首页 > 精品范文库 > 6号文库
现有轿车发动机工作原理及优缺点分析
编辑:春暖花香 识别码:15-848087 6号文库 发布时间: 2023-12-25 23:14:14 来源:网络

第一篇:现有轿车发动机工作原理及优缺点分析

现有轿车发动机工作原理及优缺点分析

一.发动机相关结构

一.发动机排量:发动机排量是发动机各汽缸工作容积的总和,一般用升(L)表示。而汽缸工作容积则是指活塞从上止点到下止点所扫过的气体容积,又称为单缸排量,它取决于缸径和活塞行程。发动机排量是非常重要的发动机参数,它比缸径和缸数更能代表发动机的大小,发动机的许多指标都同排气量密切相关。一般来说,排量越大,发动机输出功 率越大。

二.发动机参数:例如“L4”、“V6”、“V8”、“W12”这些都表示发动机汽缸的排列形式和缸数。汽车发动机常用缸数有3缸、4缸、6缸、8缸、10缸、12缸等。一般说来,排量1升以下的发动机常用3缸,例如0.8升的奥拓和福莱尔轿车。排量1升至2.5升一般为4缸发动机,常见的经济型轿车以及中档轿车发动机基本都是4缸。3升左右的发动机一般为6缸,比如排量3.0升的君威和新雅阁轿车。排量4升左右的发动机一般为8缸,比如排量4.7升的北京吉普的JEEP4700。排量5.5升以上的发动机一般用12缸发动机,例如排量6升的宝马760Li 就采用V12发动机。在同等缸径下,通常缸数越多排量越大,功率也就越高;而在发动机排量相同的情况下,缸数越多,缸径越小,发动机转速就可以提高,从而获得较大的提升功率。

二.四冲程发动机工作原理

当前轿车主要使用四冲程发动机做功,所以这里给出了四冲程发动工作原理。

进气冲程

活塞在曲轴的带动下由上止点移至下止点。此时排气门关闭,进气门开启。在活塞移动过程中,气缸容积逐渐增大,气缸内形成一定的真空度。空气和汽油的混合物通过进气门被吸入气缸,并在气缸内进一步混合形成可燃混合气。压缩冲程

进气冲程结束后,曲轴继续带动活塞由下止点移至上止点。这时,进、排气门均关闭。随着活塞移动,气缸容积不断减小,气缸内的混合气被压缩,其压力和温度同时升高。

作功冲程

压缩冲程结束时,安装在气缸盖上的火花塞产生电火花,将气缸内的可燃混合气点燃,火焰迅速传遍整个燃烧室,同时放出大量的热能。燃烧气体的体积急剧膨胀,压力和温度迅速升高。在气体压力的作用下,活塞由上止点移至下止点,并通过连杆推动曲轴旋转作功。这时,进、排气门仍旧关闭。

排气冲程

排气冲程开始,排气门开启,进气门仍然关闭,曲轴通过连杆带动活塞由下止点移至上止点,此时膨胀过后的燃烧气体(或称废气)在其自身剩余压力和在活塞的推动下,经排气门排出气缸之外。当活塞到达上止点时,排气行程结束,排气门关闭。

三.发动机分类及其优缺点分析 发动机的分类

一.按进气系统工作方式

一.自然吸气发动机:

自然吸气是汽车进气的一种,是在不通过任何增压器的情况下,大气压将空气压入燃烧室的一种形式。二.涡轮增压发动机:

涡轮增压,是一种利用内燃机运作转产生的废气驱动空气压缩机)的技术。

增压原理

涡轮增压装置主要是由涡轮室和增压器组成。首先是涡轮室的进气口与发动机排气歧管相连,排气口则接在排气管上。然后增压器的进气口与空气滤清器管道相连,排气口接在进气管上,最后涡轮和叶轮分别装在涡轮室和增压器内,二者同轴刚性联接。这就是一个完整的涡轮增压装置。

一般来说,涡轮增压都是利用发动机排出的废气惯性冲力来推动涡轮室内的涡轮,涡轮带动同轴的叶轮,叶轮压缩输送由空气滤清器管道来的空气,使之增压之后进入气缸。当发动机转速增快,废气的排出速度与涡轮转速也同步增快,叶轮又压缩更多的空气进入气缸,空气的压力和密度增大可以使更多的燃料充分燃烧,相应的增加燃料量和调整一下发动机的转速,就可以实现增加发动机的输出功率了。

三.机械增压发动机

机械增压是指针对自然进气引擎在高转速区域会出现进气效率低落的问题,从最基本的关键点着手,也就是想办法提升进气歧管内的空气压力,以克服气门干涉阻力,虽然进气歧管、气门、凸轮轴的尺寸不变,但由于进气压力增加的结果,让每次气门开启时间内能挤入燃烧室的空气增加了,因此喷油量也能相对增加,让引擎的工作能量比增压之前更为强大。

增压原理

由于各类引擎的皮带盘尺寸差异不大,同时受限于引擎安装空间,因此机械增压器的工作转速远低于3,000rpm,与涡轮增压器经常处于10,000rpm以上超高转域的情形相去甚远,同时机械增压器转速是完全连动于引擎转速,两者呈现平起平坐的现象,形成一组稳定之等差数线,而且增压器与引擎之间会互相影响,当一方运转受阻的时候,必定会藉由皮带传输而影响另一方的运作,这就是机械增压器的特性。

四.双增压发动机

在典型的二级可调增压系统中,两台涡轮增压器成串联布置。二级可调增压系统由高压级增压器、低压级增压器、废气流量分配阀和空气旁通阀组成。高压级增压器为一个小增压器,低压级增压器为一个大增压器。如果增压压比较高,则需要考虑在压气机间对增压空气冷却。

二.按气缸排列式

一.直列式

所有汽缸均肩并肩排成一个平面,它的缸体和曲轴结构简单,而且使用一个汽缸盖。可用“L”代表。二.V型

V型发动机就是将所有汽缸分成两组,把相邻汽缸以一定夹角布置一起,使两组汽缸形成有一个夹角的平面,从侧面看汽缸呈V字形的发动机。V型发动机的高度和长度尺寸小,在汽车上布置起来较为方便。它便于通过扩大汽缸直径来提高排量和功率并且适合于较高的汽缸数。三.水平对置发动机

水平对置发动机,发动机活塞平均分布在曲轴两侧,在水平方向上左右运动。使发动机的整体高度降低、长度缩短、整车的重心降低,车辆行驶更加平稳,发动机安装在整车的中心线上,两侧活塞产生的力矩相互抵消,大大降低车辆在行驶中的振动,使发动机转速得到很大提升,减少噪音。

三.按冷却方式分

一.水冷发动机

由于水的比热高,并且在零件与冷却介质间有良好的传热性能,因此现代汽车发动机大多采用水冷却。采用水作为冷却介质的发动机称为水冷发动机。冷却液也就是水,由水泵输送,流过发动机和水散热器。二.风冷发动机

风冷发动机,是以空气作为冷却介质的发动机。它在气缸及缸盖的外壁铸造出一些散热片,并用冷却风扇使空气高速吹过散热片表面,带走发动机散出的热量, 使发动机冷却。四.按燃油供应方式分

一.电喷发动机

电喷发动机是采用电子控制装置,取代传统的机械系统(如 化油器)来控制发动机的供油过程。如汽油机电喷系统就是通过各种传感器将发动机的温度、空燃比、油门状况、发动机的转速、负荷、曲轴位置、车辆行驶状况等信号输入电子控制装置,电子控制装置根据这些信号参数,计算并控制发动机各气缸所需要的喷油量和喷油时刻,将汽油在一定压力下通过喷油器喷入到进气管中雾化。并与进入的空气气流混合,进入燃烧室燃烧,从而确保发动机和催化转化器始终工作在最佳状态。这种由电子系统控制将燃料由喷油器喷入发动机进气系统中的发动机称为电喷发动机。二.缸内直喷发动机

缸内直喷(FSI)就是直接将燃油喷入气缸内与进气混合的技术。喷射压力也进一步提高,使燃油雾化更加细致,真正实现了精准地按比例控制喷油并与进气混合,并且消除了缸外喷射的缺点。同时,喷嘴位置、喷雾形状、进气气流控制,以及活塞顶形状等特别的设计,使油气能够在整个气缸内充分、均匀的混合,从而使燃油充分燃烧,能量转化效率更高。

发动机的优缺点分析 优点

一.自然吸气发动机

1.技术成熟,稳定性较高 2.动力输出平顺,反映速度快 二.涡轮增压发动机 1.提高燃油经济性,降低尾气排放 2.小排量高功率,能够提供持续的动力

三.机械增压发动机

相对于涡轮增压技术,机械增压完全解决了油门响应滞后,涡轮迟滞和动力输出突然现象,达到瞬时油门响应,动力随转速线性输出,增加驾驶性能能效果。此外,在低速高扭、瞬间加速,机械增压技术都优于涡轮增压技术。机械增压技术不需跟发动机的润滑系统连接,不需要冷却,免维护,工作可靠,而且寿命长。

四.双增压发动机

1.应用二级增压系统可以获得更高的进气压力,提高发动机动力性和 高原适应能力。

2.采用二级增压器,极大地拓宽了增压系统的流量范围,可以使柴油 机满足高功率、大转矩、低油耗的要求。

3.采用二级增压器,可以对排气歧管内的废气压力及进气管的增压压 力实施调节,实现EGR,满足排放要求。

4.二级增压系统如果采用较小惯量的低压级增压器,可以有效的解决 系统加速滞后问题。

五.直列式发动机

1.制造成本较低 2.稳定性高 3.低速扭矩特性好 4.燃料消耗少 5.尺寸紧凑

六.V型发动机

1.效率较直列型发动机更高

2.较直列型发动机更稳定

七.水平对置型发动机

水平对置发动机的最大优点是重心低。由于它的气缸为“平放”,不仅降低了汽车的重心,还能让车头设计得又扁又低,这些因素都能增强汽车的行驶稳定性。同时,水平对置的气缸布局是一种对称稳定结构,这使得发动机的运转平顺性比V型发动机更好,运行时的功率损耗也是最小。当然更低的重心和均衡的分配也为车辆带了更好的操控性。

八.水冷发动机

1.冷却效果好

2.冷却均匀

3.工作可靠

4.不受环境影响

5.噪声低 九.风冷发动机

1.结构简单 2.质量轻 3.维护使用方便 4.对气候变化适应性强 5.起动快 6.不需要散热器 7.可运用于缺水地区 十.电喷发动机 1.功率高

2.省油

3.噪音低

4.一次点火率高

5.能准确控制混合器的质量,保证缸内燃料燃烧完全。

十一.缸内直喷发动机

1.缸内直喷式汽油发动机的优点是油耗量低,升功率大。

2.压缩比高达12,与同排量的一般发动机相比功率与扭矩都提高了 10%。

缺点

一.自然吸气发动机

1.跟涡轮增压发动机相比动力上有差距。二.涡轮增压发动机

1.动力输出反应滞后,平顺性有待提升。2.后期保养维护费用不低。

3.在经过了增压之后,发动机在工作时的压力和温度都大大升高,因此发动机寿命会比同样排量没有经过增压的发动机要短,而且机械性能、润滑性能都会受到影响,这样也在一定程度上限制了涡轮增压 技术在发动机上的应用。

三.机械增压发动机

1.加速效果不是很明显,与自然吸气引擎差别不大。

2.会损失发动机部分动能,机械增压靠皮带带动,归根到底驱动力还是 引擎。

3.高转速时会产生大量的摩擦,影响到转速的提高,噪音大。四.双增压发动机

1.需要较大的空间 2.价格比较昂贵

3.EGR率控制不如可变增压系统控制灵活 4.在高转速时相对于可变增压系统油耗偏高

五.直列型发动机

六.V型发动机

1.结构复杂

2.成本高

七.水平对置型发动机

1.结构复杂,不易制造。

4.机体较宽,不利于布局。

5.活塞水平放置和其自身重力的作用,其水平往返运行中的顶部和底 部与缸套的摩擦程度就不一样,这会使得缸套的上下两个内面出现 不同的磨损,底部会磨损的要多一些。2.横置的气缸因为重力的原因,会使机油流到底部,使一边气缸得不 到充分的润滑。3.护养成本高。功率较低,难以适合配备6缸以上的汽车。

八.水冷发动机 6.水平对置能够抵消横向的振动,只是一种理想状况,如果由于积碳 等原因导致气门不能完全闭合,也会造成缸压不等,这就会造成横 向力不等,这种情况下同样会造成左右抖动。

1.构造复杂 2.成本较高

3.故障率高及维修复杂

4.功率损耗大 九.风冷发动机

1.缸体和缸盖刚度差 2.振动大 3.噪声大 4.容易过热 十.电喷发动机

1.较缸内直喷发动机,该发动机喷射时可能造成汽油的浪费

2.电动汽油泵是靠流过汽油泵的燃油来进行冷却的。在油箱缺油状态

十一.缸内直喷发动机

1.零组件复杂 2.价格昂贵

3.对汽油优质要求很高

下长时间运转发动机,会使电动汽油泵因过热而烧坏。

第二篇:发动机分析原理

柴油机故障分析

内燃机中级技术工人培训试用教材

第一节

柴油机故障的征象和分析故障的原则

一、柴油机故障的征象

柴油机在使用过程中,由于零件的自然磨损和变形,使用维护不当、装配和维修质量不良等原因,使柴油机性能下降,出现不正常的现象,甚至不能继续工作,这种现象称为故障。

当柴油机发生故障时,往往通过一个或几个征象表现出来,一般这些征象都具有可观、可听、可嗅、可模、可测量的性质。总结起来有以下几个方面:

1、工作不正常:如不易起动,转速不稳、不能带负荷、自动停车等;

2、声音不正常:如发出不正常的敲击声、放炮声、吹嘘声等;

3、温度不正常:如排气管过热、机油过热、冷却水过热、轴承过热等;

4、外观不正常:如排气管冒白烟、黑烟、蓝烟、漏水、漏气等;

5、消耗不正常:如柴油、冷却水、机油等消耗量增加,油面及水面升高或降低;

6、气味不正常:如排气管带很浓的柴油和机油的气味,以及不正常的嗅味和焦味等。

柴油机故障的发生大部分是由于使用时不遵守操作规程,不注意保养工作,装配和调整不正确以及一些零件的磨损而引起的。因此,正确的使用和及时的保养是防止和减少故障的有效办法。但有时发生了故障,也应当仔细的分析故障发生的原因,及时加以排除。

二、分析故障的原则

为了能迅速、有效地排除故障,要对故障产生的部位和原因进行正确的判断。因此要求在了解故障的基本征象后,根据该柴油机构造和原理上的特点,全面地分析产生故障的可能原因,然后根据从简到繁、由表及里、按系统逐个分析,最后找出故障的实际原因,加以排除。根据实际中总结出来的判断故障的经验是:搞清征象、结合构造,联系原理,具体分析,从简到繁、由表及里、按系统分段,逐步检查。绝不能在没有弄清问题之前,随便乱拆机器。这样不但不能消除故障,还可能发生新的故障。

实际上,故障的征象是一定的故障原因在一定的工作条件下的表现,当改变工作条件时,故障的征象也随之改变,只在某一种条件下的表现,故障的征象表现得更为明显。根据这个道理,广大机务机务工作者在长期的实践中,创造了很多提高观察和听诊效果的技术措施和方法,使故障征象表现得更为明显和突出。现将这些方法介绍如下:

1、停缸法:依次地停止某缸供油,观察故障征象变化的情况,以判断某缸是否有故障。如柴油机发生断续冒烟,但在停止某缸的工作时此现象即消失,则证明此缸有故障,应对此缸进行分析。

2、比较法:分析故障时,若对某一机件有怀疑,可以用技术状态正常的备件去替换,根据替换后工作情况的变化,来判明原件的技术状态是否正常。一般

对喷油器的故障可以采用这种检查方法,这时可以换上一个备用喷油器,以判断原用喷油器是否产生了故障。

3、试探法:在分析故障原因时,往往由于经验缺乏,不能肯定故障的原因,而要进行某些试探性调整和拆卸。以观察故障征象的变化,来寻找或反证故障产生的部位。如怀疑活塞组在气缸内磨损严重,可向缸内灌点机油,若气缸压缩性变好了,说明所怀疑的故障原因正确。但试探时必须遵守“少拆卸”的原则,并在确有把握恢复原有状态的情况下才能进行。

4、变速法:在升降柴油机转速的瞬时,注意观察故障征象的变化情况,从中选择出适宜的转速,使故障的征象表现得更为突出。一般情况下多采用低转速运转,因为这时柴油机转得慢,故障征象持续时间长,便于人们观察和检查。如检查配气机构,由于气门间隙过大引起的敲击声时,就采用这种方法。

在实际工作中,上述几种方法常常是综合采用相成的效果。

第二节

曲柄连杆机构故障分析

一、气缸漏气

1、征象

(1)漏气:由于气缸内压缩力不足,故很易容摇转曲轴,并在转动曲轴时,有气体漏入曲轴箱发生“咝咝”声,打开加机油口盖处,听得较清楚,漏气严重时还会引起曲轴箱爆炸。

(2)起动困难:起动后工作不平稳,功率不足,曲轴箱的通气管(加机油口盖)冒烟或从油底壳接缝处向外渗机油。

(3)在起动、低速、大负荷、转速变化时沿气缸全长有敲击声(敲缸),一般随柴油机走热后响声逐渐减轻。

(4)由于机油窜入燃烧室内燃烧,除机油消耗量增加外,同时活塞顶及燃烧室大量积炭,活塞环胶结,排气冒蓝烟,严重时排气窜机油。(5)燃油燃烧不完全,燃油消耗率高,排气冒黑烟。

(6)水温和机油温度高,有的零部件过热,如气缸盖、排气管等。

2、原因

(1)气缸套、活塞、活塞环过度磨损,势必造成气缸间隙、活塞环的开口间隙和侧向间隙增大,因而密封性差,造成漏气。

(2)由于使用及保养不当和其它原因而造成活塞、汽缸的速磨损。例如:1)空气滤清器油盘中缺油,或空气滤清器与进气管接触不严密。另外,在清洗空气滤清器后,滤芯总成装错或内、外橡胶密封圈装错等,均会在进气中夹尘土进入气缸,加剧气缸等的磨损。2)机油不足或不清洁或变质,使活塞与气缸早期磨损。3)冷车起动后,未经预热立即投入工作;或长时间在水温较低情况下怠速运转,使燃烧气体中的水蒸气凝成水滴,并和其它燃烧生成物形成酸性物质(流酸等)腐蚀气缸壁,使磨损加剧。4)更换活塞环时,由于气环的开口间隙和侧间隙过大;扭曲环或锥形环装反;油环磨损或油环回油孔被积炭堵塞。更换气缸套时,缸套质量不佳,粗糙度不够;装配时,清洗不干净或气缸间隙过大;油底壳中机油面过高等原因,都会使大量机油窜入气缸内燃烧,使活塞环(特别是第一道路环)胶结在环槽中失去弹力,从而密封性大为减弱。同时,由于积炭过多,也加速这些零件磨损。5)由于柴油机长期在高温或超负荷状态下工作,活塞环弹力减弱;或由于安装不正确或在工作中由于缸套椭圆过大,而使活塞环自动转位,使各环开口重合,都会造成漏气,加速磨损。(3)连杆弯曲、扭曲变形;;连杆大小头孔中心线互相歪斜不平行;或主轴颈与连杆轴颈不平行,造成气缸单边偏磨。

(4)活塞环拆断、活塞销卡环和活塞销窜出,使缸壁严重刮伤,也会产生漏气。(5)新机或大修后的柴油机(或新换缸套及活塞组),未磨合好就投入作业,也会加速磨损。

3、检查与判断:由于柴油机其它系统的故障,也会出现上述征象中的一个或几个征象,这就给判断故障带来了困难。

检查压缩压力,目前多用气缸压力表来测定,检查前应使柴油机水温在65℃以上,拆下被检查缸的喷油器,装上气缸压力表,使喷油泵停止供油;然后用起动机带动曲轴转动(或拆下全部喷油器,用手摇转曲轴变亦可),此时压力表的最高读数,即为该缸压缩终了的气缸压力。柴油机一般正常压力为30—40公斤/平方厘米,磨损后的压力应不低于原厂标准的70—80%。

(1)在检查中发现压力过低,并在加机油口听到漏气声,可向该缸注入少量机油后再检查一次。若压力显著提高,漏气声消失,则表明该缸的缸套和活塞组零件严重磨损漏气。

(2)检查时若在排气管口或进气管听到“嗤嗤”漏气声,说明该缸气门与气门座之间关闭不严而漏气。

(3)如喷油器安装孔漏气,可在工作中从外部直接看到,轻者有泡沫冒出;重者会出现“嗤嗤”漏气声,并伴之有气体冲出。

(4)气缸垫漏气,也会使压缩力不足,判断方法,可参考“烧气缸垫”故障中各项。

4、排除方法:拆除活塞环间隙、活塞裙部和气缸的配合间隙以及气缸的失圆度。若活塞和气缸磨损不严重时可重换活塞环,并将缸套旋转90°安装。若磨损严重,应镗缸后采用相应的加大活塞和活塞环,或全部换换标准的气缸、活塞及活塞环。若因连杆弯扭造成的偏磨应校正连杆。

空气滤清器、机油滤清器失效应及时更换,并按时更换机油。

在野外,由于气缸漏气,在紧急情况下往往多次起动不了后感到更难起动。如果没有其它问题,主要是因压缩力不足而造成。判断方法是扳动飞轮,如一松手飞轮能往回倒转,说明压缩情况还好;如已不能倒转,往往由于多次起动后,过多的柴油冲走了机油,缸内的密封情况更坏而更难起动。可卸去全部喷油器,倒入少量机油,停车手柄板至停油位置,按起动按钮,使机油涂于缸壁表面后,再装上喷油器,重新起动。

二、气缸垫烧损

气缸垫烧损后,柴油机往往仍可发动,但带负荷后,功率不足,严重时柴油机不能工作,并可能造成某些有关零件的损伤,因此,要认真预防和排除。

1、征象:气缸烧损后就失去密封作用,发生窜气、漏水或漏油现象。气缸垫烧损的部位可以看到黑斑,而且用棉纱也不易擦净。气缸垫烧损的部位不同,所表现的外征也各不相同。如:

(1)当烧坏部位在相邻两缸窜气。不减压摇转曲轴时,两缸的压缩力都不足;工作时冒烟,柴油机没劲,转速明显下降,达不到标定转速。

(2)当烧坏部位使气缸与冷却水孔穿通时,由于气体窜入冷却水套,即使水温不高,水箱中也有很大压力的蒸气外冒,随着温度升高,冒热气现象更加严重,在水箱中发出“鼓鼓”的冒泡声;进、排气管中向外冒白色蒸气,甚至向外

窜水;卸下喷油器时,从孔中向外窜水。

(3)当烧坏部位使气缸与缸盖螺栓孔的缸垫边缘相通时,漏气处会有断续的淡黄色泡沫产生,严重时除能听到“吱吱”的声音外,还可看到烟色,有时还有漏油、漏水现象,缸盖螺栓及孔上有积炭。

(4)当烧坏部位使气缸与机体上平面的机油孔相通时,气体窜入润滑系,机油温度升高,机油变质;通往气缸盖上部润滑气门机构的机油中有气泡。

(5)当烧坏部位使气缸与冷却水套、润滑油道相通时,在水箱的水面上有黄褐色的机油泡沫;油底壳机油中有水,从加机油口处向外冒热气;严重时,排气管出机油和水。

原因

(1)气缸垫的质量不好,铜皮内的石棉布置不均匀,特别是燃烧室周围处没有布置均匀时,最易冲坏气缸垫。

(2)拧紧气缸盖的螺栓顺序不正确,或末拧到规定的扭力,或各拧紧扭力不均匀,以致使气缸盖平面压力不均匀,气缸垫没有完全贴合在气缸体与气缸盖的接合面上。这样气缸垫最易漏气冲坏,而且易使气缸盖变形。

(3)气缸套高出机体平面,各缸套高度不平或高度不够或凸出过多,使气缸盖压不紧,燃烧气体窜出,烧坏气缸垫。

(4)缸盖螺母紧的次数过多、过紧(超过规定扭矩)因而使螺栓周围的缸体平面被螺栓拉凸得起不平,结果使缸盖压不严密,燃烧气体冲出,烧坏气缸垫。

(5)缸盖或气缸体的接触平面不平,使气缸垫不能平整压实而冲坏气缸垫。如气缸垫经常在同一部位损坏,则多系气缸盖或气缸体不平所造成。

(6)柴油机工作温度过高,如超负荷工作,喷油时间过迟、气缸垫在高温下工作,很容易失去原有的弹性,使气缸垫变得非常脆弱而最后被烧毁。

(7)柴油机长期处于喷油时间过早情况下工作,由于柴油被喷入压力和温度都不高的空气中,物理化学准备条件较差,着火落后期延长,导致速燃期压力升高率增大,往往超过允许范围,产生冲击性气体压力载荷,也容易冲坏气缸垫。

(8)气缸垫使用时间过久或拆装次数多,汽缸垫便会失去弹性,不能很好地起到密封作用,若继续使用便会烧毁。

(9)选用的汽缸垫厚度不够,使柴油机压缩比增高,从而燃烧压力便增高,再加之汽缸垫太薄会封闭不严而易被冲坏。

(10)拆下汽缸垫后,随意放置,没有挂起来或放平,使汽缸垫变形或损坏,装上使用时候会烧毁。

(11)汽缸盖和汽缸垫安装时不清洁,使汽缸盖、汽缸体平面接触不严。(12)由于柴油中混入水分,在高温的作用下,产生有机酸,汽缸盖被腐蚀成蜂窝状的麻点,窜气而冲坏。

3.排除方法

(1)发现汽缸垫稍有损坏应立即更换,对于弹性减弱气缸垫,经过在机油中加温后还能继续使用。如果发现气缸垫漏气但没有烧损,可在漏气部位加铜皮(厚约0.2毫米)即可防漏。也可以将缸垫在火焰上均匀地烤一烤,由于石棉膨胀,使缸垫复原,防止漏气。

(2)气缸体与气缸盖平面不平时需铲刮修平。

(3)气缸套凸出高度不够或不一致时,需加以调整和修理,使其达到规定值。同一台柴油机各缸凸出高度相差不得大于0.05毫米。

(4)更换气缸垫时应测量余隙。余隙太大,压缩比变小,影响柴油机功率;

余隙太小,压缩比变大,不但易烧坏气缸垫而且会造成气门碰活塞顶。

三、气缸体、气缸盖破裂 气缸体、气缸盖破裂的主要是使用不当。破裂部位一般在进、排气门座之间,燃烧室与气门座之间,两缸之间的鼻梁,水套、水道空以及气缸盖螺栓固定空等部位。

1.征象

(1)水箱内冒气泡,冷却水迅速消耗,柴油机工作不稳定,功率下降,声音不正常,甚至不能继续工作。

(2)当外部破裂时,水向外渗漏;内部破裂时,水漏到油底壳使油面增高;水漏到气缸中会变成蒸汽随同废气一起排出,使排气冒白烟,柴油机不易起动。

2.原因:气缸盖经常处于高温、高压下工作,燃烧时最高瞬时压力可达60-70公斤/厘米2;最高温度可达1800-202_℃左右;假如柴油机202_转/分运行,则气体的压力和温度将是每分钟1000次的转度变化着,热冲击十分强烈。根据实际测量,缸盖底面的温度分布是不均匀的,对应活塞凹槽处得缸盖温度较高,而缸与缸之间的出砂孔和孔边缘的温度较低。由于存在温差,相应生产热应力及残余应力,最后导致出现裂纹和损坏。现从使用维护角度分析原因如下:

(1)严寒季节起动时,向冷机内骤加过热的开水。

(2)在严寒季节冷却水结冰而胀坏.故冬季使用时在停车后约半小时,应将冷却水放尽。最好用摇手柄转动曲轴数圈。排除水泵内的存水,水泵放水阀不必关上.以免积存冷却水。注意水箱通气孔应畅通,以免影响放水。

(3)柴油机温度过高时,突然加入冷却水,这样极易引起炸裂。如冬季使用柴油机时,有的机手为了便于起动.先将柴油机起动后.再加冷水.这样做是不好的。因为起动后机体内部温度迅速升高,加入冷水后便易炸裂。又如柴油机在缺水开锅时突然加入大量冷水,这也是不允许的,应当逐步加入少量冷水使温度降低。

(4)柴油机温度还很高时就放水,使气缸盖机体外部骤冷.内部很热,使各机件温度下降不一致,特别在冬季更趋严重,这样便产生内应力而出现裂纹。因此放水应等柴油机温度降至40-50℃(停车后约半小时)后再进行。

有的人用减压机构进行停车操作,由于突然在高温下吸入过多的冷空气,缸盖等也易炸裂。因此一般不应用减压机构熄火。

(5)柴油机冷车起动后,还没有走热,就突然迅速加大负荷,使气缸盖、机体内由冷骤热,产生内应力而裂开。

(6)气缸盖局部温度过高.如某缸喷油时间不对或喷油量过多,或喷嘴滴漏严重,冷却水道局部堵塞,气缸盖螺栓松紧不均匀,以及气缸盖拆卸次数过多,引起气缸盖挠曲,均会造成局部高温。这时由于冷却速度快慢不一形成裂纹。

(7)柴油机长期超负荷工作,喷油时间过早或过迟,都会引起柴油机过热,使内部机件内外冷却温度不一致,也容易产生热裂。因此在使用中不要长时间超负荷作业,正确调整喷油时间,要经常保持柴油机正常水温(80-95℃).

(8)冷却系水套中水垢过多,影响散热效果,使缸盖底面温度升高,局部热应力集中,导致缸盖产生裂纹;由于柴油机在工作中的震动,使水垢成大块的脱落,水垢脱落处的局部温度下降,造成温差过大,膨胀不一致,产生内应力,因而炸裂。

(9)气缸垫在安装时没有对准孔位(气缸垫上的水孔未与气缸体或气缸盖上的水孔对准),使冷却水流量减小,使柴油机温度升高,气缸盖底面不均匀的温度更加不均匀,导致产生裂纹。

3-排除方法:气缸体、气缸盖的裂纹根据不同情况焊补或更换,四、气缸套破裂

气缸套破裂的原因有下列一些方面:

1.为保证可靠地压紧气缸套,湿缸套上端与气缸盖衬垫压紧部分,要突出机体顶面0.05-0.15毫米(见图1-1)。这个突出量太大,在拧紧气缸盖对,会使气缸套变形,并使凸缘根部产生裂纹。

有的气缸套上端面再有一个台阶,目的是保护气缸垫不致烧损(图1-1).安装这种气缸套的气缸垫时.气缸垫孔应套入这个台阶上·不要搁在上面,否则会使气缸套受的力偏离气缸体承受面.使缸套台肩产生剪切应力而断裂,经常发现在拧紧气缸盖螺栓时,缸套即行断裂,多属此类原因。

2.气缸套与气缸体配台间隙过大;或由于安装时密封胶圈的作用或缸套凸缘下平面不平,以及缸套凸缘与气缸体接触平面中间有杂物,把缸套垫起.使缸套装斜,存活塞侧压力作用下.产生微量的横向摆动,促使在凸缘处产生疲劳裂纹而断裂(图1-2)。

3.在凸缘处不是圆滑过渡而成尖角.有明显刀痕或裂纹,在交变载荷下,此处易产生应力集中.产生微观疲劳裂纹而逐渐扩展,以致断裂。如图1-2,表示出凸缘过渡成尖角的断裂情况。

图1-1带有台阶的气缸套和产生断裂的位置

图1-2气缸套凸缘的断裂及断口形状

4.气缸套外壁积存厚的水垢,影响散热,附于气缸套外壁的水垢可能部分掉落,这样使气缸套受热不均匀.在热应力的影响下发生破裂。

5.使用方面的原因,如柴油机运行中水量不足,甚至断水,使柴油机过热,此时苦突然加入冷水,缸套骤冷收缩.极易产生裂纹。柴油机长期超负荷运转,机械负荷与热负荷急剧增大.也会造成缸套裂纹。袈缝处严重漏水后,气缸内产生“水垫”,造成“顶缸,将连杆顶弯或破坏其它零件,水漏入曲轴箱后,破坏机油性能,易产生烧瓦事故。

6.在安装缸套时,因密封胶圈过紧,用力打下缸套,由于用力不均,使缸套圆角处或其他强度薄弱处产生裂纹。

7.寒冷天气水套内的水没放尽,缸套被冻裂:

8.活塞环折断或活塞销窜动,往往因挤压缸套而造成裂纹。

9.其它还可能是气缸套材质不合格或工艺上没有很好退火等原因,引起缸套断裂。还可 能因缸套锈蚀严重而使强度减弱,引起缸套断裂的情况。

五、活塞烧损与断裂

1.征象:活塞烧损一般产生在活塞顶部;断裂一般产生在活塞顶、机械负荷最大的活塞销座附近和安装油环处。活塞断裂后.机体通气孔处会排出大量浓烟.活

塞破碎会引起捣缸事故。

2.原因:活塞顶烧损与断裂主要是气缸中压力和温度的急剧变化而引起。活塞顶产生断裂的原因有:

(1)喷油器工作不正常.有未雾化的燃油滴在活塞顶上.燃烧时产生局部高温.或因活塞顶积炭严重,造成局部高温而引起活塞顶烧损。

(2)供油时间过早.产生敲缸。由于气缸内压力急剧上升,使活塞受到过大的冲击载荷.因而在活塞顶部易出现裂纹。

(3)长时间超负荷运行,冷却系统缺水,水温过高等,造成柴油机过热,易使活塞顶产生裂纹。

(4)气缸套冷却部位由于水中杂质与水垢沉淀,致使活塞顶散热差,活塞顶易产生裂纹。

(5)经常在柴油机未达到正常温度时迅速增加载荷。

(6)柴油机过热的情况下,突然向冷却系统内加入大量的冷水。

(7)气缸内漏入冷却水或落入零件、杂物或活塞与气门相撞等,产生顶缸现象,造成活塞顶断裂。

活塞在销孔处及其余部位断裂的原因有;

(1)活塞与气缸配合间隙过小,柴油机温度过高,使活塞卡缸而拉断。

(2)气缸与活塞裙部配合间隙过大,工作中活塞在缸套内摆动,又兼受到很大的爆发压力,使活塞撞击缸壁而打坏。

(3)活塞与活塞销紧度过大,使活塞变形或产坐微观裂纹。

(4)安装活塞销时,活塞加热温度不够,活塞销装不进去时,用手锤硬打,强行装入,因而使销座孔内部受到暗伤(或安装后,座孔处就有微小裂纹而未被发现),在柴油机工作中,受到气体爆发压力和活塞运动中的惯性力作用后,使活塞破碎。

(5)连杆弯曲、扭曲等变形,使活塞受较大的附加应力作用而损坏.

(6)活塞环胶着.卡住而使活塞拉断。活塞环润滑条件最差,特别是第一道环,同时工作中受到高温高压气体的影响,并刮下爆发后附在缸壁上的炭灰,因此磨损严重,而易胶着卡住。有时起动困难,大量未燃烧的柴油存积在活塞顶部,或在超负荷时供应过多的柴油,未燃烧部分就形成积炭而将活塞环胶住。又如喷油器雾化不良,或窜机油等而形成的积炭,也多堆积在第一道环处,因而使活塞环胶着卡住。

(7)由于油环槽的周围有很多回油孔,同时,该处的厚度较气环槽薄些,因而减弱了该处的机械强度,故易断裂。

(8)活塞环折断后使活塞卡住,因而活搴被拉断。

(9)活塞材料质量不好,引起活塞损坏。

3.扫除:消除上述造成活塞破裂的原因。并在使用维修过程中,就特别仔细检查活塞顶及销座附近有无裂纹,如发现有裂纹应及时更换。因为活塞断裂初期生产的裂纹往往都很小,

第三篇:各流量计工作原理、优缺点分析

V锥型流量计: 工作原理

V型锥流量计属高精度、高稳定性的新型差压式流量仪表。和其他差压式仪表一样,也是基于流动连续性原理和伯努利方程来计算流体工况流量的。我们知道在同一密闭管道内,当压力降低时,速度会增加,当介质接近锥体时,其压力为P+,在介质通过锥体的节流区时,速度会增加,压力会降低为P-,如图一所示,P+和P-都通过V型锥形流量计的取压口引到差压变送器上,流速发生变化时,差压值会随之增大或减小。也就是说对于稳定流体,流量的大小与差压平方根成正比。当流速相同时,锥体节流面积越大,则产生的差压值也越大。

测量介质

V型锥流量计主要用于煤气(焦炉煤气、高炉煤气、发生炉煤气),天然气(包括含湿量5%以上的天然气),各种碳氢化合物气体,包括含湿的HC气体,各种稀有气体,如氢、氦、氩、氧、氮等,湿的氯化物气体,空气,包括含水,含其它尘埃的空气,烟道气;饱和蒸气,过热蒸汽;油类,包括原油(在一定的粘度下)、燃料油、含水乳化油等,水,包括净水、污水,各种水溶液,包括盐、碱水溶液,含蜡、含有水,含油、含沙的水。

优点

1.安装直管段要求低

伯努力方程要求受测流体为理想流体,在实际应用中这是根本不可能的,很多情况会造成流体分布不均匀,如弯头,阀门,缩径,扩径,泵,三通等等,对其它仪表而言,这是一个很难解决的问题。V锥流量计可在极为恶劣的情况下均匀流体分布,如在紧邻仪表上游有单弯管,双弯管,经过锥体“整流”后的流体分布比较均匀可保证仪表在恶劣的条件下获得较高的测量精度,由于V型流量计可均匀流体分布曲线,因此同其它类型的差压流量计相比,对上下游直管段的要求小,建议安装时在上游留0-3D的直管段,在下游留0-1D的直段管。当用户的管道尺寸大,管道价格高或直管段不够的情况下,V锥型流量计将是最佳选择。在过去十年内,对V型流量计的上游有一个90℃的单弯管或两个不在一个平面上的双弯管的情况进行了测试,测试结果表明,V锥型流量计可在紧邻它的地方装有一个弯管或不在同一个平面上的双弯管而不会对测量精度有影响。这对那些大口径,费用昂贵的管路用户,或较短运行管路的用户带来好处。

2、量程比很宽

可以测量较低雷诺数范围(Re≥8000)的流量(小流量)。

典型量程比是10∶1,选择合适的参数,可以做到50∶1。由于V锥体悬挂在管道的中央,直接与高流速区域产生相互作用,迫使高流速区域与靠近管壁的低流速混合;当流量减小时,V锥继续与管道内的最大流速产生相互作用,在其它差压仪表可能检测不出差压信号时,V锥传感器仍然能够产生差压信号低到8000。这是V锥流量计在检测小流量时的一个最大优点。

3、高精度

V锥传感器的一次元件精度为±0.5%。系统精度取决于V锥传感器的精度等级和差压变送器、二次仪表的精度等级等。

4、重复性好

V锥传感器的重复性优于0.1%

5、V锥传感器耐磨损,传感器长期稳定性能好

由于V锥体的外形是收缩流体,在锥体表面产生真空效应,不会对突变表面产生撞击,沿锥体表面形成分界层,引导流体离开β边。这意味着β边不会遭到脏污流体的磨损,因此β系数保持不变,V锥传感器具有长期稳定性能好的特点。

6、信号稳定性好

差压检测一般都有“信号波动”,即使在流量稳定情况下,一次元件产生的信号也会由于干扰而有一定的波动。对于V锥传感器,流体通过V锥,在V锥体后面形成短的涡流,产生低振幅,高频率信号,转换成稳定的V锥信号。其信号波动是孔板的1/10。

7、永久压力损失小

因为流体对突变V锥的平滑表面没有撞击,因此V锥传感器的永久压损比孔板低。同样,由于V锥信号的稳定性,同样流量的满量程V锥差压信号比其它差压仪表低。同样的β值,其压损是孔板的1/3~1/5。

8、V锥体β系数计算范围宽

由于V锥传感器的V锥独特的几何形状,使得它的β系数范围宽,标准的β系数范围:0.45, 0.55, 0.65, 0.75,0.85。

9、V锥传感器不堵塞,不粘附,无滞留死区,适用于脏污介质的流量测量

由于V锥传感器具有自清洁的功能,不会在管内有流体中的颗粒、残渣、凝结物沉积的滞留区域,适用于脏污流体的流量测量,比如:焦炉媒气、高炉媒气、原料油、渣油等。

10、可以测量高温高压的介质

工作温度最高850℃,最大压力40MPa。

11、规格齐全,安装方式灵活

可选择法兰式、对夹式、直接焊接式等。管径从15mm~2000mm。缺点

当然,作为差压流量计的一种,它由于成本关系而并不能完全取代孔板、文丘里等传统差压流量计的位置。相比涡街流量计、电磁流量计等,它又有安装导压管等劣势。电磁流量计

工作原理

电磁流量计是一种应用法拉第电磁感应定律的流量计,其传感器主要由内衬绝缘材料的测量管,穿通测量管壁安装的一对电极和用以产生工作磁场的一对线圈及铁芯组成。当导电流体流经传感器测量管时,在电极上将感应与流体平均流速成正比的电压信号。该信号经转换器放大处理,直接显示流量及总量并可输出模拟、数字信号。测量介质

测量各种酸、碱、盐等腐蚀液体;各种易燃,易爆介质;各种工业污水,纸浆,泥浆等。电磁流量计不能用于测量气体、蒸气以及含有大量气体的液体.不能用来测量电导率很低的液体介质,不能测量高温高压流体。

优点

1、电磁流量计可用来测量工业导电液体或浆液。

2、无压力损失。

3、测量范围大,电磁流量变送器的口径从2.5mm到2.6m。

4、电磁流量计测量被测流体工作状态下的体积流量,测量原理中不涉及流体的温度、压力、密度和粘度的影响。

5、无节流部件,因此压力损失小,减少能耗,只与被测流体的平均速度有关,测量范围宽;只需经水标定后即可测量其他介质,无须修正,最适合作为结算用计量设备使用。由于技术及工艺材料的不断改进,稳定性、线性度、精度和寿命的不断提高和管径的不断扩大,对于固液两相的介质的测量采用了可更换电极以及刮刀电极的方式,解决了高压(32MPA)、耐腐蚀(防强酸、碱衬里)介质的测量问题,以及口径的不断扩大(最大作到 3200MM 口径),寿命的不断增长(一般大于 10 年),电磁流量计得到越来越广泛的应用,其成本也得到了降低,但整体价格特别是大管径的价格仍较高,因此在流量仪表的采购中有重要的地位。

缺点

1、电磁流量计的应用有一定局限性,它只能测量导电介质的液体流量,不能测量非导电介质的流量,例如气体和水处理较好的供热用水。另外在高温条件下其衬里需考虑。

2、电磁流量计是通过测量导电液体的速度确定工作状态下的体积流量。按照计量要求,对于液态介质,应测量质量流量,测量介质流量应涉及到流体的密度,不同流体介质具有不同的密度,而且随温度变化。如果电磁流量计转换器不考虑流体密度,仅给出常温状态下的体积流量是不合适的。

3、电磁流量计的安装与调试比其它流量计复杂,且要求更严格。变送器和转换器必须配套使用,两者之间不能用两种不同型号的仪表配用。在安装变送器时,从安装地点的选择到具体的安装调试,必须严格按照产品说明书要求进行。安装地点不能有振动,不能有强磁场。在安装时必须使变送器和管道有良好的接触及良好的接地。变送器的电位与被测流体等电位。在使用时,必须排尽测量管中存留的气体,否则会造成较大的测量误差。

4、电磁流量计用来测量带有污垢的粘性液体时,粘性物或沉淀物附着在测量管内壁或电极上,使变送器输出电势变化,带来测量误差,电极上污垢物达到一定厚度,可能导致仪表无法测量。

5、供水管道结垢或磨损改变内径尺寸,将影响原定的流量值,造成测量误差。如100mm口径仪表内径变化1mm会带来约2%附加误差。

6、变送器的测量信号为很小的毫伏级电势信号,除流量信号外,还夹杂一些与流量无关的信号,如同相电压、正交电压及共模电压等。为了准确测量流量,必须消除各种干扰信号,有效放大流量信号。应该提高流量转换器的性能,最好采用微处理机型的转换器,用它来控制励磁电压,按被测流体性质选择励磁方式和频率,可以排除同相干扰和正交干扰。但改进的仪表结构复杂,成本较高。

7、价格较高。

涡街流量计 工作原理

涡街流量计的原理是在流量计管道中,设置一阻流件,当流体流经阻流件时,由于阻流件表面的阻流作用等原因,在其下游会产生两列不对称的旋涡,这些旋涡在阻流件的侧后方分开,形成所谓的卡门(Karman)旋涡列,两列旋涡的旋转方向是相反的,卡门从理论上证明了当h/L=0.281(h为两旋涡列之间的宽度,L为两个相邻旋涡间的距离)时,旋涡列是稳定的,在此情况下,产生旋涡的频率f与流量计管道中流体流速υ呈线性关系。测量介质

涡街流量计,主要用于工业管道介质流体的流量测量,如气体、液体、蒸气等多种介质。其特点是压力损失小,量程范围大,精度高,在测量工况体积流量时几乎不受流体密度、压力、温度、粘度等参数的影响。优点

1、涡街流量计无可动部件,测量元件结构简单,性能可靠,使用寿命长。

2、涡街流量计测量范围宽。量程比一般能达到1:10。

3、涡街流量计的体积流量不受被测流体的温度、压力、密度或粘度等热工参数的影响。一般不需单独标定。它可以测量液体、气体或蒸汽的流量。

4、它造成的压力损失小。

5、准确度较高,重复性为0.5%,且维护量小。缺点

1、涡街流量计工作状态下的体积流量不受被测流体温度、压力、密度等热工参数的影响,但液体或蒸汽的最终测量结果应是质量流量,对于气体,最终测量结果应是标准体积流量。质量流量或标准体积流量都必须通过流体密度进行换算,必须考虑流体工况变化引起的流体密度变化。

2、造成流量测量误差的因素主要有:管道流速不均造成的测量误差;不能准确确定流体工况变化时的介质密度;将湿饱和蒸汽假设成干饱和蒸汽进行测量。这些误差如果不加以限制或消除,涡街流量计的总测量误差会很大。

3、抗振性能差。外来振动会使涡街流量计产生测量误差,甚至不能正常工作。通道流体高流速冲击会使涡街发生体的悬臂产生附加振动,使测量精度降低。大管径影响更为明显。

4、对测量脏污介质适应性差。涡街流量计的发生体极易被介质脏污或被污物缠绕,改变几何体尺寸,对测量精度造成极大影响。

5、直管段要求高。专家指出,涡街流量计直管段一定要保证前40D后20D,才能满足测量要求。

6、耐温性能差。涡街流量计一般只能测量300℃以下介质的流体流量。

第四篇:现有车改模式优缺点对比分析

目前,在我国公车改革领域存在多种模式,虽然都指向同一个目的,即,使公有车辆数能够相应减少,财政支出的成本有效降低。同时,要遵循“有利于工作”、“有利于廉政”、“有利于稳定”、“有利于节约”的原则,使公车改革能够落到实处,并顺利实施。

但是,在具体实施过程中,相关公车改革模式仍然存在诸多明显的不足,致使各种观点和分歧依然很大,至今都尚未形成一套行之有效的公车改革方案。

以下是对目前三种主要的公车改革模式,所做的优缺点分析。

一、货币化补贴模式公车改革:

通过公开拍卖等方式,将公车处臵掉,并按照职务和级别的不同,向公务人员发放一定的现金补贴(或打卡),以解决其公务出行需求,是目前我国各地区采用最多的方式之一。

优点:

1、从根本上改变公车产权,减少财政支出。

2、提高公车使用效率,实现资源市场配臵。

3、明显减少公车私用现象。缺点:

1、有“变相加薪”之嫌,争议和质疑一直较大。

2、以职务和级别为补贴依据,存在一定的不合理性。

3、因为补贴的差异,存在挫伤工作积极性,怠慢工作的可能。

二、市场化运营模式公车改革

取消各部门公车,由政府行政后勤部门组建新的机关车辆管理机构运作,实行统一集中管理和调度,有偿使用,定期结算,超支自负。

优点

1、实现公车集约化管理,提高使用效率,节约财政支出。

2、促进“官本位”思想的转变,同时提高节约意识。

3、能有效解决司机的安臵问题,缓解车改的压力和阻力。缺点

1、用车程序增加,存在出车不及时,影响办事效率的情况。

2、市场化运营,容易形成“权利寻租空间”,破坏政府形象。

三、加强管理模式公车改革

在不改变现行公车制度的基础上,在加强公车管理上做文章,其基本做法是,从公车购臵开始,规范公车使用的每一个环节,通过建章立制来加强对公车的监督和管理。优点:

1、改革的成本低廉,受到的阻力较小,易于执行。

2、在一定程度上,降低行政成本,节约财政支出。

3、利于公车费用的公开化,增强公车使用的透明度。缺点:

1、不能从根本上解决原有公车使用模式存在的弊端。

2、不能有效降低公车的维修、保养等相关使用成本。

第五篇:发动机工作原理教案1

任务三 认识四冲程汽油发动机工作过程

一、教材分析:

本节内容在项目六认识汽车的总体结构章节中占有重要地位,主要阐述了汽油发动机的工作过程以及四个行程的工作过程和特点。学生清晰理解发动机的工作原理将为今后进行发动机故障诊断和拆修打下基础。因此,本节课的成败直接影响后续课程的学习。

二、教学目标:

使学生掌握四冲程汽油机的工作过程即工作原理,并在工作原理掌握的基础上,能够分析四冲程汽油发动机工作过程中,各组成部分的工作状态和它们之间的相互工作关系,提高学生在学习专业课过程中分析问题的能力。

三、教学重点和难点:

教学重点:四冲程汽油发动机完成一个工作循环各行程的工作过程。教学难点:四冲程汽油发动机各个工作行程的工作特点。

四、教学方法:讲授法、讨论法、视频演示法

五、教学工具:教材、黑板、粉笔、PPT

六、课时安排:1课时

七、教学过程:

[每课一车] 首先我们请吴邢均同学来主持这节课的“每课一车”栏目 [复习] 1.写出往复活塞式内燃机的基本结构名称。

2.什么是上止点、下止点、活塞冲程、燃烧室容积?

[讲授新课]

一、观看一组发动机图片,提出关键词:工作循环 四冲程发动机

进气、压缩、做功、排气

二、提出问题,四个工作过程中发动机各部件的运动状态? 观看发动机安装及工作视频

(1)进气行程

①活塞运动方向:由上向下运动 ②气门状态:进气门开、排气门关 ③曲轴转角:0°—180°

4气缸内气体压力为0.08—0.09MPa,温度47℃~107℃。○

【教师提问】

1、发动机进去的是何气体:可燃混合气 2.混合气为何会被吸入气缸?

引导学生回答:活塞由上止点向下止点移动,活塞上方额气缸容积增大,从而气缸内的压力降低到大气压一下,造成真空吸力,此时气缸内气体压力为0.08—0.09MPa。(2)压缩行程

①活塞运动方向:由下向上运动 ②气门状态:进气门关、排气门关 ③曲轴转角:180°—360°

4气缸内气体温度327℃~427℃,压力0.8-1.5MPa。○引导学生通过观察压缩行程工作示意图回答问题,把ppt上的工作特性表格填写完整。

①【教师提问】为什么要将可燃混合气压缩?

引导学生回答:为了使吸入气缸的可燃混合气能迅速燃烧,以产生较大的压力,从而使发动机发出较大功率,必须在燃烧前将可燃混合气压缩,使密度增大,压力增大,温度升高,此时气缸内气体压力为0.6—1.2MPa。②【教师提问】回忆压缩比概念?

引导学生回答:压缩比=气缸总容积/燃烧室容积=压缩前容积/压缩后容积 压缩比越大,混合气压力、温度越高,燃烧速度增快→使发动机功率增大,经济性也越好。

▲注意:压缩比过大,会产生爆燃和表面点火等不正常燃烧现象(汽油机6-10,柴油机16-22)(3)作功行程

①活塞运动方向:由上向下运动 ②气门状态:进气门关、排气门关 ③曲轴转角:360°—540°

4气缸内气体瞬时最高:温度1927℃—2527℃,压力3-6.5 MPa ○引导学生通过观察进气行程工作示意图回答问题,把ppt上的工作特性表格填写完整。

【教师提问】阐述作功行程如何工作?

引导学生回答:火花塞发出电火花,点燃被压缩混合气,释放出大量的热能,高

温、高压使活塞从上止点向下止点运动,通过曲轴旋转输出机械能。此时气缸内气体压力为3—5MPa。

引导学生通过观察进气行程工作示意图回答问题,把ppt上的工作特性表格填写完整。(4)排气行程

①活塞运动方向:由下向上运动 ②气门状态:进气门关、排气门开 ③曲轴转角:540°—720°

4气缸内气体温度627℃-827℃,压力0.105-0.120 MPa ○引导学生通过观察进气行程工作示意图回答问题,把ppt上的工作特性表格填写完整。

【教师提问】如何排气?

引导学生回答:作功接近终了时,靠废气的压力进行“自由排气”,活塞由下止点向上止点运动(惯性),继续强制将废气排到大气中。

[教学总结](师生共同小结)本节课我们一起学习了以下几点内容:

1、四冲程发动机的工作循环包括四个行程:进气行程、压缩行程、作功行程和排气行程;

2、四冲程汽油发动机工作过程:将可燃混合气引入气缸,然后压缩,压缩接近终点时点燃。可燃混合气着火燃烧,产生高温高压气体,推动活塞下行实现对外作功,最后排除废气。

3、四冲程汽油发动机曲轴旋转二周,活塞在气缸里往复行程2次,进、排气门各开闭1 次,将热能转化成机械能,输出作功。

三、课堂练习(见ppt)

[课后思考] 简述四冲程汽油发动机工作过程

现有轿车发动机工作原理及优缺点分析
TOP