首页 > 精品范文库 > 13号文库
新观察八年级数学全等三角形第四节答案
编辑:静水流深 识别码:22-571912 13号文库 发布时间: 2023-07-11 15:56:02 来源:网络

第一篇:新观察八年级数学全等三角形第四节答案

第四节 三角形全等判定

(三)ASA和AAs 主观题答案

基础训练

1全等

2∠B=∠C2对CACC

能力训练DC

第二篇:八年级数学全等三角形复习题及答案经典文件(定稿)

第十一章全等三角形综合复习

切记:“有三个角对应相等”和“有两边及其中一边的对角对应相等”的两个三角形不一定全等。

例1.如图,A,F,E,B四点共线,ACCE,BDDF,AEBF,ACBD。求证:ACFBDE。

例2.如图,在ABC中,BE是∠ABC的平分线,ADBE,垂足为D。求证:21C。

例3.如图,在ABC中,ABBC,ABC90。F为AB延长线上一点,点E在BC上,BEBF,连接AE,EF和CF。求证:AECF。

例4.如图,AB//CD,AD//BC,求证:ABCD。

例5.如图,AP,CP分别是ABC外角MAC和NCA的平分线,它们交于点P。求证:BP为MBN的平分线。

例6.如图,D是ABC的边BC上的点,且CDAB,ADBBAD,AE是ABD的中线。求证:AC2AE。

例7.如图,在ABC中,ABAC,12,P为AD上任意一点。求证:ABACPBPC。

同步练习

一、选择题:

1.能使两个直角三角形全等的条件是()

A.两直角边对应相等

C.两锐角对应相等

B.一锐角对应相等 D.斜边相等

B.AB4,BC3,A30 D.C90,AB6

2.根据下列条件,能画出唯一ABC的是()A.AB3,BC4,CA8

C.C60,B45,AB4

3.如图,已知12,ACAD,增加下列条件:①ABAE;②BCED;③CD;④BE。其中能使ABCAED的条件有()A.4个

B.3个

C.2个

D.1个

4.如图,12,CD,AC,BD交于E点,下列不正确的是()A.DAECBE

B.CEDE

D.EAB是等腰三角形 C.DEA不全等于CBE

5.如图,已知ABCD,BCAD,B23,则D等于()A.67 

C.23

B.46

D.无法确定

二、填空题:

6.如图,在ABC中,C90,ABC的平分线BD交AC于点D,且CD:AD2:3,AC10cm,则点D到AB的距离等于__________cm;

7.如图,已知ABDC,ADBC,E,F是BD上的两点,且BEDF,若

AEB100,ADB30,则BCF____________;

8.将一张正方形纸片按如图的方式折叠,BC,BD为折痕,则CBD的大小为_________;

9.如图,在等腰RtABC中,C90,ACBC,AD平分BAC交BC于D,

DEAB于E,若AB10,则BDE的周长等于____________;

10.如图,点D,E,F,B在同一条直线上,AB//CD,AE//CF,且AECF,若BD10,BF2,则EF___________;

三、解答题:

ABC为等边三角形,11.如图,点M,N分别在BC,AC上,且BMCN,AM与BN交于Q点。求AQN的度数。

12.如图,ACB90,ACBC,D为AB上一点,AECD,BFCD,交CD延长线于F点。求证:BFCE。

答案

例1.思路分析:从结论ACFBDE入手,全等条件只有ACBD;由AEBF两边同时减去EF得到AFBE,又得到一个全等条件。还缺少一个全等条件,可以是CFDE,也可以是AB。

由条件ACCE,BDDF可得ACEBDF90,再加上AEBF,ACBD,可以证明ACEBDF,从而得到AB。

解答过程:ACCE,BDDF

ACEBDF90 在RtACE与RtBDF中 AEBF

ACBD∴RtACERtBDF(HL)AB AEBF

AEEFBFEF,即AFBE 在ACF与BDE中 AFBEAB ACBDACFBDE(SAS)解题后的思考:本题的分析方法实际上是“两头凑”的思想方法:一方面从问题或结论入手,看还需要什么条件;另一方面从条件入手,看可以得出什么结论。再对比“所需条件”和“得出结论”之间是否吻合或具有明显的联系,从而得出解题思路。

小结:本题不仅告诉我们如何去寻找全等三角形及其全等条件,而且告诉我们如何去分析一个题目,得出解题思路。

例2.思路分析:直接证明21C比较困难,我们可以间接证明,即找到,证明2且1C。也可以看成将2“转移”到。

那么在哪里呢?角的对称性提示我们将AD延长交BC于F,则构造了△FBD,可以通过证明三角形全等来证明∠2=∠DFB,可以由三角形外角定理得∠DFB=∠1+∠C。

解答过程:延长AD交BC于F 在ABD与FBD中 ABDFBD ABDFBD(ASA 2DFB BDBDADBFDB90又DFB1C

21C。

解题后的思考:由于角是轴对称图形,所以我们可以利用翻折来构造或发现全等三角形。

例3.思路分析:可以利用全等三角形来证明这两条线段相等,关键是要找到这两个三角形。以线段AE为边的ABE绕点B顺时针旋转90到CBF的位置,而线段CF正好是

CBF的边,故只要证明它们全等即可。

解答过程:ABC90,F为AB延长线上一点 ABCCBF90 在ABE与CBF中 ABBCABCCBF BEBFABECBF(SAS)AECF。

解题后的思考:利用旋转的观点,不但有利于寻找全等三角形,而且有利于找对应边和对应角。

小结:利用三角形全等证明线段或角相等是重要的方法,但有时不容易找到需证明的三角形。这时我们就可以根据需要利用平移、翻折和旋转等图形变换的观点来寻找或利用辅助线构造全等三角形。

例4.思路分析:关于四边形我们知之甚少,通过连接四边形的对角线,可以把原问题转化为全等三角形的问题。

解答过程:连接AC AB//CD,AD//BC 12,34 在ABC与CDA中 12ACCA 43ABCCDA(ASA)ABCD。

解题后的思考:连接四边形的对角线,是构造全等三角形的常用方法。例5.思路分析:要证明“BP为MBN的平分线”,可以利用点P到BM,BN的距离相等来证明,故应过点P向BM,BN作垂线;另一方面,为了利用已知条件“AP,CP分别是MAC和NCA的平分线”,也需要作出点P到两外角两边的距离。

解答过程:过P作PDBM于D,PEAC于E,PFBN于F

AP平分MAC,PDBM于D,PEAC于E

PDPE

CP平分NCA,PEAC于E,PFBN于F PEPF

PDPE,PEPF

PDPF

PDPF,且PDBM于D,PFBN于F BP为MBN的平分线。

解题后的思考:题目已知中有角平分线的条件,或者有要证明角平分线的结论时,常过角平分线上的一点向角的两边作垂线,利用角平分线的性质或判定来解答问题。例6.思路分析:要证明“AC2AE”,不妨构造出一条等于2AE的线段,然后证其等于AC。因此,延长AE至F,使EFAE。

解答过程:延长AE至点F,使EFAE,连接DF 在ABE与FDE中

AEFEAEBFED BEDEABEFDE(SAS)BEDF

ADFADBEDF,ADCBADB 又ADBBAD ADFADC

ABDF,ABCD DFDC

在ADF与ADC中 ADADADFADC DFDCADFADC(SAS)AFAC 又AF2AE AC2AE。

解题后的思考:三角形中倍长中线,可以构造全等三角形,继而得出一些线段和角相等,甚至可以证明两条直线平行。

例7.思路分析:欲证ABACPBPC,不难想到利用三角形中三边的不等关系来证明。由于结论中是差,故用两边之差小于第三边来证明,从而想到构造线段ABAC。而构造ABAC可以采用“截长”和“补短”两种方法。

解答过程:法一:

在AB上截取ANAC,连接PN 在APN与APC中 ANAC12 APAPAPNAPC(SAS)PNPC

在BPN中,PBPNBN

PBPCABAC,即AB-AC>PB-PC。

法二:

延长AC至M,使AMAB,连接PM 在ABP与AMP中 ABAM12 APAPABPAMP(SAS)PBPM

在PCM中,CMPMPC

ABACPBPC。

解题后的思考:当已知或求证中涉及线段的和或差时,一般采用“截长补短”法。具体作法是:在较长的线段上截取一条线段等于一条较短线段,再设法证明较长线段的剩余线段等于另外的较短线段,称为“截长”;或者将一条较短线段延长,使其等于另外的较短线段,然后证明这两条线段之和等于较长线段,称为“补短”。

小结:本题组总结了本章中常用辅助线的作法,以后随着学习的深入还要继续总结。我们不光要总结辅助线的作法,还要知道辅助线为什么要这样作,这样作有什么用处。

同步练习的答案

一、选择题: 1.A 2.C

3.B

4.C

5.C

二、填空题: 6.4 7.70

8.90

 9.10

10.6

三、解答题:

11.解:ABC为等边三角形

ABBC,ABCC60

在ABM与BCN中

ABBCABCC BMCNABMBCN(SAS)NBCBAM

AQNABQBAMABQNBC60。12.证明:AECD,BFCD FAEC90 ACECAE90 ACB90

ACEBCF90 CAEBCF

在ACE与CBF中

FAECCAEBCF ACBCACECBF(AAS)BFCE。

第三篇:八年级数学全等三角形证明题

中考网

第十三章全等三角形测试卷

(测试时间:90分钟总分:100分)

班级姓名得分

一、选择题(本大题共10题;每小题2分,共20分)

1. 对于△ABC与△DEF,已知∠A=∠D,∠B=∠E,则下列条件①AB=DE;②AC=DF;

③BC=DF;④AB=EF中,能判定它们全等的有()

A.①②B.①③C.②③D.③④

2. 下列说法正确的是()

A.面积相等的两个三角形全等

B.周长相等的两个三角形全等

C.三个角对应相等的两个三角形全等

D.能够完全重合的两个三角形全等

3. 下列数据能确定形状和大小的是()

A.AB=4,BC=5,∠C=60°B.AB=6,∠C=60°,∠B=70°

C.AB=4,BC=5,CA=10D.∠C=60°,∠B=70°,∠A=50°

4. 在△ABC和△DEF中,∠A=∠D,AB = DE,添加下列哪一个条件,依然不能证明△

ABC≌△DEF()

A.AC = DFB.BC = EFC.∠B=∠ED.∠C=∠F

5. OP是∠AOB的平分线,则下列说法正确的是()

A.射线OP上的点与OA,OB上任意一点的距离相等

B.射线OP上的点与边OA,OB的距离相等

C.射线OP上的点与OA上各点的距离相等

D.射线OP上的点与OB上各点的距离相等 D 6. 如图,∠1=∠2,∠E=∠A,EC=DA,则△ABD≌△EBC

时,运用的判定定理是()A.SSS

C B.ASA B C.AAS

(第6题)D.SAS

7. 如图,若线段AB,CD交于点O,且AB、CD互相平分,则下列结论错误的是()D A.AD=BC

B.∠C=∠D

C.AD∥BC

D.OB=OC

8. 如图,AE⊥BD于E,CF⊥BD于F,AB = CD,AE = CF,则图中全等三角形共有()

A.1对

B.2对

C.3对

D.4对 B(第7题)(第8题)D中考网

9. 如图,AB=AC,CF⊥AB于F,BE⊥AC于E,CF与BE交于点D.有下列结论:①△

ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.以上结论正确的()

A.只有①

B.只有②

C.只有③

D.有①和②和③

B 10.如图,DE⊥BC,BE=EC,且AB=5,AC=8,(第9题)则△ABD的周长为()

A.

21B.18C.1

3C E D.9

(第10题)

二、填空题(本大题共6小题;每小题2分,共12分)

11.如图,除公共边AB外,根据下列括号内三角形全等的条件,在横线上添加适当的条件,使△ABC与△ABD全等:

(1),(ASA);(2),∠3=∠4(AAS). 12.如图,AD是△ABC的中线,延长AD到E,使DE=AD,连结BE,则有

△ACD≌△。

13.如图,△ABC≌△ADE,此时∠.

A CBC B ED A(第11题)

(第13题)(第12题)

14.如图,AB⊥AC,垂足为A,CD⊥AC,垂足为C,DE⊥BC,且AB=CE,若BC=5cm,则DE的长为cm. 15.如图,AD=BD,AD⊥BC,垂足为D,BF⊥AC,垂足为F,BC=6cm,DC=2cm,则AE=cm.B

C C A C E(第15题)(第14题)(第16题)

16.如图,在△ABD和△ACE中,有下列论断:①AB=AC;②AD=AE;③∠B=∠C;④

BD=CE.请以其中三个论断作为条件,另一个论断作为结论,写出一个真命题:。

三、解答题(本大题5小题;共68分)17.如图,已知PA⊥ON于A,PB⊥OM于B,且PA=PB.∠MON=50°,∠OPC=30°.

求∠PCA的度数.

A

B

18.已知:如图,AB与CD相交于点O,∠ACO=∠BDO,OC=OD,CE是△ACO的角平分

线,请你先作△ODB的角平分线DF(保留痕迹)再证明CE=DF.

19.如图,AE平分∠BAC,BD=DC,DE⊥BC,EM⊥AB,EN⊥AC.求证BM=CN.

MB

D

N

20.已知:如图,在△ABC中,D为BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于点G,DE⊥GF,并交AB于点E,连结EG.(1)求证BG=CF;

(2)试猜想BE+CF与EF的大小关系,并加以证明.

21.如图,图(1)中等腰△ABC与等腰△DEC共点于C,且∠BCA=∠ECD,连结BE,AD,若BC=AC,EC=DC.求证BE=AD;若将等腰△EDC绕点C旋转至图(2)(3)(4)情况时,其余条件不变,BE与AD还相等吗?为什么?

A

DB

A

A

E

E

B

(1)

D

DC

B

D

(2)(3)

(4)

八年级(上)《全等三角形》试卷讲评课教案

九华初级中学李海燕

教学目标:

1.通过讲评,进一步巩固全等三角形的相关知识点。

2.通过对典型错误的剖析、矫正、帮助学生掌握正确的思考方法和解题策略。教学重点:

第16,19,20题的错因剖析与矫正。教学过程:

一、考试情况分析:

班级均分:82.1 分最高分:100 分 100分的同学,全班公示,鼓掌祝贺。分发试卷。

二、学生小组总结试卷填空和选择两块解题中错误原因和解题感受,看看哪些小组总结得比较好。

学生用投影展示自己的所思所想。

三、重点评讲解答题的19、20题

1、学生小组交流

2、学生据黑板图形讲解

3、教师点评

四、学生自我完善考卷

五、总结课堂,教师质疑

六、学生课堂训练

教案说明:

本张试卷学生考试情况较好,典型错误不多,且书写态度端正,思维过程表达清晰,可以看出学生对全等三角形的性质、判定掌握到位,如17、19有的学生能灵活运用角平分线性质及垂直平分线性质进行解答,方法比较简便。针对考试情况,我在进行教学设计时让学生发现自己在解题中的失误或错误,重点评讲了试题中的3、19、20等题。本课主要采用由学生说题的方法进行评讲,心理学研究表明,人在学习活动过程中,听懂不一定做的出,语

言表述则是思维活动的最高境界,语言更能训练思维的逻辑性和严密性。学生对解题过程或者思维过程口头能表达清楚才是真的理解这道题。总之,“学生说题”能转变学生的学习方式,建设开放而有活力的课堂,符合有效课堂的特征,是高参与的课堂、高认知的课堂、高情意的课堂。课堂练习是针对学生在考卷中表现出的薄弱之处设计的,在学生对考卷进行评讲后进行练习,能有效帮助学生进一步掌握解题方法。

课堂针对性练习

班级姓名组别

1、如图,在△AEB和△AFC中,有下列论断:①∠EAC=∠FAB;②AB=AC;③BE=CF;④AE=AF.请以其中三个论断作为条件,另一个论断作为结论,写出一个真命题.2、(1)已知:如图,在△ABC中,∠BAC=90°,AB=AC,直线AF交BC于F,BD⊥AF于

D,CE⊥AF于E.求证:DE=BD-EC

(2)对于(1)中的条件改为:直线AF在△ABC形外,与BC的延长线相交于F,其他条件不变,上述结论仍成立吗?(请画出图形)若成立,请证明;若不成立,请写出正确的等式,并证明.

第四篇:八年级全等三角形经典证明题

三角形全等的判定专题训练题

1、如图(1):AD⊥BC,垂足为D,BD=CD。求证:△ABD≌△ACD。

2、如图(2):AC∥EF,AC=EF,AE=BD。求证:△ABC≌△EDF。

3、如图(3):DF=CE,AD=BC,∠D=∠C。求证:△AED≌△BFC。

4、如图(4):AB=AC,AD=AE,AB⊥AC,AD⊥AE。求证:(1)∠B=∠C,(2)BD=CE5、如图(5):AB⊥BD,ED⊥BD,AB=CD,BC=DE。求证:AC⊥CE

DEAFC AEFCD CA(图4)E

A D(图2)BA(图3)BB(图5)D BBC(图1)D6、如图(6):CG=CF,BC=DC,AB=ED,点A、B、C、D、E在同一直线上。求证:(1)AF=EG,(2)BF∥DG。

7、如图(7):AC⊥BC,BM平分∠ABC且交AC于点M、N是AB的中点且BN=BC。

求证:(1)MN平分∠AMB,(2)∠A=∠CBM。

8.如图(8):A、B、C、D四点在同一直线上,AC=DB,BE∥CF,AE∥DF。求证:△ABE≌△DCF。

9、如图(9)AE、BC交于点M,F点在AM上,BE∥CF,BE=CF。求证:AM是△ABC的中线。

10、如图(10)∠BAC=∠DAE,∠ABD=∠ACE,BD=CE。求证:AB=AC。

A

FEB FDEFNC ABMCD(图6)C8)CAMGB(图7)9)BBC(图10)EE11、如图(11)在△ABC和△DBC中,∠1=∠2,∠3=∠4,P是BC上任一点。求证:PA=PD。

12、如图(12)AB∥CD,OA=OD,点F、D、O、A、E在同一直线上,AE=DF求证:EB∥CF。

13、如图(13)△ABC≌△EDC。求证:BE=AD。

14、如图(14)在△ABC中,∠ACB=90°,AC=BC,AE是BC的中线,过点C作CF⊥AE于F,过B作BD⊥

CB交CF的延长线于点D。(1)求证:AE=CD,(2)若BD=5㎝,求AC的长。

115、如图15△

ABC中,AB=2AC,∠BAC=90°,延长BA到D,使AD=AB,延长AC到E,使CE=AC。求证:

2△ABC≌△AED。

BAF E

EA2 DC P

F ADBCBDD34(图13)CB(图14)EA(图15)11)E

16、如图(16)AD∥BC,AD=BC,AE=CF。求证:(1)DE=DF,(2)AB∥CD。

17、如图:在△ABC中,AD⊥BC于D,AD=BD,CD=DE,E是AD上一点,连结BE并延长交AC于点F。求证:

(1)BE=AC,(2)BF⊥AC。

A18、如图:在△ABC中,∠ACB=90°,AC=BC,D是AB上一点,AE⊥GD于E,BF⊥CD交CD的延长线于F。求证:AE=EF+BF。

19、如图:AB=DC,BE=DF,AF=DE。求证:△ABE≌△DCF。

C20、如图;AB=AC,BF=CF。求证:∠B=∠C。DAAC DCE EDEFF

FDAB ABC(图19)BBCA(图18)B(图16)DF(图17)

21、如图:AC=DF,AD=BE,BC=EF。求证:∠C=∠F。

22、如图:AD是△ABC的高,E为AC上一点,BE交AD于F,且有BF=AC,FD=CD。求证:BE⊥AC。

23、如图:E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足为C,D。求证:(1)OC=OD,(2)DF=CF。

24、如图:在△ABC,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F。求证:AF平分∠BAC。

25、如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连结AD、AG。求证:(1)AD=AG,(2)AD与AG的位置关系如何。

AAA AGCA ED FEDE OFBC FBFDEBBCCD26、如图,在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证: ①△ADC≌△CEB;②DE=AD+BE;

(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD-BE;

(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.M CM C

NB A BDN 图11-93-2 图11-93-1图11-93-3

图11-93

27.如图,Rt△BDA中,∠BDA=90°,BD=AD,Rt△

HDC,∠HDC=90°,HD=CD,请你猜想线段BH与AC的数量关系,并写出证明过程。

解:猜想:.证明:

C

第五篇:八年级数学全等三角形的判定4

13.5全等三角形的判定

(二)教学目标:

1、知识目标:

(1)熟记角边角公理、角角边推论的内容;

(2)能应用角边角公理及其推论证明两个三角形全等.2、能力目标:

(1)通过“角边角”公理及其推论的运用,提高学生的逻辑思维能力;

(2)通过观察几何图形,培养学生的识图能力.3、情感目标:

(1)通过几何证明的教学,使学生养成尊重客观事实和形成质疑的习惯 ;

(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧.教学重点:学会运用角边角公理及其推论证明两个三角形全等.教学难点:SAS公理、ASA公理和AAS推论的综合运用.教学用具:直尺、微机 教学方法:探究类比法 教学过程:

一、新课引入

投影显示

这样几个问题让学生议论后,他们的答案或许只是一种感觉“行或不行”.于是教师要引导学生,抓住问题的本质:“分别带去了三角形的几个元素?”学生通过观察比较就会容易地得出答案.二、公理的获得

问:恢复后的三角形和原三角形全等,那全等的条件是不是就是带去的元素呢?

让学生粗略地概括出角边角的公理.然后和学生一起做实验,根据三角形全等定义对公理进行验证.公理:有两角和它们的夹边对应相等的两个三角形全等.应用格式:(略)

强调:

(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论.(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等)

所以找条件归结成两句话:已知中找,图形中看.(3)、公理与前面公理1的区别与联系.以上几点可运用类比公理1的模式进行学习.三、推论的获得

改变公理2的条件:有两角和其中一角的对边对应相等这样两个三角形是否全等呢?

学生分析讨论,教师巡视,适当参与讨论.四、公理的应用

(1)讲解例1.学生分析完成,教师注重完成后的总结.注意区别“对应边和对边” 解:(略)(2)讲解例2 投影例2 :

学生思考、分析,适当点拨,找学生代表口述证明思路 让学生在练习本上定出证明,一名学生板书.教师强调 证明格式:用大括号写出公理的三个条件,最后写出 结论.

新观察八年级数学全等三角形第四节答案
TOP