第一篇:高数课件-函数极限和连续
一、函数极限和连续自测题
1,是非题
(1)无界变量不一定是无穷大量
()(2)若limf(x)a,则f(x)在x0处必有定义
()
xx012x(3)极限lim2sinxlimx0
()
xx33x2,选择题
(1)当x0时,无穷小量1x1x是x的()A.等价无穷小
B.同阶但不等价
C.高阶无穷小
D.低价无穷小
x11x0(2)设函数f(x),则x0是f(x)的()x0x0A.可去间断点 B.无穷间断点
C 连续点
D 跳跃间断点
exx0(3)设函数f(x),要使f(x)在x0处连续,则a
()axx0A.2
B 1
C 0
D 1
3n25n1
()(4)lim2n6n3n2A 151
B
C
D 2321xsinx0x(5)设f(x),则在x0处f(x)
()
1sinx1x0xA 有定义
B 有极限
C 连续
D左连续
3(6)x1是函数yx1的()x1A 可去间断点
B 无穷间断点
C 连续
D跳跃间断点
3.求下列极限
(1)limxxsinxsin(2x)x23
(2)lim
(3)lim
x0x12xln(12x)x1e2x1(4)lim
(5)limn[ln(1n)lnn]
(6)lim(sinn1sinn)
nnx0x2x3x2(sinx3)tanx2lim()(7)lim
(8)
(9)limx(x1x)x2x1x01cosx2xcosxcosaarctanxexex0(10)lim
(11)lim
(12)lim
xaxxx0xxxax0x232x21sin(x1))(13)lim
(14)lim(2
xx1x1x24,求满足下列条件的a,b的值
1x2xab
(2)lim(3xax2x1)(1)limxx26x2tanaxx0axb2
(4)已知f(x)x(3)lim且limf(x)存在
x0x1x2x2x0x122(5)已知f(x)xaxb1x1在(,)内连续
2x1sin2xe2ax1x0(6)函数f(x)在x0点连续 xax05.求下列函数的间断点并判断其类型
x1x11cosxx21(1)y2
(2)y
(3)f(x)
sinxx3x23xx11x0x(4)f(x)ex1
(5)y
tanxln(1x)1x026.已知x1时,xax5x1是同阶无穷小,求a
7.证明方程x4x20在区间(1,2)内至少有一个根 8.当x0时,eln(1x)1与x是同阶无穷小,求n 9.设函数f(x)a,(a0,a1),求limxxn41ln[f(1)f(2)f(n)]
nn2
第二篇:高数极限和连续
第二章 极限和连续 【字体:大 中 小】【打印】
2.1 数列极限
一、概念的引入(割圆术)
“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣” ——刘徽
正六边形的面积A正十二边形的面积A2
n-1
正6×2形的面积An
A1,A2,A3,„,An,„→„S
二、数列的定义
定义:按自然数1,2,3„编号依次排列的一列数x1,x2,„,xn,„(1)
称为无穷数列,简称数列。其中的每个数称为数列的项,xn称为通项(一般项)。数列(1)记为{ xn }。
例如
nn
2,4,8,„,2,„;{ 2}
注意:
(1)数列对应着数轴上一个点列,可看作一动点在数轴上依次取
(2)数列是整标函数xn=f(n)
三、数列的极限
1.定义 设{xn}是一数列,如果存在常数a,当n无限增大时,xn无限接近于常数a,则称数列{ xn }收敛,a是数列{ xn }的极限,或者称数列xn收敛于a,记为。
如果数列没有极限,就说数列是发散的。
例如
nn
2,4,8,„,2,„;{ 2},发散,发散
收敛于0
2.数列极限的性质(1)唯一性
定理 每个收敛的数列只有一个极限。(2)有界性
定义: 对数列xn,若存在正数M,使得一切自然数n, 恒有|xn|≤M成立, 则称数列xn有界,否则,称为无界。
例如,数列有界,数列无界
数轴上对应于有界数列的点xn都落在闭区间[-M,M]上。
定理 收敛的数列必定有界。
注意:有界性是数列收敛的必要条件。推论 无界数列必定发散。(3)保号性
收敛数列的保号性:假设数列{αn}收敛,其极限为α,1)若有正整数N,n>N时,αn>0(或<0),则α≥0(或α≤0)2)若α>0(或<0,则有正整数N,使得当n>N时,αn>0(或<0)
2.2 级数
1.级数的定义:
称为数项无穷级数(或简称数项级数),un为一般项。
2.级数的部分和
3.部分和数列
4.级数的收敛与发散
当n无限增大时,如果级数的部分和数列Sn有极限S,即则称无穷级数收敛,这时极限S叫做级数的和,并写成。
如果Sn没有极限,则称无穷级数
数项级数收敛
存在
发散。
例1.讨论等比级数(几何级数)
(a≠0)的收敛性。
【答疑编号11020101:针对该题提问】
解:如果q≠1时,当|q|<1时,当|q|>1时
如果|q|=1时
当|q|=1时,级数发散
收敛 发散
当q=-1时,级数变为α-α+α-α+„
不存在,级数发散
综上
例2.(56页1(3))判断下列级数的敛散性,并在收敛时求出其和:
【答疑编号11020102:针对该题提问】
解:
由
得级数收敛,其和为。
例3.判断级数的敛散性
【答疑编号11020103:针对该题提问】
例4.判断级数的敛散性,并在收敛时求出其和
【答疑编号11020104:针对该题提问】
例5.判别无穷级数
的收敛性。
【答疑编号11020105:针对该题提问】
解
∴级数收敛,和为。
2.3 函数极限
两种情形:
(1)x→∞情形:
(2)x→x0情形:
一、自变量趋于无穷大时函数的极限
定义:设M是任意一个正数,函数f(x)在上有定义,如果存在常数A,当|x|无限增大(即|x|→∞)时,f(x)无限接近于A,则称A为函数f(x)当x→∞时的极限,或简称为f(x)在无穷大处的极限,记为
或f(x)→A,当x→∞时。
定理:
例1.(60页例
5、例6)求下列函数的极限
(1)
【答疑编号11020201:针对该题提问】
(2)
【答疑编号11020202:针对该题提问】
解:对于函数
对于函数f(x)=arctanx,由反正切曲线y=arctanx的图形,易见
所以,极限
例2.不存在。
【答疑编号11020203:针对该题提问】
例3.【答疑编号11020204:针对该题提问】
例4.【答疑编号11020205:针对该题提问】
二、函数在有限点处的极限(自变量趋于有限值时函数的极限)
1.定义:给定函数y=f(x)在(x∈D)上有定义,假设点x0的某一去心邻域,如果存在常数A,使得当x→x0时,函数值f(x)无限接近于A,则称A为函数f(x)当x→x0时的极限,记为
或 f(x)→A,当x→x0时。
2.单侧极限
定义:设 f(x)在x0的一个左邻域中有定义,如果存在常数A,使得当相应的函数值(fx)无限接近于A,则称A为函数f(x)当 时的左极限,记为
定理:
时,或(fx0-0)。
例5.62页2:(5)(6)(7)
求函数在指定点的左右极限,判定该点极限是否存在。
(5)x=2
【答疑编号11020206:针对该题提问】
(6)x=0
【答疑编号11020207:针对该题提问】
(7),x=0
【答疑编号11020208:针对该题提问】
问题:函数y=f(x)在x→x0的过程中,对应函数值f(x)无限趋近于确定值A。
例6.求
【答疑编号11020209:针对该题提问】
注意:函数极限与f(x)在点x0是否有定义无关
三、函数极限的性质 1.唯一性
定理 若limf(x)存在,则极限唯一。2.有界性
定理(有极限函数的局部有界性)假设中有界,即有常数M>0,使得在x0的某个去心邻域
3.保号性
若
推论
存在,则f(x)在x0点的某个邻域
中,有,且A>0(或A<0)
若时
f(x)≥0(或f(x)≤0),则A≥0(或A≤0)
四、小结
函数极限的统一定义
2.4 极限的运算法则
一、极限运算法则
定理
设
(1)
(2)
,则
(3)
例7.【答疑编号11020210:针对该题提问】
推论1
如果lim f(x)存在,而c为常数,则
常数因子可以提到极限记号外面。
推论2
如果lim f(x)存在,而n是正整数,则
二、求极限方法举例
例8.求
【答疑编号11020211:针对该题提问】
解
(直接代入法)
例9.求。
【答疑编号11020212:针对该题提问】
解:x→1时,分子,分母的极限都是零。(型)
(消去零因子法或因式分解法)
例10.求
【答疑编号11020213:针对该题提问】
解:先变形再求极限。
例11.求
【答疑编号11020214:针对该题提问】
三、小结
1.极限的四则运算法则及其推论; 2.极限求法
a.多项式与分式函数代入法求极限; b.因式分解法消去零因子求极限; c.通分法
d.利用左右极限求分段函数极限。
2.5 无穷小和无穷大
一、无穷小
1.定义:极限为零的变量称为无穷小。
函数f(x)当x→x0(或x→∞)时为无穷小,记作
例如,∴函数sinx是当x→0时的无穷小。
,∴函数是当x→∞时的无穷小。
,∴数列是当n→∞时的无穷小。
注意:
(1)无穷小是变量,不能与很小的数混淆;(2)零是可以作为无穷小的唯一的数。2.无穷小与函数极限的关系:
其中α(x)是当x→x0时的无穷小。
定理
3.无穷小的运算性质:
(1)在同一过程中,有限个无穷小的代数和仍是无穷小。(2)有限个无穷小的乘积也是无穷小。(3)有界变量与无穷小的乘积是无穷小。
例如,当x→0时,二、无穷大
1.定义:绝对值无限增大的变量称为无穷大。
函数f(x)当x→x0(或x→∞)时为无穷大,记作。
2.特殊情形:正无穷大,负无穷大。
注意:
(1)无穷大是变量,不能与很大的数混淆;(2)切勿将 认为极限存在。
(3)无穷大是一种特殊的无界变量,但是无界变量未必是无穷大。
例如,三、无穷小与无穷大的关系
是无界变量不是无穷大。
1.定理 在同一过程中,无穷大的倒数为无穷小;恒不为零的无穷小的倒数为无穷大。
2.意义:关于无穷大的讨论,都可归结为关于无穷小的讨论。
例1.求。
【答疑编号11020301:针对该题提问】
解:
又
商的法则不能用
由无穷小与无穷大的关系,得
例2.求。
【答疑编号11020302:针对该题提问】
解:x→∞时,分子,分母的极限都是无穷大。(先用x3去除分子分母,分出无穷小,再求极限。
型)
(无穷小因子分出法)
例3.求
【答疑编号11020303:针对该题提问】
例4.求
【答疑编号11020304:针对该题提问】
小结:当,m和n为非负整数时有
无穷小分出法:以分子、分母中自变量的最高次幂除分子,分母,以分出无穷小,然后再求极限。
例5.【答疑编号11020305:针对该题提问】
例6.求
【答疑编号11020306:针对该题提问】
例7.求
【答疑编号11020307:针对该题提问】
例8(2007年10月)
【答疑编号11020308:针对该题提问】
例9(2007年10月)、下面A、B、C、D四个极限中,哪一个极限存在()
A.B.C.D.【答疑编号11020309:针对该题提问】
答案:D
例10(2007年4月)
()
A.0
B.1 C.-1
D.不存在
【答疑编号11020310:针对该题提问】 答案:B
例11(2007年7月)
【答疑编号11020311:针对该题提问】
计算
例12(2005年)计算
【答疑编号11020312:针对该题提问】
2.6 两个重要极限
2.6.1 关于
例
1、计算
【答疑编号11020401:针对该题提问】
解:
例
2、【答疑编号11020402:针对该题提问】
解:
例3、80页第1题(5)
【答疑编号11020403:针对该题提问】
解:
例
4、【答疑编号11020404:针对该题提问】
解:
例
5、【答疑编号11020405:针对该题提问】
解:
例
6、判断四个极限分别属于哪一种类型:
(1)
【答疑编号11020406:针对该题提问】
(2)
【答疑编号11020407:针对该题提问】
(3)
【答疑编号11020408:针对该题提问】
(4)
【答疑编号11020409:针对该题提问】
解:
解:
例
7、求
【答疑编号11020410:针对该题提问】
解
2.6.2 关于
例
1、求
【答疑编号11020501:针对该题提问】
解:
例
2、【答疑编号11020502:针对该题提问】
解:
例
3、【答疑编号11020503:针对该题提问】
解:
例
4、【答疑编号11020504:针对该题提问】
解:
方法一:
方法二:
例
5、【答疑编号11020505:针对该题提问】
解:
例
6、【答疑编号11020506:针对该题提问】
解:
例
7、【答疑编号11020507:针对该题提问】
解:
例
8、【答疑编号11020508:针对该题提问】 解: 方法一:
方法二:
例9、81页4题(8)
【答疑编号11020509:针对该题提问】
解:
小结:
第一类重要极限:
第二类重要极限:
2.5.4 无穷小的比较
例如,当x→0时,观察各极限
都是无穷小。
,x比3x要快得多; 2,sinx与x大致相同;
不存在,不可比。
极限不同,反映了趋向于零的“快慢”程度不同。
定义:
设α,β是同一过程中的两个无穷小,且α≠0.(1)如果,就说β是比α高阶的无穷小,记作β=o(α);
(2)如果,就说β与α是同阶的无穷小;
特殊地如果
等价无穷小:,则称β与α是等价的无穷小;记作α~β;
例:
【答疑编号11020601:针对该题提问】
例:
【答疑编号11020602:针对该题提问】
得:当x→0时,例:
(1)73页8题:
当x→∝时,a,b,c应满足什么条件可使下式成立?
(1)
(2)
等价无穷小代换
等价代换原理:在同一极限过程中的三个变量u,v,w,如果u,v是无穷小量,且等价,则有
,由
得:当x→0时,常用等价无穷小:
当x→0时,牢记常用的等价无穷小:
当x→0时,例:
【答疑编号11020603:针对该题提问】
例:
【答疑编号11020604:针对该题提问】
例
求
【答疑编号11020605:针对该题提问】
错解
当x→0时,解
当x→0时,例
(1)80页1题(7)
【答疑编号11020606:针对该题提问】
(2)80页1题(9)
【答疑编号11020607:针对该题提问】
(3)80页1题(10)
【答疑编号11020608:针对该题提问】
(4)80页2题:设
【答疑编号11020609:针对该题提问】,求a,b
例:94页3题(4):
【答疑编号11020610:针对该题提问】
例:94页4题(1):证明当时,sin(2cosx)与是同阶无穷小。
【答疑编号11020611:针对该题提问】
例:81页8题:设
【答疑编号11020612:针对该题提问】,求k。
小结
1.两个重要极限
2.无穷小的比较: 反映了同一过程中,两无穷小趋于零的速度快慢,但并不是所有的无穷小都可进行比较.高(低)阶无穷小;等价无穷小; 3.等价无穷小的替换:
求极限的又一种方法,注意适用条件.2.7 函数的连续性和连续函数
一、函数的连续性
1.函数的增量
设函数f(x)在
内有定义,称为自变量在点的增量。
2.连续的定义
定义1 设函数f(x)在的函数的增量f(x)在点
定义2 设函数f(x)在也趋向于零,即连续,称为
内有定义,如果当自变量的增量
或的连续点.趋向于零时,对应,那么就称函数
内有定义,如果函数
当
时的极限存在,且
第三篇:高数竞赛练习题答案(函数、极限、连续)
函数、极限、连续
1.f(x),g(x)C[a,b],在(a,b)内二阶可导且存在相等的最大值,又f(a)g(a),f(b)g(b),证明:(1)(a,b),使f()g()
(2)(a,b),使f()g()证明:设f(x),g(x)分别在xc,xd处取得最大值M,不妨设cd(此时acdb),作辅助函数F(x)f(x)g(x),往证(a,b),使F()0
令F(x)f(x)g(x),则F(x)在[a,b]上连续,在(a,b)二阶可导,且F(a)F(b)0,① 当cd,由于 F(c)f(c)g(c)Mg(c)0F(d)f(d)g(d)f(d)M0由“闭.连.”零点定理,[c,d](a,b),使f()g()② 当cd,由于F(c)f(c)g(c)f(c)g(d)MM0即(a,b),使f()g()
对F(x)分别在[a,],[,b]上用罗尔定理,1(a,),2(,b),使
在[1,2]上对F(x)在用罗尔定理,F(1)F(2)0,(1,2)(a,b),使F()0,(a,b),使f()g().2.设数列{xn}满足0x1,xn1sinxn,n1,2,
xn存在,并求该极限(1)证明limn
xn1x1n(2)计算lim()nxn
分析:(1)确定{xn}为单调减少有下界即可
1xn,用洛必达法则.(2)利用(1)确定的limn
解:易得0xn1(n2,3,),所以xn1sinxnxn,n(2,3,),即{xn}为
xn存在,并记为limxna,则a[0,1],单调减少有下界的数列,所以 lim nn
对等式xn1sinxnxn,两边令n取极限,得asina,a[0,1],所以
a0,即limxn0.n
lim((2)n
xn1sinxn)lim()
nxnxn
2xn
2xn
令txn
lim(t0
sint)et0t
tlim
ln()t
t
2由于
lim
t0
t
ln(sin)ttsint
ln[1(sin1)]1-1t2sintt洛cost11tt2
limlimlimlimlim t0t0t0t0t03t2t2t2t33t26
xn1xn1
所以lim()e.nxn
3.已知f(x)在[0,1]连续,在(0,1)可导,且f(0)0,f(1)1,证明:(1)(0,1),使f()1,(2)存在两个不同点,(0,1),使f()f()1
证:(1)令F(x)f(x)x1,则F(x)在[0,1]上连续,且
F(0)10,F(1)10,由“闭.连.”零点定理,(0,1),使F()0,即f()1
(2)f(x)在[0,],[,1]上都满足拉格朗日中值定理,所以
(0,),(,1),使
f()f(0)f()(0),f(1)f()f()(1),即
f()f()
f()
1
1f()1(1)
111
f()f()
1
1
1
4.设方程xnnx10,其中n为正整数,证明此方程存在唯一的正
实根xn,并证明当1时,级数xn收敛.n1
证:令f(x)xnnx1,则f(x)在(0,)上连续,且
f(0)10,f()()n0
nn
所以由连续函数的零点定理,所给方程在(0,)内有根,又由f(x)n(xn11)0,即f(x)在(0,)内单调递增,所以所给方程(0,)内只有唯一的根,在(,)上无根,即所给方程存在唯一的正实根xn.
由上述知,对n1,2,,有0xn,有0xn
1n
1n1n
1n
1n1,n
此外,由1知,级数
收敛,所以由正项级数比较审敛法,知
n1n
x收敛.nn1
5.求lim(cosx)
x0
1ln(1x)
x0ln(1x)
解:lim(cosx)
x0
1ln(1x)
=e
lim
lncosx,其中limln(1x
x0
lncosx)
lim
x0
ln[1(cosx1)]ln(1x)
lim
x0
x22x
(cosx)所以,limx0
ln(1x)
e
6.f(x)在x0的某邻域内具有一阶连续导数,且f(0)0,f(0)0,若
af(h)bf(2h)f(0)在h0时是比h高阶的无穷小,试确定a,b的值.解1:(利用导数定义)
0lim
af(h)bf(2h)f(0)af(h)af(0)af(0)bf(2h)bf(0)bf(0)f(0)
lim
h0h0hhaf(h)af(0)bf(2h)bf(0)[(ab)1]f(0)[(ab)1]f(0)limlimlim(ab)f(0)limh0h0h0h0hhhh
ab1
由f(0)0,f(0)0,得,即a2,b1
a2b0
解2:按解1,只要假定f(x)在x0处可导即可,但在题中“f(x)在x0的某邻域内具有一阶连续导数”的假定下,有以下解法:由lim
h0
h0
af(h)bf(2h)f(0)
0得 limaf(h)bf(2h)f(0)=0
h0h
即0limaf(h)bf(2h)f(0)(ab1)f(0),由f(0)0,得ab1(1)
af(h)bf(2h)f(0)洛
limaf(h)2bf(2h)(a2b)f(0)且f(0)0,又由0lim
h0h0h
所以 a2b0(2)
由(1)、(2)得a2,b1.2esinx
.7.求lim4x0x1e
解:
2eesinx2esinx
1 limlim44x0x0xx1ee12esinx2esinx
1 limlim44x0xx01ex1e
所以 原式 = 1
8.求lim
x0
143
xx2
.2
x
解1:(泰勒公式)因
xx2[1
1111
xx2o(x2)][1xx2o(x2)]22828(x0)
x2o(x2)~x2
所以
1x2
xx21limlimx0x0x2x24
解2:(洛必达法则)
xx2洛必达limlimx0x0x22x1xx1
limlim x0xx4x0x
12x1lim.4x0x(xx)4
第四篇:高数8多元函数的极限与连续
二元函数的极限
二元极限存在常用夹逼准则证明
例1 lim(3x2y)14
x2y1211xsinysin,xy0,例2 函数f(x,y)在原点(0,0)的极限是0.yx
xy0.0二元极限不存在常取路径
x2y例3
证明:函数f(x,y)4在原点(0,0)不存在极限.((x,y)(0,0))4xy与一元函数极限类似,二元函数极限也有局部有限性、极限保序性、四则运算、柯西收敛准则等.证明方法与一元函数极限证法相同,从略.上述二元函数极限limf(x,y)是两个自变量x与y分别独立以任意方式无限趋近于xx0yy0x0与y0.这是个二重极限.二元函数还有一种极限:
累次极限
定义
若当xa时(y看做常数),函数f(x,y)存在极限,设当yb时,(y)也存在极限,设
lim(y)limlimf(x,y)B,ybybxa则称B是函数f(x,y)在点P(a,b)的累次极限.同样,可定义另一个不同次序的累次极限,即
limlimf(x,y)C.xayb那么二重极限与累次极限之间有什么关系呢?一般来说,它们之间没有蕴含关系.例如: 1)两个累次极限都存在,且相等,但是二重极限可能不存在.如上述例3.2)二重极限存在,但是两个累次极限可能都不存在.如上述的例2.多重极限与累次极限之间的关系
定理
若函数f(x,y)在点P0(x0,y0)的二重极限与累次极限(首先y0,其次x0)都存在,则
limlimf(x,y).limf(x,y)xx0yy0xx0yy0
二元函数的连续性
定理
若二元函数f(P)与gP在点P0连续,则函数f(P)g(P),f(P)g(P),(g(P0)0)都在点P0连续
f(P)
g(P)
定理
若二元函数u(x,y),v(x,y)在点P0(x0,y0)连续,并且二元函数f(u,v)在点(u0,v0)(x0,y0),(x0,y0)连续,则复合函数f(x0,y0),(x0,y0) 在点P0(x0,y0)连续.1.用极限定义证明下列极限:
1)lim(4x3y)19;
2)lim(xy)sinx2y12x0y011sin0; xyx2y2xy03)lim2.(提示:应用1.)22x0xy2xyy02.证明:若f(x,y)xy,(xy0),则 xyy0x0
limlimf(x,y)1
与
limlimf(x,y)1.x0y0x4y43.设函数f(x,y)4,证明:当点(x,y)沿通过原点的任意直线(ymx)趋23(xy)于(0,0)时,函数f(x,y)存在极限,且极限相等.但是,此函数在原点不存在极限.(提示:在抛物线yx上讨论.)2x2y22D(x,y)yx4.若将函数f(x,y)2限制在区域,则函数f(x,y)在原点2xy(0,0)存在极限(关于D).5.求下列极限: 1)limxysinxy;
2); limx1x2xyy2x0xy2y422x0y03)lim(xy)In(xy);
(提示:设xrcos,yrsin)
4)limx0y0(14x2)(16y2)12x23y2.
第五篇:函数极限连续试题
····· ········密············································订·········线·································装·····系·····封················· ··················__ __:_ :___: ___________名______________业_姓_____ _号_____ _::___级_ ____别年专______学
· ·····密·········· ·············································卷···线·································阅·······封········································
函数 极限 连续试题
1.设f(x)
求
(1)f(x)的定义域;(2)12f[f(x)]2
;(3)lim
f(x)x0x
.2.试证明函数f(x)x3ex2
为R上的有界函数.3.求lim1nnln[(11n)(12
n)
(1nn)].4.设在平面区域D上函数f(x,y)对于变量x连续,对于变量y 的一阶偏导数有界,试证:f(x,y)在D上连续.(共12页)第1页
5.求lim(2x3x4x1
x03)x.1(1x)x
6.求lim[
x0e]x.7.设f(x)在[1,1]上连续,恒不为0,求x0
8.求lim(n!)n2
n
.9.设x
axb)2,试确定常数a和b的值.(共12页)第2页
10.设函数f(x)=limx2n1axb
n1x
2n连续,求常数a,b的值.11.若limsin6xxf(x)6f(xx0x30,求lim)
x0x2
.12.设lim
axsinx
x0c(c0),求常数a,b,c的值.xln(1t3)btdt
13.判断题:当x0时,x
1cost2
0t
是关于x的4阶无穷小量.114.设a为常数,且lim(ex
x0
2aarctan1
x)存在,求a的值,并计算极限.ex1
(共12页)第3页
215.设lim[
ln(1ex)x0
1a[x]]存在,且aN,求a的值,并计算极限.ln(1ex)
16.求n(a0).n
17.求limn2(a0,b0).
ln(1
f(x)
18.设lim)
x0
3x1
=5,求limf(x)x0x2.19.设f(x)为三次多项式,且xlim
f(x)f(x)f2ax2axlim4ax4a1,求xlim(x)
3ax3a的值.(共12页)第4页
24.设连续函数f(x)在[1,)上是正的,单调递减的,且
dnf(k)f(x)dx,试证明:数列dn收敛.n
n
20.设x1,求lim(1x)(1x2)(1x4n
n)
(1x2).21.试证明:(1)(1n1111+n)1
为递减数列;(2)n1ln(1n)n,n1,2,3,.limnn
22.求n3nn!
.23.已知数列:a1
112,a222,a32,22
a42
12
1的极限存在,求此极限.22
(共12页)第5页
k1
25.设数列xn,x0a,x1b,求limn
xn.26.求lima2n
n1a2n
.28.求limx
.x1
n2
(xn1xn2)(n2),(共12页)第6页
29.设函数f(x)是周期为T(T0)的连续函数,且f(x)0,试证:
xlim1xx0f(t)dt1TT0f(t)dt.30.求lim1
1n0
x.en
(1x)n
n
31.设lim(1x)x
tetxx
dt,求的值.32.判断函数f(x)limxn1
nxn1的连续性.33.判断函数f(x.(共12页)第7页
34.设f(x)为二次连续可微函数,f(0)=0,定义函数
g(x)
f(0)当x0,试证:g(x)f(x)
x当x0连续可微.35.设f(x)在[a,b]上连续,f(a)f(b),对x(a,b),g(x)lim
f(xt)f(xt)
t0
t
存在,试证:存在c(a,b),使g(c)0.36.若f(x)为[a,b]上定义的连续函数,如果b
a[f(x)]2dx0,试证:
f(x)0(axb).37.设函数f(x)在x=0处连续,且lim
f(2x)f(x)
x0
x
A,试证:f(0)=A.(共12页)第8页
38.设f(x)在[a,b]上二阶可导,过点A(a,f(a))与B(b,f(b))的直线与曲线
yf(x)相交于C(c,f(c)),其中acb.试证:至少存在一点(a,b),使得f()=0.39.设f(x),g(x),h(x)在axb上连续,在(a,b)内可导,试证:
f(a)
g(a)
h(a)
至少存在一点(a,b),使得f(b)
g(b)h(b)=0,并说明拉格朗日中值 f()g()h()
定理和柯西中值定理是它的特例.40.试证明函数ysgnx在x[1,1]上不存在原函数.41.设函数f(x)=nf(x)的不可导点的个数.(共12页)第9页
42.设f(x(0x
),求f(x).43.设xn1(n1,2,3,),0x13,试说明数列xn的极限存在.x0
44.求函数f(x)=sin1
x21
x(2x)的间断点.2cosx
x0
45.求曲线
3的斜渐近线.(共12页)第10页
1
46.求数列nn的最小项.
50.求lim
x.x0
sin1
x
47.求limtan(tanx)sin(sinx)
x0tanxsinx
.48.设f(x)在[0,2]上连续,在(0,2)内有二阶导数,且lim
f(x)
x1(x1)2
1,
f(x)dxf(2),试证:存在(0,2),使得f()=(1+1)f().49.试证:若函数f(x)在点a处连续,则函数f+(x)=maxf(x),0与
f-(x)=minf(x),0在点a处都连续.(共12页)第11页
12页)第12页
(共