB于点P,则线段CP的长为小船与灯塔C的最短距离.
∵∠NBC=60°,∠BPC=90°,∴∠PCB=90°-60°=30°.∴PB=BC=15海里.
∵15÷15=1(时),∴这条船继续向正北方向航行,在上午11时小船与灯塔C的距离最短.
19.【答案】
解:(1)证明:∵OB=OC,∴∠OBC=∠OCB.∵锐角三角形ABC的两条高BD,CE相交于点O,∴∠BEC=∠CDB=90°.∵∠BEC+∠BCE+∠ABC=∠CDB+∠DBC+∠ACB=180°,∴180°-∠BEC-∠BCE=180°-∠CDB-∠DBC,∴∠ABC=∠ACB,∴AB=AC,∴△ABC是等腰三角形.(2)点O在∠BAC的平分线上.理由:连接AO并延长交BC于点F.在△AOB和△AOC中,∴△AOB≌△AOC(SSS),∴∠BAF=∠CAF,∴点O在∠BAC的平分线上.20.【答案】
解:PE=PF+CH.证明如下:
连接AP.∵PE⊥AB,PF⊥AC,CH⊥AB,∴S△ABP=AB·PE,S△ACP=AC·PF,S△ABC=AB·CH.∵S△ABP=S△ACP+S△ABC,∴AB·PE=AC·PF+AB·CH.∵AB=AC,∴PE=PF+CH.