第一篇:《随机信号分析》实验报告
《随机信号分析》实验报告
学号:
姓名:
202_年12月21日
实验一:平稳随机过程的数字特征
1、实验目的“正文、小四宋体1.5倍行距”
2、实验任务
3、实验流程
4、实验结果
5、实验代码
“代码、五号宋体1倍行距”
1、实验目的“正文、小四宋体1.5倍行距”
2、实验任务
3、实验流程
4、实验结果
5、实验代码
“代码、五号宋体1倍行距”
1、实验目的“正文、小四宋体1.5倍行距”
2、实验任务
3、实验流程
4、实验结果
5、实验代码
“代码、五号宋体1倍行距”
1、实验目的“正文、小四宋体1.5倍行距”
2、实验任务
3、实验流程
4、实验结果
5、实验代码
“代码、五号宋体1倍行距”
第二篇:随机信号分析实验报告
H a ar r b bi in n
I In ns st ti it t u ut te e
o of f
T Te ec ch h n no o l lo og gy y
实 验 报 告 告
课程名称:
随机信号分析
院
系:
电子与信息工程学院
班
级:
姓
名:
学
号:
指导教师:
实验时间:
实验一、各种分布随机数得产生
(一)实验原理 1、、均匀分布随机数得产生原理 产生伪随机数得一种实用方法就是同余法,它利用同余运算递推产生伪随机数序列.最简单得方法就是加同余法
为了保证产生得伪随机数能在[0,1]内均匀分布,需要M为正整数,此外常数 c 与初值 y0 亦为正整数。加同余法虽然简单,但产生得伪随机数效果不好。另一种同余法为乘同余法,它需要两次乘法才能产生一个[0,1]上均匀分布得随机数
ﻩ ﻩﻩ
式中,a为正整数。用加法与乘法完成递推运算得称为混合同余法,即
ﻩﻩ
ﻩ用混合同余法产生得伪随机数具有较好得特性,一些程序库中都有成熟得程序供选择。
常用得计算语言如 Basic、C与 Matlab 都有产生均匀分布随机数得函数可
以调用,只就是用各种编程语言对应得函数产生得均匀分布随机数得范围不同,有得函数可能还需要提供种子或初始化。
Matlab提供得函数rand()可以产生一个在[0,1]区间分布得随机数,rand(2,4)则可以产生一个在[0,1]区间分布得随机数矩阵,矩阵为2行4列。Matlab 提供得另一个产生随机数得函数就是 random(’unif’,a,b,N,M),unif 表示均匀分布,a与b就是均匀分布区间得上下界,N与M分别就是矩阵得行与列。
2、、随机变量得仿真 根据随机变量函数变换得原理,如果能将两个分布之间得函数关系用显式表达,那么就可以利用一种分布得随机变量通过变换得到另一种分布得随机变量。
若X就是分布函数为 F(x)得随机变量,且分布函数 F(x)为严格单调升函数,令Y=F(X),则 Y 必为在[0,1]上均匀分布得随机变量.反之,若 Y 就是在[0,1]上均匀分布得随机变量,那么 即就是分布函数为 FX(x)得随机变量。式中 F X1()为F X() 得反函数.这样,欲求某个分布得随机变量,先产生在[0,1]区间上得均匀分布随机数,再经上式变换,便可求得所需分布得随机数。
3、高斯分布随机数得仿真 广泛应用得有两种产生高斯随机数得方法,一种就是变换法,一种就是近似法.如果X1,X2 就是两个互相独立得均匀分布随机数,那么下式给出得 Y1,Y2
便就是数学期望为 m,方差为得高斯分布随机数,且互相独立,这就就是变换法。
另外一种产生高斯随机数得方法就是近似法.在学习中心极限定理时,曾提到 n 个在[0,1]区间上均匀分布得互相独立随机变量 Xi(i=1,2…,n),当n足够大时,其与得分布接近高斯分布.当然,只要 n 不就是无穷大,这个高斯分布就是近似得。由于近似法避免了开方与三角函数运算,计算量大大降低。当精度要求不太高时,近似法还就是具有很大应用价值得.4、、各种分布随机数得仿真 有了高斯随机变量得仿真方法,就可以构成与高斯变量有关得其她分布随机变量,如瑞利分布、指数分布与分布随机变量。
(二)
实验目得 在很多系统仿真得过程中,需要产生不同分布得随机变量。利用计算机可以很方便地产生不同分布得随机变量,各种分布得随机变量得基础就是均匀分布得随机变量.有了均匀分布得随机变量,就可以用函数变换等方法得到其她分布得随机变量。
(三)实验结果
附:源程序 subplot(2,2,1);
x=random(’unif’,2,5,1,1024); plot(x); title(’均匀分布随机数’)subplot(2,2,2);G1=random(’Normal',0,1,1,20000); plot(G1); title(’高斯分布随机数’)subplot(2,2,3);G2=random(“Normal’,0,1,1,20000);R=sqrt(G1、*G1+G2、*G2);plot(R);title(’瑞利分布随机数’)subplot(2,2,4);G3=random(”Normal’,0,1,1,202_0);G4=random(“Normal’,0,1,1,20000); X=G1、*G1+G2、*G2+G3、*G3+G4、*G4; plot(X);title(”x^2 分布随机数')
实验 二、随机变量检验(一)实验 原理 1、均值得计算 在实际计算时,如果平稳随机序列满足各态历经性,则统计均值可用时间均值代替。这样,在计算统计均值时,并不需要大量样本函数得集合,只需对一个样本函数求时间平均即可。甚至有时也不需要计算 N 时得极限,况且也不可能。通常得做法就是取一个有限得、计算系统能够承受得 N 求时间均值与时间方差。根据强调计算速度或精度得不同,可选择不同得算法。
设随机数序列{},一种计算均值得方法就是直接计算下式中,xn 为随机数序列中得第 n 个随机数。
另一种方法就是利用递推算法,第n次迭代得均值也亦即前 n 个随机数得均值为迭代结束后,便得到随机数序列得均值 m m N
递推算法得优点就是可以实时计算均值,这种方法常用在实时获取数据得场合。
当数据量较大时,为防止计算误差得积累,也可采用式中,m1 就是取一小部分随机数计算得均值.2、方差得计算 计算方差也分为直接法与递推法。仿照均值得做法
方差得递推算法需要同时递推均值与方差 m mnx mn n n n 1 11()
迭代结束后,得到随机数序列得方差为
其它矩函数也可用类似得方法得到.3、统计随机数得概率密度直方图 假定被统计得序列得最大值与最小值分别为 a 与 b。将区间等分 M(M 应与被统计得序列得个数 N 相适应,否则统计效果不好。)份后得区间为,,…,,… ,。用,表示序列得值落在区间里得个数,统计序列得值在各个区间得个数,则就粗略地反映了随机序列得概率密度得情况.用图形方式显示出来就就是随机数得概率密度直方图.(二)
实验目得 随机数产生之后,必须对它得统计特性做严格得检验。一般来讲,统计特性得检验包括参数检验、均匀性检验与独立性检验等.事实上,我们如果在二阶矩范围内讨论随机信号,那么参数检验只对产生得随机数一、二阶矩进行检验。我们可以把产生得随机数序列作为一个随机变量,也可以瞧成随机过程中得一个样本函数。不论就是随机变量还就是随机过程得样本函数,都会遇到求其数字特征得情况,有时需要计算随机变量得概率密度直方图等.(三)
实验结果
附:源程序 subplot(2,2,1);x=random(“unif”,2,5,1,1024);hist(x,2:0、2:5);title(’均匀分布随机数直方图’);s1=0 for n1=1:1024
s1=x(n1)+s1;end Mean1=s1/1024; t1=0 for n1=1:1024
t1=(x(n1)—Mean1)^2+t1;end Variance1=t1/1024;subplot(2,2,2); G1=random(’Normal“,0,1,1,20000); hist(G1,—4:0、2:4); title(”高斯分布随机数直方图’);s2=0 for n2=1:20000
s2=G1(n2)+s2; end Mean2=s2/20000; t2=0 for n2=1:20000
t2=(G1(n2)-Mean2)^2+t2;end Variance2=t2/20000; subplot(2,2,3);G2=random(’Normal’,0,1,1,20000); R=sqrt(G1、*G1+G2、*G2);hist(R,0:0、2:5);title(“瑞利分布随机数直方图’); s3=0 for n3=1:20000
s3=R(n3)+s3;end Mean3=s3/20000;t3=0 for n3=1:20000
t3=(R(n3)—Mean3)^2+t3;end Variance3=t3/20000;subplot(2,2,4);G3=random(’Normal”,0,1,1,20000);G4=random(“Normal”,0,1,1,20000);X=G1、*G1+G2、*G2+G3、*G3+G4、*G4; hist(X,0:0、5:30);title(“x^2 分布随机数直方图’)s4=0 for n4=1:20000
s4=X(n4)+s4;end Mean4=s4/202_0;t4=0 for n4=1:20000
t4=(X(n4)-Mean4)^2+t4; end 实验 三、中心极限定理得验证(一)
实验 原理 如果 n 个独立随机变量得分布就是相同得,并且具有有限得数学期望与方差,当 n 无穷大时,它们之与得分布趋近于高斯分布。这就就是中心极限定理中
得一个定理。
我们以均匀分布为例,来解释这个定理。若 n 个随机变量 Xi(i=1,2,…,n)都为[0,1]区间上得均匀分布得随机变量,且互相独立,当 n 足够大时,其与得分布接近高斯分布。
(二)
实验目得 利用计算机产生均匀分布得随机数。对相互独立得均匀分布得随机变量做与,可以很直观瞧到均匀分布得随机变量得与,随着做与次数得增加分布情况得变化,通过实验对中心极限定理得进行验证。
((三)
实验结果
分析:随n取值得增大,均匀分布随机序列求与得图形越发接近于高斯分布。
附:源程序 X0=random('unif”,0,1,1,1024);X1=random(’unif’,0,1,1,1024);
X2=random('unif“,0,1,1,1024);X3=random('unif',0,1,1,1024);
X4=random(”unif',0,1,1,1024);
X5=random(’unif’,0,1,1,1024);
X6=random(’unif“,0,1,1,1024);X7=random(’unif’,0,1,1,1024);
X8=random('unif”,0,1,1,1024);
X9=random(’unif’,0,1,1,1024); G=random(“normal”,0,1,1,1024);
Y1=X0+X1+X2+X3+X4;
Y2=X0+X1+X2+X3+X4+X5+X6+X7+X8+X9;
subplot(2,2,1);hist(X0,0:0、2:2);
title(“均匀分布随机数直方图’)
subplot(2,2,2);hist(Y1,0:0、2:6);
title(’五个均匀分布之与随机数直方图”)subplot(2,2,3);hist(Y2,0:0、2:8);
title(’十个均匀分布之与随机数直方图“)subplot(2,2,4);hist(G,-4:0、2:4);title(”高斯分布随机数直方图“)
实验 四、中心极限定理得验证(一)
实验 原理 在实际应用中,我们可以把产生得随机数序列瞧成随机过程中得一个样本函数。如果平稳随机序列满足各态历经性,则统计自相关序列可用时间自相关序列
代替。当数据得样本数有限时,也只能用有限个数据来估计时间自相关序列,统计自相关序列得估值。若各态历经序列X(n)得一个样本有 N 个数据,由于实序列自相关序列就是对称得,自相关函数得估值为
(二)实验目得 在随机信号理论中,自相关函数就是非常重要得概念。在实际系统仿真中也会经常计算自相关函数.通过本试验学生可以亲自动手计算自相关函数,加深对概念得理解,并增强实际动手能力.(三))实验结果
分析:分别生成均值为 0 与1,方差为 1 得高斯随机数,由图形可以明显瞧出两者自相关函数得差异。
附:源程序 N=256;xn=random(’norm',0,1,1,N);Rx=xcorr(xn,'biased”);m=-N+1:N-1;subplot(2,1,1);plot(m,Rx);title(“均值为0,方差为1得高斯分布得自相关函数'); axis([—N N—1 —0、5 1、5]); N=256;xn=random(’norm’,1,1,1,N);Xk=fft(xn,2*N); Rx=ifft((abs(Xk)、^2)/N); m=-N:N—1;subplot(2,1,2); plot(m,fftshift(Rx));title(’均值为 1,方差为 1 得高斯分布得自相关函数’);axis([-N N—1-0、5 1、5]);实验五、功率谱密度(一)实验 原理 一般把平稳随机序列得功率谱定义为自相关序列得傅里叶变换。如果自相关序列就是周期序列, X(n)得功率谱与自相关序列得关系为
ﻩ 与实平稳过程一样,实平稳序列得功率谱也就是非负偶函数,即
可以证明,功率谱还可表示为
当 X(n)为各态历经序列时,可去掉上式中得统计均值计算,将随机序列 X(n)用它得一个样本序列 x(n)代替。在实际应用中,由于一个样本序列得可用数据个数 N 有限,功率谱密度也只能就是估计
式中,X(x(n)得傅里叶变换.这就是比较简单得一种估计方法,这种功率谱密度得估计方法称为周期图方法。如果直接利用数据样本做离散傅里叶变换,可得到 X(FFT 算法实现,所以得到了广泛得应用。
(二)实验目得 在随机信号理论中,功率谱密度与自相关函数一样都就是非常重要得概念.在实际系统仿真中也会经常计算。通过本试验学生可以亲自动手,加深对概念得理解,并增强实际动手能力。
(三)实验结果
附:源程序 N=256;x1=random(”normal’,0,1,1,N);Sx1=abs(fft(x1)、^2)/N;subplot(2,1,1);plot(10*log10(Sx1));title(“均值为0,方差为 1 得高斯分布得功率谱密度'); xlabel(’f/Hz’)ylabel(”Sx1/dB’)
x2=random(’normal“,1,1,1,N); Sx2=abs(fft(x2)、^2)/N;subplot(2,1,2);plot(10*log10(Sx2));title(”均值为 1,方差为 1 得高斯分布得功率谱密度’);xlabel(’f/Hz')
ylabel(“Sx2/dB')实验 六、随机信号经过 线性系统前后信号仿真
(一))实验原理
需要先仿真一个指定系统,再根据需要仿真输入得随机信号,然后使这个随机信号通过指定得系统.通过对实际系统建模,计算机可以对很多系统进行仿真。在信号处理中,一般将线性系统分解为一个全通放大器(或衰减器)与一个特定频率响应得滤波器。由于全通放大器可以用一个常数代替,因此线性系统得仿真往往只需设计一个数字滤波器。滤波器设计可采用 MATLAB 提供得函数,也可
利用相应得方法自行设计。MATLAB提供了多个设计滤波器得函数,可以很方便地设计低通、带通、高通、多带通、带阻滤波器。
((二)实验 目得
系统仿真就是信号仿真处理得一个重要部分,通过该实验要求学生掌握系统仿真得基本概念,并学会系统得仿真方法。
((三))实验 结果
1、低通滤波器
2、带通滤波器
3、高通滤波器 4、多带通滤波器
5、带阻滤波器
附:源程序 1、X(n)
N=202_;fs=400;Nn=random(”normal',0,1,1,N); t=(0:N—1)/fs;fi=random(’unif’,0,1,1,2)*2*pi;xn=sin(2*pi*50*t+fi(1))+Nn;Rx=xcorr(xn,“biased’); m=—N+1:N-1;Sx=abs(fft(xn)、^2)/N; f=(—N/2:N/2-1)*fs/N;subplot(211),plot(m,Rx); xlabel(’m’)
ylabel(”Rx(m)’)title(’xn 得自相关函数“);subplot(212),plot(f,fftshift(10*log10(Sx(1:N))));xlabel(’f/Hz”)ylabel(“Sx/dB”)title(’xn 得功率谱密度’);2、低通滤波器 h=fir1(100,0、4);H=fft(h,2*N);HW=abs(H)、^2;Rx=xcorr(xn,’biased');Sx=abs(fftshift(fft(xn,2*N))、^2)/(2*N); Sy=Sx、*HW;Ry=fftshift(ifft(Sy));
f=(-N:N—1)*fs/(2*N); m=(—N:N-1);subplot(311);plot((-N:N—1)/N,fftshift(abs(HW(1:2*N))));title('低通滤波器“);subplot(312),plot(m,Ry);xlabel(”m“)ylabel(”Ry(m)')title(’xn 经低通滤波器得自相关函数’); subplot(313),plot(f,fftshift(10*log10(Sy(1:2*N)))); axis([—200 200 —20 20]);xlabel(“f/Hz’)ylabel('Sy/dB”)title('xn 经低通滤波器得功率谱密度“); 3、带通滤波器 h=fir1(100,[0、1 0、5]);H=fft(h,2*N);HW=abs(H)、^2; Rx=xcorr(xn,”biased“); Sx=abs(fftshift(fft(xn,2*N))、^2)/(2*N); Sy=Sx、*HW; Ry=fftshift(ifft(Sy)); f=(-N:N-1)*fs/(2*N);m=(-N:N—1);subplot(311);plot((—N:N-1)/N,fftshift(abs(HW(1:2*N)))); title(’带通滤波器”); subplot(312),plot(m,Ry);xlabel(’m“)ylabel(’Ry(m)’)title(”xn 经带通通滤波器得自相关函数“); subplot(313),plot(f,fftshift(10*log10(Sy(1:2*N)))); axis([—200 200 -20 20]);xlabel(’f/Hz”)ylabel(“Sy/dB’)title(’xn 经带通滤波器得功率谱密度’);4、高通滤波器 h=fir1(100,0、6,’high’); H=fft(h,2*N); HW=abs(H)、^2;Rx=xcorr(xn,”biased“);Sx=abs(fftshift(fft(xn,2*N))、^2)/(2*N); Sy=Sx、*HW;Ry=fftshift(ifft(Sy));f=(-N:N-1)*fs/(2*N);m=(—N:N—1);
subplot(311);plot((-N:N—1)/N,fftshift(abs(HW(1:2*N))));title('高通滤波器”);subplot(312),plot(m,Ry);xlabel(“m’)ylabel(’Ry(m)”)title('xn 经高通通滤波器得自相关函数’);subplot(313),plot(f,fftshift(10*log10(Sy(1:2*N))));axis([-200 200 —20 20]); xlabel(“f/Hz’)ylabel(”Sy/dB“)title('xn 经高通滤波器得功率谱密度');5、多带通滤波器 h=fir1(100,[0、1,0、3,0、5,0、7]); H=fft(h,2*N); HW=abs(H)、^2; Rx=xcorr(xn,'biased’);Sx=abs(fftshift(fft(xn,2*N))、^2)/(2*N); Sy=Sx、*HW;Ry=fftshift(ifft(Sy));f=(—N:N—1)*fs/(2*N);m=(—N:N-1);subplot(311);plot((—N:N—1)/N,fftshift(abs(HW(1:2*N)))); title(’多带通滤波器’); subplot(312),plot(m,Ry); xlabel('m’)ylabel(”Ry(m)“)
title(”xn 经多带通通滤波器得自相关函数“);subplot(313),plot(f,fftshift(10*log10(Sy(1:2*N))));axis([-200 200 —20 20]);xlabel(’f/Hz”)
ylabel(“Sy/dB’)
title(’xn 经多带通滤波器得功率谱密度”); 6、带阻滤波器 h=fir1(100,[0、1,0、4],’stop’);H=fft(h,2*N);HW=abs(H)、^2;Rx=xcorr(xn,’biased“);Sx=abs(fftshift(fft(xn,2*N))、^2)/(2*N);Sy=Sx、*HW; Ry=fftshift(ifft(Sy));f=(—N:N-1)*fs/(2*N);m=(-N:N—1); subplot(311);plot((—N:N-1)/N,fftshift(abs(HW(1:2*N))));
title(”带阻滤波器“); subplot(312),plot(m,Ry); xlabel(’m’)
ylabel(”Ry(m)’)title(’xn 经带阻滤波器得自相关函数'); subplot(313),plot(f,fftshift(10*log10(Sy(1:2*N))));axis([-200 200-20 20]);xlabel('f/Hz“)ylabel(”Sy/dB“)title(”xn 经带阻滤波器得功率谱密度");
第三篇:随机信号分析基础读书报告
读书报告
——随机信号分析基础
本读书报告主要分为三部分:
一、自学计划。
二、理论原理知识。
三、个人总结及心得体会。
一、自学计划。
在研究生第一学期,开设了随机信号分析基础课,这门课程是在信号分析基础上对信号分析与处理的更深一步的学习。11月末,在老师的安排下我们开始进行关于由王永德、王军主编的,由电子工业出版社出版的《随机信号分析基础》(第二版),第5章随机信号通过线性系统的自学。
(1)时间安排
11月末至12月末,每周的周一下午,周四上午设定为学习时间。
(2)目标要求
理解第五章关于5.2,5.3,5.5的相关内容,随时做好学习相关知识的笔记及心得体会。
二、理论原理知识。
在学习本书之前我已经完成了《高等数学》、《复变函数》、《信号与系统》等基础课程的学习。并且在学习第5章之前,学习了前四章的相关知识。
第2、3、4章讨论了随机过程的一般概念及其统计特征。各种电子系统尽管种类繁多,作用各异,但基本上可分为两大类:即线性统计与非线性统计。第五章研究的是现性系统问题并在5.5节开始随机序列通过线性离散系统后统计特性的变化,并介绍随机序列模型的概念与现代谱值的基本思想。以下为关于5.2,5.3及5.5的读书笔记。5.2 随机信号通过线性系统
主要研究输入信号为随机过程时,线性、稳定性、是不变系统的统计特征。5.2.1线性系统输出的统计特征 1.系统的输出
系统的输入输出样本函数之间的关系:Y(t)h()X(t)d,输入随机过程为X(t),通过系统产生的新过程为Y(t),对于有收敛的样本函数都可以通过此关系求得输出。
2.系统输出的均值与自相关函数
主要为解决已知输入随机过程的均值和自相关函数,求系统的输出随机过程的均值和自相关函数。
(1)系统输出均值
若X(t)是有界平稳过程,于是
E[Y(t)]E[ mXh()X(t)]d显然mX是与时间无关
h()d的常数。
(2)系统输出的自相关函数
若X(t)是有界平稳过程,则系统的自相关函数为:
RY(t,t) RX(12)h(1)h(2)d1d2RY()通过上面两式可以看出输出的新随机过程Y(t)亦是一个平稳的随机过程。但是实际上时不变随机输入信号时严平稳的,那么输出也是眼平稳的。若输入随机过程是各态历经的,那么输出随机信号也是各态历经的。3.系统输入与输出之间的互相关函数
输入输出的之间的互相关函数为:
RXY()RX()h()d
即输入输出的互相关函数为输入的自相关函数与系统的冲激响应的卷积,可写成
RXY()RX()h()
4.物理可实现系统的响应(1)无限工作时间系统 无限工作时间系统是指输入信号x(t)始终作用在系统输入端(即无始信号的情况),不考虑系统的瞬态过程,并且大多数实际应用都是这种情况。若系统输入X(t)为平稳随机过程,则有
Y(t)h()X(t)d0mYmXh()d0
RY RX(12)h(1)h(2)d1d2可以看出只要将前面倒出的关系式中的积分下限“”用“0”代替,即可得到物理可实现系统的各关系式。
这是无限工作时间系统在时间域的关系,但一般情况下对于无限工作时间系统频域法往往更简单。
(2)有限工作时间系统
有限工作时间系统是指输入信号x(t)在t0时才开始加入(也就是输入信号x(t)U(t)的情况)。所以输入X(t)在t0到tt1时刻的输出信号Y(t)为:
Y(t)t1t10X(t1)h()dE[Y(t1)]RYt20t10E[X(t1)]h()d
0RX(12)h(1)h(2)d1d2以上讨论的都是在时间域范围内,随机信号输入线性系统的响应方法。5.2.2系统输出的功率谱密度 主要是给出了系统的功率谱密度与输入的功率谱密度关系。(假设输入X(t)为宽平稳过程,则输出Y(t)也是宽平稳过程,而X(t)和Y(t)是联合宽平稳的。这样在讨论中可以直接应用维纳-辛钦公式。)1.系统输出的功率谱密度
线性时不变系统输出的功率谱密度GY()与输入功率谱密度GX()的关系如下:
GY()GX()H()
H()是系统传递函数,H()被称为系统的功率传递函数。就此关系式书上意见给
22出详细的证明。
2.系统输入与输出之间的互谱密度
互谱密度公式为GXY()GX()H()GYX()GX()H()可以看出,当系统的性能未知时,若可以知道互谱密度就可以确定线性系统的传递函数。3.未知系统辨识精度的分析
由前面的知识可以得出 2XY()111()
可以看出,对于某些频率信噪比小,则相干系数值也小,反之则相干系数值也大。所以用此式可以定量的分析观测噪声对系统辨识的影响。5.2.3 多个随机信号过程之和通过线性系统
在实际应用中,输入一般为多个随机信号的情况是,所以讨论多个随机信号过程之和通过线性系统时很有必要的。假设系统的输入X(t)时两个联合平稳且单独平稳的随机过程X1(t)与X2(t)的和,即
X(t)X1(t)X2(t)
由于系统式线性的,每个输入都产生相应的输出,即有
Y(t)Y1(t)Y2(t)
输出的自相关函数为:
RY()RY()RY()12GY()GY()GY()12
由以上式子可以看出,两个独立的(或至少不相关)的零均值随机过程之和的功率谱密度或自相关函数等于各自功率谱密度或自相关函数之和。通过线性系统输出的平稳随机过程的功率谱密度或自相关函数也等于各自的输出的功率谱密度或自相关函数之和。5.3白噪声通过线性系统
白噪声(white noise)是指功率谱密度在整个频域内均匀分布的噪声。所有频率具有相同能量的随机噪声称为白噪声。5.3.1噪声宽带
理想的白噪声具有无限带宽,因而其能量是无限大,这在现实世界是不可能存在的。实际上,我们常常将有限带宽的平整讯号视为白噪音,因为这让我们在数学分析上更加方便。然而,白噪声在数学处理上比较方便,因此它是系统分析的有力工具。一般,只要一个噪声过程所具有的频谱宽度远远大于它所作用系统的带宽,并且在该带宽中其频谱密度基本上可以作为常数来考虑,就可以把它作为白噪声来处理。例如,热噪声和散弹噪声在很宽的频率范围内具有均匀的功率谱密度,通常可以认为它们是白噪声。5.3.2白噪声通过理想线性系统
1.白噪声通过理想低通线性系统(滤波器或低频放大器)
一个白噪声通过一个理想低通线性系统。相关时间0为:00Y()d12f,表明输出随机过程的相关时间与系统的带宽成反比,即系统的带宽越宽,相关时间0越小,输出过程随时间变化越剧烈,反之,系统越窄,则0越大,输出过程随时间变化就越缓慢。
2.白噪声通过理想带通线性系统(带通滤波器或高频谐振放大器)
一个白噪声通过一个理想带通线性系统。相关时间0为:00Y()d12f,形式与白噪声通过一个理想低通线性系统相同,但是值得注意的是,这里0是表示输出窄带过程的包络随时间起伏变化的快慢程度。即上式表明系统的带快越宽,输出包络的起伏变化越剧烈。反之,带宽越窄,则包络变化越缓慢。
5.3.3白噪声通过具有高斯频率的线性系统
在实际中,只要放大设备中有4~5个以上的谐振回路,则放大设备就具有较近似的高斯频率特性。高斯曲线表示式为
(0)222H()K0e
5.5随机序列通过线性系统 5.5.1自相关函数
随机序列通过一阶FIR滤波器
滤波器的输出自相关函数满足方程:
2bibik, k0,1,,q RY(k)i00 kq qk5.5.2 功率谱密度
在离散型随机信号中,随机序列的功率谱密度为自相关函数的傅里叶变换,RX()DRX(kT)(kTs)
对应的傅里叶变换为:
GX()kRX(kTs)ejkTs
当Ts为1时,上面两式可以改写,即为随机序列的维纳-辛钦定理。pqYnl1alYnlm0bmXnm成为自回归滑动平均(ARMA)系统。它们在描述受白噪声污染的正弦过程等复杂过程时非常有用。
三、个人总结及心得体会。
通过本次对《随机信号分析基础》(第二版),第5章随机信号通过线性系统的自学。首先对我的自学能力加以考验,并得到了充分的锻炼。发现自学过程是非常有意义的,并且使我对知识的理解和更加深刻。
通过自学,我系统的了解了连续随机信号通过线性系统的原理,及分析方法,对此有更好的领会。
第四篇:随机信号大作业
随机信号大作业 第一章上机题:
设有随机初相信号X(t)=5cos(t+),其中相位是在区间(0,2)上均匀分布的随机变量。(1)试用Matlab编程产生其三个样本函数。(2)产生t=0时的10000个样本,并画出直方图 估计P(x)画出图形。
解:
(1)由Matlab产生的三个样本函数如下图所示:
程序源代码:
clc clear m=unifrnd(0,2*pi,1,10);for k=1:3 t=1:0.1:10;X=5*cos(t+m(k));plot(t,X);hold on end xlabel('t');ylabel('X(t)');grid on;axis tight;(2)产生t=0时的10000个样本,并画出直方图估计P(x)的概率密度并画出图形。
源程序代码:
clear;clc;=2*pi*rand(10000,1);x=5*cos();figure(2),hist(x,20);hold on;第二章上机题:
利用Matlab程序设计一正弦型信号加高斯白噪声的复合信号。
(1)分析复合信号的功率谱密度,幅度分布的特性;
(2)分析复合信号通过RC积分电路后的功率谱密度和相应的幅度分布特性;
(3)分析复合信号通过理想低通系统后的功率谱密度和相应的幅度分布特性。
解:
设正弦信号的频率为10HZ,抽样频率为100HZ x=sin(2*pi*fc*t)正弦曲线图:
程序块代码:
clear all;fs=100;fc=10;n=201;t=0:1/fs:2;x=sin(2*pi*fc*t);y=awgn(x,10);m=50;i=-0.49:1/fs:0.49;for j=1:m R(j)=sum(y(1:n-j-1).*y(j:199),2)/(n-j);Ry(49+j)=R(j);Ry(51-j)=R(j);end subplot(5,2,1);plot(t,x,'r');title('正弦信号曲线');ylabel('x');xlabel('t/20pi');grid;(1)正弦信号加上高斯白噪声产生复合信号y:
y=awgn(x,10)对复合信号进行傅里叶变换得到傅里叶变换:
Y(jw)=fft(y)复合信号的功率谱密度函数为:
G(w)=Y(jw).*conj(Y(jw)/length(Y(jw)))复合信号的曲线图,频谱图和功率谱图:
程序块代码:
plot(t,y,'r');title('复合信号曲线');ylabel('y');xlabel('t/20pi');grid;程序块代码:
FY=fft(y);FY1=fftshift(FY);f=(0:200)*fs/n-fs/2;plot(f,abs(FY1),'r');title('复合信号频谱图');ylabel('F(jw)');xlabel('w');grid;程序块代码:
P=FY1.*conj(FY1)/length(FY1);plot(f,P,'r');title('复合信号功率谱密度图');ylabel('G(w)');xlabel('w');grid;(2)正弦曲线的复合信号通过RC积分电路后得到信号为:
通过卷积计算可以得到y2 即:y2= conv2(y,b*pi^-b*t)y2的幅度分布特性可以通过傅里叶变换得到Y2(jw)=fft(y2)y2的功率谱密度G2(w)=Y2(jw).*conj(Y2(jw)/length(Y2(jw)))复合信号通过RC积分电路后的曲线频谱图和功率谱图:
程序块代码:
b=10;y2=conv2(y,b*pi^-b*t);Fy2=fftshift(fft(y2));f=(0:400)*fs/n-fs/2;plot(f,abs(Fy2),'r');title('复合信号通过RC系统后频谱图');ylabel('Fy2(jw)');xlabel('w');grid;程序代码:
P2=Fy2.*conj(Fy2)/length(Fy2);plot(f,P2,'r');title('复合信号通过RC系统后功率密度图');ylabel('Gy2(w)');xlabel('w');grid;(3)复合信号 y通过理想滤波器电路后得到信号y3 通过卷积计算可以得到y3 即:y3=conv2(y,sin(10*t)/(pi*t))y3的幅度分布特性可以通过傅里叶变换得到 Y3(jw)=fft(y3),y3的功率谱密度 G3(w)=Y3(jw).*conj(Y3(jw)/length(Y3(jw)))复合信号通过理想滤波器后的频谱图和功率密度图:
程序块代码:
y3=conv2(y,sin(10*t)/(pi*t));Fy3=fftshift(fft(y3));f3=(0:200)*fs/n-fs/2;plot(f3,abs(Fy3),'r');title('复合信号通过理想滤波器频谱图');ylabel('Fy3(jw)');xlabel('w');grid;程序块代码:
P3=Fy3.*conj(Fy3)/length(Fy3);plot(f3,P3,'r');title('理想信号通过理想滤波器功率密度图');ylabel('Gy3(w)');xlabel('w');grid;
第五篇:随机信号处理教学文本
随机信号处理教学大纲
课程名称:随机信号处理
学 时:45学时 开课学期:第六学期
适用专业:电子信息工程、电子科学与技术 课程类别:选修 课程性质:专业基础课
先修课程:数字信号处理、概率论与数理统计、数字电路、计算机原理
教 材:《随机信号处理》 张玲华,郑宝玉著
清华大学出版社202_年9月第一版(一)本课程的地位、性质和任务
随机信号是客观世界中普遍存在的一类信号,对其特性的深入理解以及掌握相应的分析与处理方法,对电子信息工程专业的学生是非常重要的。本课程是电子信息工程、信息对抗技术专业的本科生掌握现代电子技术必备的一门学科基础课。学习本课程的目的在于掌握信号统计分析与处理的理论和方法,通过学习,具备一定的随机信号分析和处理的能力,为以后专业课学习打下基础。(二)课程教学的基本要求:
通过该课程的学习,要求学生理解随机信号的基本概念,掌握随机信号的基本理论和分析处理方法,为学习“统计信号处理”或“信号检测与估值”等后续课程以及将来的发展奠定坚实的基础。
(三)课程主要内容及学时分配:
第1章 绪论(2学时)要求了解数字信号处理的基本概念,学科概貌,DSP的基本组成、特点等。主要包括下面几部分内容:
1.1 数字信号处理的基本概念
1.2 数字信号处理的学科概貌(研究内容)1.3 数字信号处理系统的基本组成 1.4 数字信号处理的特点 1.5 本课程的特点
第1章 数字信号处理基础(10学时)
要求掌握离散时间信号系统相关概念、数字滤波器的结构等内容。主要包括下面几部分内容:
1.1 离散时间信号系统 1.2 数字滤波器的结构
2、《随机过程理论及应用》,陆大鑫等,高等教育出版社,1987。
3、《Probability RandomVariable Radom process》帕布里斯(美)
4、《统计信号处理》 沈凤麟,叶中付,钱玉美著 中国科技大学出版202_年3月(五)教学方法的原则性建议: 重点难点
1、随机信号基本理论和概念的建立
2、基本随机信号处理方法的掌握
3、现代谱估计理论和自适应信号处理技术
方法提示
授课、小结、习作讨论、辅导与答疑相结合。