第一篇:机械开题报告,设计题目:电梯控制系统PLC原理图及梯形图设计
机械开题报告 设计题目:电梯控制系统的PLC原理图及梯形图设计 电梯的国内外研究动向及意义 从1887年美国奥的斯公司制造出世界上第一台电梯,到中国最早的一部电梯在上海出现,电梯行业在中国迅速发展,由此电梯变成了高层宾馆、商店、住宅、多层厂房和仓库等高层建筑不可缺少的垂直方向的交通工具。随着社会的发展,建筑物规模越来越大,楼层越来越多,对电梯也提出了更高的要求。
随着科技的进步,电梯也更加安全、舒适。然而,人们的追求并没有就此停止下来,仍在不断地进行研究改进。21世纪开始国际开始强调“绿色”,绿色和平,绿色天然,绿色和谐。电梯是载人的机电设备,要实现绿色,也就是强调电梯更舒适、更安全地为人类的生产和生活服务,强调电梯与环境的协调与和谐。
目前意义上的“绿色”,一般是强调“天然”的一面,强调与环境的协调与和谐。电梯属于纯粹的工业产品,其天然性应表现为对环境影响的尽可能小,与环境的协调与平衡,以及电梯本身的人性化。这也应是绿色电梯的发展方向。
(1)智能化。我们这所说的智能化电梯是传统的人工智能是无法胜任的。传统的智能控制是一种技术的事先安排,说到底是一种程序控制,是一种周期性的系统自动控制,实际上还算不上智能。而真正的智能电梯应更具人性化特点,不仅具有传统的人工智能的所有优点,而且还有传统的人工智能无法比拟的东西,具有动念和随机处理各种问题的能力,诸如能根据轿厢内的情况和各层的候梯信息,自动地制定每次最优的运动速度和停车政策;自动选择运动方面;双向语音交流;到达目的层的语音提示等,让乘客有更多的主动性,使大楼交通运输实现真正的人机对话。智能化要求电梯有自动安全检测功能,让电梯自己能够检测到电梯的故障所在,并及时报警予以排除。
(2)安全。运行安全是电梯的根本和关键。可以说,电梯的全部其他工作都是以此为中心展开的,使电梯安全运行更有保障。运行安全不仅要消除电梯启动时较强的电磁辐射,使用安全材料和运行稳定,而且要有一种良好的视觉效果,让每一位乘客在宽敞、明亮轿厢内有安全、舒适的好心情。同时,电梯运行安全也要求电梯在运行中发生故障时,不但要使乘客容易与外界沟通联系,而且电梯本身应当能自动播放让乘客感到放松的音乐,彻底消除产生紧张不安的情绪。当小孩和老人乘坐时,电梯对他们应给予一种如同家人般的照顾,不但让老人和孩子感到方便和舒适,而且更让其家人感到放心。电梯运行安全还要求电梯有自动休眠功能,使电梯在保证运行效率最高的同时,使电梯能最大限度地得到休眠。
(3)与环境的协调和平衡,包括以下几个方面:
①视觉协调。有人曾经做过环境色彩是否对人有影响的研究。该研究发展:视觉不协调的环境色彩对人的情绪、精神影响非常大。色彩宜人,格调高雅,制作精良的电梯,乘客自然会有一种安全的感觉,有一种视觉上的舒适。用料低廉,款式陈旧,色彩沉闷,甚至破破烂烂的电梯,乘客视觉协调无从谈起,乘坐电梯的第一感觉就是不安全。国内的许多电梯公司对此的重视是远远不够的,甚至不少通过引进国外技术国产化的电梯也显露出一副土生土长的容貌。
②消除电磁辐射。如前所述,由于电梯是大楼里频繁起制动的大容量电器是电磁干扰的元凶,所以绿色电梯必须是一个达到自身对大楼电磁干扰最小,而又不被其他电磁干扰影响的建筑机电设备。这样不仅可以保证乘客的身心健康,而且也可以保证大楼、大厦中的大楼的办公自动化、楼宇自动化、通讯自动化的正常运转。
③舒适感。通过采用高载频波矢量静音变频器,可降低噪声变换频率及电压。以CPU控制电压及频率的连续变换方式,按人体生理适应要求,利用计算机优化设计而成的理想运行曲线,实现更稳定、更舒适的运行。
对现代化电梯性能的衡量,主要着重于可靠性、安全性和乘坐的舒适性。此外,对经济性、能耗、噪声等级和电磁干扰程度等方面也有相应要求。随着时代的发展,相信电梯行业会越来越贴近生活。
研究的主要内容及所解决的问题 目前,在电梯的控制方式上,主要有继电器控制、PLC控制和微型计算机控制三种。而PlC实际上是一种专用计算机,它采用巡回扫描的方式分时处理各项任务,而且依靠程序运行,这就保证只有正确的程序才能运行,否则电梯不会工作;又由于PLC中的内部辅助继电器及保持继电器等实际上是PLC系统内存工作单元,即无线圈又无触点,使用次数不受限制,属无触点运行,因此,它比继电器控制有着明显的优越性,运行寿命更长,工作更加可靠安全,自动化水平更高。PLC控制是三种控制方式中最具有可靠性、实用性和灵活性的控制方式,它更适合于用在电梯的技术改造和控制系统的更新换代,是电梯控制系统中理想的控制新技术。
电梯的控制是比较复杂的,可编程控制器的使用为电梯的控制提供了广阔的空间,随着PLC应用技术的不断发展,将使得它的体积大大减小,功能不断完善,过程的控制更平稳、可靠,抗干扰性能增强、机械与电气部件有机地结合在一个设备内,把仪表、电子和计算机的功能综合在一起。它已经成为电梯运行中的关键技术。因此,研究plc技术更具有了战略性的意义。
Plc的研究内容及措施 对于电梯的控制,可选用继电-接触系统或可编程控制器来完成,但是二者有各自的特点:
a:继电-接触系统:它的优点是线路直观,大部分电器均为常用电器,更换方便,价格较便宜。但是他触点繁多,线路复杂,电器的电磁机构及触点动作较慢,能耗高,机械动作噪音大,而且可靠性差。
b:PLC在设计和制造上采取了许多抗干扰措施,使用方便,扩展容易。它使用了梯形图和可编程指令,易于掌握。总之,PLC取代继电-接触系统已经成为大的趋势。
基于上述原因,我选择用可编程控制器来完成对电梯的控制。
设计的内容与要求:
概述:
随着时代的发展,工业自动化程度的不断提高,PLC行业已经在工业市场上占有一大片领地。在此次设计中,我将利用PLC来实现对电梯的控制。其中包括对PLC硬件的设计,软件设计,驻点路的设计,控制柜的设计,以及电梯惦记和其他设备的选择,还有原理分析等。相信此次设计后,我对电梯的实际运行能有初步的了解。
控制要求:
1.电梯轿箱的控制要求:
a:选向:根据电梯各层内选外呼信号的先后和停止时轿箱所在的楼曾位置决定电梯的运行方向。
b:选层换速:指电梯能够根据轿内所选层而决定运行方向,而且遵守或一直向上,或一直向下的原则。并且在每次平层的时候都能够换速。
c:楼层位置的指示:选用了数码管显示的方法。由于FX2N系列已有内部计数-译码驱动模块,所以只要外部加上LED七段显示管和电源就可以显示楼层了。
2.电梯门的控制要求:
要求当电梯平层的时候,电梯门自动打开,经过10秒钟后电梯门自动关上。如果遇到有人在门中间的情况,电梯会因为光电开关的作用而自动开门。
3.补充要求:
除了上述两个要求以外,还要注意的一点就是备用电梯电机的使用,一但曳引电机出现故障,备用电机将手动控制转入运行状态,避免因曳引电机出故障而引发的不必要的麻烦。
第二篇:开题报告-基于PLC的电梯控制系统设计
开题报告
电气工程及自动化
基于PLC的电梯控制系统设计
一、综述本课题国内外研究动态,说明选题的依据和意义
1.本课题的研究背景及意义
(1)题目背景:随着城市建设的不断发展,楼群建筑不断增多,电梯在当今社会的生活中有着广泛的应用。电梯作为楼群建筑中垂直运行的交通工具已与人们的日常生活密不可分。实际上电梯是根据外部呼叫信号以及自身控制规律等运行的,而呼叫是随机的,电梯实际上是一个人机交互式的控制系统,单纯用顺序控制或逻辑控制是不能满足控制要求的,因此,大部分电梯控制系统都采用随机逻辑方式控制。传统的电梯运行逻辑控制系统采用继电器逻辑控制线路。这种控制线路,存在易出故障、维护不便、运行寿命较短、占用空间大等缺点。从技术上发展来看,这种系统将逐渐被淘汰。如何解决电梯的可靠性、维护方便等问题已成为全社会关注的焦点和大众的迫切心声。
(2)题目研究的意义:目前,由可编程序控制器和微机组成的电梯运行逻辑控制系统,正以很快的速度发展着。采用PLC控制的电梯可靠性高、维护方便、开发周期短,这种电梯运行更加可靠,并具有很大的灵活性,可以完成更为复杂的控制任务,已成为电梯控制的发展方向,其许多功能是传统的继电器控制系统无法实现。
可编程控制系统是专门为在工业环境下应用而设计的数字运算操作电子系统。它采用一种可编程的存储器,在其内部存储执行逻辑运算、顺序控制、定时、计数和算术运算等操作的指令,通过数字式或模拟式的输入输出控制各种类型的机械设备或生产过程。通过可编程控制器可以实现由继电器实现的逻辑控制功能,而且最主要的是可编程控制器的“可编程”功能,使得当改变电梯的控制功能时,只要更改程序即可,而不需要像继电器控制系统那样改变硬件和接线。
2.国内外电梯的情况
当今世界,电梯的生产情况与使用数量已经成为衡量一个国家工业现代化程度的标志之一。在一些发达的工业国家,电梯的使用相当普遍。
世界上有名的几家电梯公司,诸如:美国奥梯斯公司、瑞士讯达公司、日本三菱和日立公司、芬兰科恩等,其电梯的产量已占世界市场的51%。其中,奥梯斯公司和三菱公司是世界上最大的电梯生产企业。
目前,国外除了以交流电梯取代直流电梯以外,在低层楼房越来越多的使用液压电梯。此外,家用小型电梯将成为电梯家族中新的组成部分。
电梯是集机电一体的复杂系统,不仅涉及机械传动、电气控制和土建等工程领域,还要考虑可靠性、舒适感和美学等问题。而对现代电梯而言,应具有高度的安全性。事实上,在电梯上己经采用了多项安全保护措施。在设计电梯的时候,对机械零部件和电器元件都采取了很大的安全系数和保险系数。然而,只有电梯的制造,安装调试、售后服务和维修保养都达到高质量,才能全面保证电梯的最终高质量、在国外,己“法规”实行电梯制造、安装和维修一体化,实行由各制造企业认可的、法规认证的专业安装队和维修单位,承担安装调试、定期维修和检查试验,从而为电梯运行的可靠性和安全性提供了保证。因此,可以说乘坐电梯更安全。美国一家保险公司对电梯的安全性做过认真地调查和科学计算,其结论是:乘电梯比走楼梯安全5倍。据资料统计,在美国乘其他交通工具的人数每年约为80亿人次,而乘电梯的人数每年却有540亿人次之多。
解放前,我国只有202_台电梯,几乎没有电梯生产企业。解放后,随着我国经济建设的发展,电梯企业应运而生。我国的电梯企业由60年代开始起步,到了70年代己初具规模。
改革开放以来,我国电梯的需求量急剧上升。在我国通过引进国际电梯标准以及发达国家的先进产品和技术,产生了一支以中外合资企业为主体的外向型企业队伍。如中国迅达公司、天津奥梯斯公司、上海三菱公司、苏州迅达公司和广州电梯工业公司等企业,就是通过合资和补偿贸易方式,引进发达国家的先进管理和技术,不断改善现有产品结构和管理体制,使企业素质和产品质量都提高到了一个新水平,推出一代电梯新产品。
目前,交流调压调速电梯技术已趋成熟,一些企业都有成功的产品。微机控制电梯是电梯技术的方向,一些生产企业与科研单位相结合,相继推出了微机控制的电梯新机型,使控制功能得到增强,电梯的性能得到改善,明显提高了可靠性。除了合资企业外,也有其他厂家开发出了变频调速电梯新产品。另外,用可编程序控制器取代继电器控制系统的机型对单梯进行控制还是有前途的。有些生产企业开发了紧急供电装置、放火厅们、地震控制、自检测以及语言合成等电梯新功能;对机械系统采用了新结构、新材料、新技术和新工艺。总之,与国外先进技术水平相比,虽然还存在一定差距,但国内电梯技术正以迅猛的发展速度赶超世界先进水平。
近年来,为保证电梯最终质量,在建立全国性完整的电梯管理法规、落实检查机构、壮大安装调试队伍、组建维修保养网络和提高相关人员技术素质等方面,正在进行着一系列实质性的工作。我国电梯行业,正在走向法规化,加速步入世界先进行列。
二、研究的基本内容,拟解决的主要问题:
(1)查找相关资料,了解国内外电梯控制系统的发展状况,熟悉现有电梯控制系统的发展方向。
(2)
阐述电梯的结构和可编程控制器的结构,了解PLC在电梯领域应用的优势及其硬件组成。
(3)对电梯的硬件设计。
(4)对电梯PLC控制原理进行分析。
(5)对电梯的软件设计。
这里我主要应用PLC原理对电梯的指层控制模块、轿内指令和厅外召唤登记与消号模块、电梯的选层和定向模块、电梯运行控制模块等进行设计。
三、研究步骤、方法及措施:
步骤及方法:
(1)了解现行电梯的结构和可编程控制器的结构。
(2)分析相关的PLC改造。
(3)基于PLC的电梯控制系统的设计。
(4)分析效果。
(5)得出结论。
措施:图书馆查找相关的书籍、期刊、杂志等,通过上网寻找相关的一些资料,查看当代对该技术的研究成果和最新的动态。然后通过对这些资料的学习和研究进一步的熟悉和理解设计所需的相关知识。在设计过程中及时与指导老师探讨,对不了解的问题及时向老师请教。
四、参考文献:
[1]
台方.可编程控制器应用教程[M].北京:中国水利水电出版社,202_,9
[2]
武锋.可编程控制器PLC的基本原理及应用[J].电子世界,202_,(11)
[3]
张凤池.现代工厂电气控制[M].北京:机械工业出版社,202_
[4]
李世基.微机与可编程控制器[M].北京机械工业出版社,1994
[5]
西门子(中国)有限公司.SIMATIC
S-200可编程序控制器系统西门子手册.[6]
王永华.现代电气控制及可编程控制技术[M].北京航空航天出版社,202_
[7]
章丽芙.基于PLC的电梯控制系统
.电气开关!
(202_.No.2)文章编号:
1004
289X(202_)
02-
0021-
03
[8]
朱昌明,洪治育,张惠侨.电梯与自动扶梯--原理、设计、安装、测试[M].上海:
上海交通大学出版社,1995.[9]
周万珍.高鸿彬.PLC分析与设计应用[M].北京:电子工业出版社,202_.[10]
李杰.PLC技术在电梯控制系统中的应用.科技创新导报,202_年第19期
[11]
张汉杰.现代电梯控制技术[M]
.哈尔滨:哈尔滨工业大学出版社,1996.
第三篇:PLC电梯控制系统毕业论文
四川工程职业技术学院
电气信息工程系
毕业论文
题 目 PLC电梯控制系统 班 级 电气自动化技术1班 姓 名 学 号 指导老师
前 言
随着现代社会的迅速发展,微电子技术和计算机技术也随之迅速发展.当前数字电器系统的设计正朝着速度快、容量大、体积小、重量轻的方向发展。其中,有着代表性的是日趋进步和完善的PLC设计技术。PLC(即可编程控制器)在工业控制领域内得到十分广泛的应用。PLC是一种基于数字计算机技术、专为在工业环境下应用而设计的电子控制装置,它采用可编程序的存储器,用来存储用户指令,通过数字或模拟的输入/输出,完成一系列逻辑、顺序、定时、记数、运算等确定的功能,来控制各种类型的机电一体化设备和生产过程。
PLC的设计和开发,已经有多种类型和款式。传统的PLC各有特点,它们适合在现场做手工测量,要完成远程测量并要对测量数据做进一步分析出来,传统PLC是无法完成的。然而基于PC通信的PLC,既可以完成测量数据的传递,又可借助PC,做测量数据的处理。所以这种类型的PLC无论在功能和世界应用上,都具有传统PLC无法比拟的特点,这使得它的开发和应用具有良好的前景。
第一章 电梯的简介
一、电梯的起源与发展
1、电梯的起源
现代社会中,电梯已经成为不可短少的运输设备。电梯是随着高层建筑的兴建而发展起来的一种垂直运输工具。多层厂房和多层仓库需要有货梯;高层住宅需要有住宅梯;百货大楼和宾馆需要有客梯,自动扶梯等。在现代社会,电梯已像汽车、轮船一样,成为人类不可缺少的交通运输工具。
电梯在汉语词典中的解释为:建筑物中用电作动力的升降机,代替步行上下的楼梯。
说到电梯的起源要从公元2600年埃及人在建造金字塔时使用了最原始的提升系统说起,但这一类起重机的能源均为人力。到了1203年,法国的二修道院安装了一台起重机,有所不同的是该机器是利用驴作为动力,载荷由绕在一个大滚筒上的绳子进行起吊。此种方法一直沿用到近代直到瓦特发明了蒸汽机,约在1800年,煤矿主才能利用起重机把矿井中的煤输送上来。
数百年来人们制造过各种类型的升降机,它们都具有一个共同的缺陷:只要起吊绳突然断裂,升降机便急速地坠落到底层。1854年奥迪斯设计了一种制动器:在升降机的平台顶部安装一个货车用的弹簧及一个制动杆与升降梯井道两侧的导轨相连接,起吊绳与货车弹簧连接,这样仅是起重平台的重量就足以拉开弹簧,避免与制动杆接触。如果绳子断裂,货车弹簧会将拉力减弱,两端立刻与制动杆咬合,即可将平台牢固地原地固定,免了继续下坠。这样,第一台“安全”升降梯就产生了,然而真正能够称为电梯的产品应该是在20世纪初才出现。
2、电梯技术的发展
(1)电梯的速度要求越来越快,告诉,超高速电梯的数量越来越多。(2)电梯的拖动技术有了圈套的发展,直流电梯由于能耗大、维修量大等缺点。逐步被交流电梯所替代,液压电梯由于运行平稳,机房位置灵活等特点,使得在低楼层场合得到越来越广泛的应用。交流拖动电梯更是得到迅速发展。
(3)电梯的逻辑控制已从过去简单的继电器-接触器控制发展为可编程序控制(PLC)和计算机控制,控制方式也从手柄控制、信号控制发展为集选控制、并联控制、群控等,电梯可靠性得到很大的提高。
(4)电梯的管理功能不断加强,电梯广泛采用计算机控制技术,不断满足用户的使用功能要求。如停车操作、消防员专用等。
第二章 PLC的简介
一、PLC的定义
可编程控制器是一种数字运算操作的电子系统,专业在工业环境应用而设计的。它采用一类可编程的存储器,用于其内部存储程序,执行逻辑运算,顺序控制,定时,技术与算术操作等方面向用户的指令,并通过数字或模拟式输入/输出控制各种类型的机械或生产过程。可编程控制器及其有关外部设备,都按易于与工业控制系统联成一个整体,易于扩充其功能的原则设计。
总之,可编程控制器是一台计算机,它是专为工业环境应用而而设计制造的计算机。它具有丰富的输入/输出接口,并且具有较强的驱动能力。但可编程控制器产品并不针对某一具体工业应用,在实际应用时,其硬件需根据实际需要进行选用配置,其软件需根据控制要求进行设计编制。
二、PLC的基本结构和组成
1、PLC的结构图如下所示:
交流/直流现场设备扩展单元电源基本I/OI/O扩展接CPU存储器外围接口数据总线外设编程器通信网络
图2 PLC的结构图
(1)中央处理单元(CPU)是PLC的控制中枢,在系统监控程序的控制下工作,承担着将外部输入信号的状态写入输入映像寄存器区域,然后将接过送到输
出映像寄存器区域。
(2)存储器由只读存储器ROM和随机存储器RAM两大部分组成,存放系统软件的存储器称为系统程序的存储器ROM,存放应用软件或中间运行数据的存储器称为用户程序存储器RAM。
(3)基本I/O接口电路
A.PLC内部输入电路作用是将PLC外部电路提供的、符合PLC输入电路要求的电压信号,通过光耦电路送到PLC内部电路。
B.PLC输出电路用来将CPU运算的结果换成一定形式的功率输出,驱动被控负载。
(4)接口电路:PLC接口电路分为I/O扩展接口电路和外设通信接口电路两大类。
A.I/O扩展接口电路用于连接I/O扩展单元,可以用来扩充开关量I/O点数和增加模拟量的I/O端子。I/O扩展接口电路采用并行接口和串行接口两种电路形式。
B.外设通信接口电路用于连接手持编程器或其他图形编程器、文本显示器,并能组成PLC的控制网络。
(5)电源:PLC内部配有一个专用开关式稳压电源,将交流/直流供电电源转化为PLC内部电路需要的工作电源(5V直流)。
2.PLC控制系统的组成
PLC控制系统像一般的计算机控制系统一样,也是由硬件和软件两个部分组成的,硬件是指PLC本身及其外围设备,软件是指管理PLC的系统软件,PLC的应用程序,编程语言和编程支持工具软件。
图3 PLC控制系统的组成
PLC控制系统的软件主要是系统软件,应用软件,编程语言及编程支持工具软件几个部分组成。
PLC系统软件是PLC工作所必须的软件。在系统软件的支持西,PLC对用户程序进行逐条的解释,并加以执行,直到用户程序结束,然后返回到程序的起始又开始新的一轮扫描。PLC的这种工作方式就称之为循环扫描。
图4 PLC内部工作示意图
0的输入端子的通断状态或输入数据读入,并将其写入各对应的输入状态寄存器中,即刷新输入。随机关闭输入端口,进入程序执行阶段。
PLC在程序执行阶段:按用户程序指令存放的先后顺序扫描执行每条指令,经相应的运算和处理后,其结果再写入输出状态寄存器中,输出状态寄存器中所有的内容随着程序的执行而改变。
输出刷新阶段:当所有指令执行完毕,输出状态寄存器的通断状态在输出刷新阶段送至输出锁存器中,并通过一定的方式输出,驱动相应输出设备工作。
四、PLC的特点
PLC是一种用于工业自动化控制的专用计算机,实质上属于计算机控制方式。PLC与普通计算机一样,以通用或专用CPU作为处理器,实现通道的运算和数据的存储,另外还有位处理器,进行点(位)的运算与控制。
PLC控制一般具有可靠性高,易操作、维修、编程简单、灵活性强等特点。
五、PLC系统的发展趋势
PLC当初是针对工业顺序控制发展而研制的。经过30几年的迅速发展,PLC已不仅能进行开关量控制,而且还能进行模拟量控制,位置控制。特别是PLC的通信网络技术的发展,使得PLC如虎添翼,由单机控制向多机控制,由集中控制向多层次分布式控制系统发展。现在PLC的足迹已遍布了国民经济的各个领域,形成了满足各种需要的PLC应用系统。
电梯结构不断紧凑化,体积不断轻型化、小巧化随着新技术、新结构、新材料、新工艺的发展,电梯的机械系统结构简单化、体积小型化、材料轻型化、工艺先进化、外观漂亮化。同时,无机房电梯在新世纪将会有较大速度发展。
今后PLC控制系统将朝着两个方向发展:一是向小型化,微型化系统方向发展。作为控制系统的关键设备,PLC将朝着体积更小,速度更快,功能更强,价格更低的方向发展。二是向大型化,网络化,多功能的方向发展。
2131415
第四章 PLC控制系统的设计方案
一、PLC控制系统基本方案
随着城市建设的不断发展,高层建筑不断增多,电梯在国民经济和生活中有着广泛的应用。电梯作为高层建筑中垂直运行的交通工具已与人们的日常生活密不可分。实际上电梯是根据外部呼叫信号以及自身控制规律等运行的,而呼叫是随机的,电梯实际上是一个人机交互式的控制系统,单纯用顺序控制或逻辑控制是不能满足控制要求的,因此,电梯控制系统采用随机逻辑方式控制。目前电梯的控制普遍采用了两种方式,一是采用微机作为信号控制单元,完成电梯信号的采集、运行状态和功能的设定,实现电梯的自动调度和集选运行功能,拖动控制则由变频器来完成;第二种控制方式用可编程控制器(PLC)取代微机实现信号集选控制。从控制方式和性能上来说,这两种方法并没有太大的区别。国内厂家大多选择第二种方式,其原因在于生产规模较小,自己设计和制造微机控制装置成本较高;而PLC可靠性高,程序设计方便灵活,抗干扰能力强、运行稳定可靠等特点,所以现在的电梯控制系统广泛采用可编程控制器来实现。
本文将用四层楼作为背景进行设计。
1.轿厢楼层位置检测方法
主要方法有以下几种:
(1)用于簧管磁感应器或其他位置开关:这种方法直观、简单,但由于每层需使用一个磁感应器,当楼层较高时,会占用PLC太多的输入点。
(2)利用稳态磁保开关:这种方法需对磁保开关的不同状态进行编码,在各种编码方式中适合电梯控制的只有格雷变形码,但是它是无权代码,进行运算时需采用PLC指令译码,比较麻烦,软件译码也使程序变的庞大。
(3)利用旋转编码器:目前,PLC一般都有高速脉冲输入端或专用计数单元,计数准确,使用方便,因此在电梯PLC控制系统中,可用编码器测取电梯运行过程中的准确位置,编码器可直接与PLC高速脉冲输入端相连,电源可利用PLC内置的24V直流电源,硬件连接可谓简单方便。
由以上分析可见,用旋转编码器检测轿厢的位置优于其他方法,故本设计采用此方法
2.PLC的选型
根据以上选择的轿厢楼层位置检测方法,要求可编程控制器必须且有高数计数器。又因为电梯时双向运行的,所以PLC还需具有可逆计数器。综合考虑后,本设计选择西门子公司生产的S7—200系列机。
S7—200系列机具有以下优点: 1.体积极小
2.先进美观的外部结构 3.提供多种子系列供用户选用 4.灵活多变的系统配置 5.功能强、使用方便
二、PLC电梯控制系统设计方向
1.电梯控制系统的基本结构组成
电梯PLC的控制系统和其他类型的电梯控制系统一样主要由信号控制系统和拖运控制系统两部分组成。图7为电梯PLC控制系统的基本结构图,主要硬件包括PLC主机及扩展、机械系统、轿箱操纵盘、厅外呼梯盘、指层器、门机、调速装置与主拖动系统等。系统控制核心为PLC主机,操纵盘、呼梯盘、井道及安全信号通过PLC输入接口送入PLC,存储在存储器及召唤指示灯等发出显示信号,向拖动和门机控制系统发出控制信号。
电梯控制系统可分为电力拖动系统和电气控制系统两个主要部分。电力拖动系统主要包括电梯垂直方向主动拖动电路和轿厢开关电路。二者均采用易于控制的直流电动机作为拖动动力源。主拖动电路采用PWM调试方式,达到了无级调速的目的。而开关门电路上电机仅需一种速度进行运动。电气控制系统则由众多呼叫按钮、传感器、控制用继电器、指示灯、LED七段数码管和控制部分的核心器件等组成。PLC集信号采集、信号输出及逻辑控制于一体,与电梯电力拖动系统一起实现了电梯控制的所有功能。十层电梯控制系统由呼叫到响应形成一次工作循环,电梯工作过程又可细致分为自检、正常工作、强制工作等三种工作状态。电梯在三种工作状态之间来回切换,构成了完整的电梯工作过程。
如下图:
图7 电梯PLC控制系统的基本结构
2.电梯控制系统原理框图
电梯控制系统原理框图如下图所示,主要由轿厢内指令电路、门厅呼叫电路、主拖动电机电路、开关门电路、档层显示电路、按钮记忆灯电路、楼层检测与平层检测传感器及PLC电路等组成的。
图8 电梯控制系统原理框图
到PLC的控制信号有:运行方式选择、运行控制、轿内指令、层站召唤、安全保护信息、旋转编码器光电脉冲、开关门及限位信号、门区和平层信号等。
图10 电梯信号控制系统
6.拖动控制系统
电梯主要由直流和交流两种拖动方式,PLC控制的拖动系统主电路及调速装置与继电器控制系统相比无需做很多改动。拖动系统的工作状态及部分反馈信号可直接送入PLC,由PLC向拖动系统发出速度切换、起动、运行、平层等控制信号。
7.电梯上行
(1)电梯停在1F,2F呼叫时,则上行,碰到2F的行程开关后停止。(2)电梯停在1F或2F时,3F呼叫,则上行,碰到3F的行程开关后停止。(3)当电梯停在1F或2F、3F时,4F呼叫,则上行到4F碰到行程开关后停止。
(4)电梯停在1F,2F、3F同时呼叫时,则电梯上行到2F后停5s,继续上行到3F后停止。
(5)电梯停在1F,2F、3F同时呼叫时,电梯上行到2F停5s,继续上行到3F停止。
(6)电梯停在1F,3F、4F同时呼叫时,电梯上行到3F停止5s,继续上行
122232425
系统会根据外呼和内选信号及门锁信号综合判断电梯的运行方向。5.执行上行程序
此段程序包括控制电梯上行,检测是否应该减速或者停止电梯正转并且执行。6.执行下行程序
此段程序包括控制电梯下行,检测是否应该减速或者停止电梯正转并且执行。
四、I/O点的分配
根据需要控制的开关、设备大约有15个输入点,11个输出点。如图15:
图15 I/O点的分配
五、硬件系统调试
在硬件调试时,我们主要调试的内容有: 1.在接线端子上。
2.在PLC扩展单元上。3.在电源接线上。
注:特别是在电源接线时,一定要注意哪些端子接24V,哪些接地。
六、软件系统调试
在软件调试时,主要是结合硬件设备观察程序的过程是否与我们设计的原理一致。如果出现不正常运行和不运行时我们得回到程序编制,依次检查与修改。
七、程序梯形图
0
图16 PLC控制程序梯形图
注:
M0.1 电梯在一层时停止指令 M0.2 电梯在二层时停止指令 M0.3 电梯在三层时停止指令 M0.4 电梯在四层时停止指令 M1.1 电梯在一层时向上运行指令 M1.2 电梯在二层时向上运行指令 M1.3 电梯在三层时向上运行指令
E2亮,电梯停止。
11.按SB6,SB10(SB4),电梯上升,按SQ2,E1灭,E2亮,电梯仍上升,按SQ3,E2灭,E3亮,电梯仍上升,再按SQ4,E3,E4亮,电梯停止2s后下降,按SQ2,E3灭,E2亮,电梯停止。
12.按SB7(SB2),SB10(SB4),电梯上升,按SQ2,E1灭,E2灭,电梯停止2s后上升,按SQ3,E2灭,E3亮,电梯仍上升,再按SQ4,E3灭,E4亮,电梯停止。
13.按SB6,SB8,SB10(SB4),电梯上升,按SQ2,E1灭,E2亮,电梯停止2s后上升,再按SQ3,E1灭,E2亮,电梯仍上升,在按SQ4,E3灭,E4亮,电梯停止2s后下降,按SQ3,E4灭,E3亮,电梯仍下降,按SQ2,E2灭,E2亮,电梯停止。
14.按SB6,SB8,SB10(SB4),电梯上升,按SQ2,E1灭,E2亮,电梯停止2s后上升,按SQ3,E2灭,E3亮,电梯仍上升,再按SQ4,E3灭,E4亮,电梯停止2s后下降,按SQ3,E4灭,E3亮,电梯仍下降,按SQ2,E3灭,E2亮,电梯停止。
15.按SB6,SB8,SB10(SB4),电梯上升,按SQ2,E1灭,E2亮,电梯停止2s后上升,按SQ3,E2灭,E3亮,电梯仍上升,再按SQ4,E3灭,E4亮,电梯停止2s后下降,按SQ3,E4灭,电梯提高至2s后下降,按SQ3,E4灭,E3亮,电梯停止。
16.按SB6,SB9(SB3),SB10(SB4),电梯上升,按SQ2,E1灭,E2亮,电梯仍上升,按SQ3,E2灭,E3亮,电梯停止2s后上升,再按SQ4,E3灭,E4亮,电梯停止2s后下降,按SQ3,E4灭,E3亮,电梯仍下降,按SQ2,E3灭,E2亮,电梯停止。
17.按SB7(SB2),SB9(SB3),SB10(SB4),电梯上升,按SQ2,E1灭,E2亮,电梯停止2s后上升,按SQ3,E2灭,E3亮,电梯停止2s后上升,再按SQ4,E3灭,E4亮,电梯停止。
18.按SB6,SB7(SB2),SB8,SB10(SB4),电梯上升,按SQ2,E1灭,E2亮,电梯停止2s后上升,按SQ3,E2灭,E3亮,电梯仍上升,再按SQ4,E3灭,E4亮,电梯停止2s后下降,再按SQ3,E4灭,E3亮,电梯上升,再按SQ4,E3灭,E4亮,电梯停止2s后下降,再按SQ3,E4灭,E3亮,电梯停止2s后下降,再按SQ2,E3灭,E2亮,电梯停止。
19.按SB6,SB7(SB2),SB9(SB3),SB10(SB4),电梯上升,按SQ2,E1灭,E2亮,电梯停止2s后上升,按SQ3,E2灭,E3亮,电梯停止2s后上升,再按SQ4,E3灭,E4亮,电梯停止2s后下降,按SQ3,E4灭,E3亮,电梯仍下
降,再按SQ2,E3灭,E2亮,电梯停止。
20.按SB6,SB7(SB2),SB8,SB9(SB3),SB10(SB4),电梯上升,按SQ2,E1灭,E2亮,电梯停止2s后上升,按SQ3,E2灭,E3亮,E4亮,电梯停止2s后下降,按SQ3,E4灭,E3亮,电梯停止2s后下降,再按SQ2,E3灭,E2亮,电梯停止。
21.按SB8,SB10(SB4),电梯上升,按SQ2,E1灭,E2亮,电梯仍上升,按SQ3,E2灭,E3亮,电梯仍上升,按SQ3,E2灭,E3亮,电梯停止2s后上升,按SQ3,E2灭,E3亮,电梯停止。
22.按SB8,SB9(SB3),SB10(SB4),电梯上升,按SQ2,E1灭,E2亮,电梯仍上升,按SQ3,E2灭,E3亮,电梯停止2s后上升,按SQ3,E2灭,E3亮,电梯停止。
23.按SB8,SB9(SB3),SB10(SB4),电梯上升,按SQ2,E1灭,E2亮,电梯仍上升,按SQ3,E2灭,E3亮,电梯停止2s后上升,再按SQ4,E3灭,E4亮,电梯停止2s后下降,按SQ3,E4灭,E3亮,电梯停止。
电梯停留在二层:
1.按SB8或SB9(SB3)或SB8或SB9(SB3),电梯上升,反方向呼叫无效,按SQ3,E2灭,E3亮,电梯停止。
2.按SB10(SB4),电梯上升,反方向呼叫无效,按SQ3,E2灭,E3亮,电梯停止。
3.按SB5(SB1), 电梯上升,反方向呼叫无效,按SQ3,E2灭,E3亮,电梯停止。
4.按SB8,SB10(SB4),电梯上升,反方向呼叫无效,按SQ3,E2灭,E3灭,E4亮,电梯停止。
5.按SB9(SB3),SB10(SB4),电梯上升,反方向呼叫无效,按SQ3,E2灭,E3亮,电梯停止2s后上升,再按SQ4,E3灭,E4亮,电梯停止。
6.按SB8,SB9(SB3),SB10(SB4),电梯上升,反方向呼叫无效,按SQ3,E2灭,E3亮,电梯停止2s后上升,再按SQ4,E3灭,E4亮,电梯停止2s后下降,按SQ3,E4灭,E3亮,电梯停止。
电梯停留在三层:
1.按SB10(SB4),电梯上升,反方向呼叫无效,按SQ4,E3灭,E4亮,电梯停止。
2.按SB6或SB7(SB2)或SB6,SB7(SB2),电梯下降反方向呼叫无效,按SQ2,E3亮,电梯停止。
3.按SB5(SB1), 电梯下降,反方向呼叫无效,按SQ2,E3灭,E2亮,电梯仍下降,按SQ1,E2灭,E1亮,电梯停止。
4.按SB7,SB5(SB1), 电梯下降,反方向呼叫无效,按SQ2,E3灭,E2亮,电梯仍下降,按SQ1,E2灭,E1亮,电梯停止2s后上升,按SQ2,E1灭,E2亮,电梯停止。
5.按SB7,SB6(SB2),SB5(SB1),电梯下降,反方向呼叫无效,按SQ2,E3灭,E2亮,电梯停止2s后下降,按SQ1,E2灭,E1亮,电梯停止。
6.按SB7,SB6(SB2),SB5(SB1),电梯下降,反方向呼叫无效,按SQ2,E3灭,E2亮,电梯停止2s后下降,再按SQ1,E2灭,E1亮,电梯停止2s后上升,按SQ2,E1灭,E2亮,电梯停止。
63738-
第四篇:plc梯形图设计的基本原则(小文档网推荐)
plc梯形图设计的基本原则
1、水平不垂直
梯形图的接点应画在水平线上,不能画在垂直分支上
2、线圈右边无接点
不能将接点画在线圈右边,只能在接点的右边接线圈
3、左大右小,上大下小
有串联电路并联时,应将接点最多的那个串联回路放在梯形图最上面。有并联电路相串联时,应将接点最多的并联回路放在梯形图的最左边。
4、双线圈输出不可用
如果在同一程序中同一元件的线圈使用两次或多次,则称为双线圈输出。这时前面的输出无效,只有最后一次才有效,一般不应出现双线圈输出。
第五篇:基于plc水塔水位控制系统设计
实 训(习)报 告
课程名称:专 业 综 合 实 训
专 业: 生产过程自动化
班 级:
学 号:
姓 名:
指导教师: 成 绩:
完成日期:
目 录
1、PLC简介.........................................................................................................1 1.1、可编程控制器的产生..................................................................................1 1.2、PLC的发展..................................................................................................3 1.3、PLC的未来展望..........................................................................................4 1.4、PLC的特点..................................................................................................4 1.5、PLC的组成..................................................................................................5 1.5.1、中央处理单元(CPU)................................................................................6 1.5.2、存储器.......................................................................................................6 1.5.3、输入/输出模块..........................................................................................8 1.5.4、扩展模块...................................................................................................9 1.5.5、编程器.......................................................................................................9 1.5.6、电源.........................................................................................................11 1.6、PLC的工作原理........................................................................................11 1.6.1、扫描技术.................................................................................................12 1.6.2、PLC的I/O响应时间.............................................................................13 1.7、梯形图程序设计........................................................................................13
2、方案的论证...................................................................................................15 2.1、工艺过程分析............................................................................................15 2.2、PLC型号的选择........................................................................................15 2.3、工作控制方式............................................................................................15
3、水塔水位系统PLC硬件设计.....................................................................17 3.1、水塔水位系统控制电路............................................................................17 3.2、输入/输出分配...........................................................................................18 3.3、水塔水位系统的接线图............................................................................18
4、水塔水位控制系统PLC软件设计.............................................................19 4.1、程序流程图................................................................................................19 4.2、梯形图........................................................................................................20 4.3、系统程序的具体分析................................................................................21
4.4、水塔水位控制系统梯形图的对应指令表................................................22
5、总结...............................................................................错误!未定义书签。致
谢.............................................................................................................24 参考文献.............................................................................................................25
摘要
在工农业生产过程中,经常需要对水位进行测量和控制。水位控制在日常生活中应用也相当广泛,比如水塔、地下水、水电站等情况下的水位控制。而水位检测可以有多种实现方法,如机械控制、逻辑电路控制、机电控制等。本文采用PLC进行主控制,在水箱上安装一个自动测水位装置。利用水的导电性连续地全天候地测量水位的变化,把测量到的水位变化转换成相应的电信号,主控台应用MCGS组态软件对接收到的信号进行数据处理,完成相应的水位显示、故障报警信息显示、实时曲线和历史曲线的显示,使水位保持在适当的位置。
关键词: 水位控制、欧姆龙PLC
1、PLC简介
1.1、可编程控制器的产生
可编程控制器是二十世纪七十年代发展起来的控制设备,是集微处理器、储存器、输入/输出接口与中断于一体的器件,已经被广泛应用于机械制造、冶金、化工、能源、交通等各个行业。计算机在操作系统、应用软件、通行能力上的飞速发展,大大加强了可编程控制器通信能力,丰富了可编程控制器编程软件和编程技巧,增强了PLC过程控制能力。因此,无论是单机还是多机控制、是流水线控制还是过程控制,都可以采用可编程控制器,推广和普及可编程控制器的使用技术,对提高我国工业自动化生产及生产效率都有十分重要的意义。
可编程控制器(Programmable Controller)也可称逻辑控制器(Programmable Logic Controller),是一微处理器为核心的工业自动控制通用装置,是计算机家族的一名成员,简称PC。为了与个人电脑(也简称PC)相混淆通常将可编程控制器称为PLC。
可编程控制器的产生和继电器—接触器控制系统有很大的关系。继电器—接触器控制已经有伤百年的历史,它是一种弱电信号控制强电信号的电磁开关,具有结构简单、电路直观、价格低廉、容易操作、易于维修的有优点。对于工作模式固定、要求比较简单的场合非常使用,至今仍有广泛的用途。但是当工作模式改变时,就必须改变系统的硬件接线,控制柜中的物件以及接线都要作相应的变动,改造工期长、费用高,用户宁愿扔掉旧控制柜,另做一个新控制柜使用,阻碍了产品更新换代。
随着工业生产的迅速发展,市场竞争的激烈,产品更新换代的周期日益缩短,工业生产从大批量、少品种,向小批量、多品种转换,继电器—接触器控制难以满足市场要求,此问题首先被美国通用汽车公司(GM公司)提了出来。通用汽车公司为适合汽车型号的不断翻新,满足用户对产
品多样性的需求,公开对外招标,要求制造一种新的工业控制装置,取代传统的继电器—接触器控制。其对新装置性能提出的要求就是著名的GM10条,编程方便,现场可修改程序; 维修方便,采用模块化结构;可靠性高于继电器控制装置;体积小于继电器控制装置; 数据可直接送入管理计算机;成本可与继电器控制装置竞争; 输入可以是交流115V; 输出为交流115V,2A以上,能直接驱动电磁阀,接触器等;在扩展时,原系统只要很小变更;用户程序存储器容量至少能扩展到4K。
这十项指标就是现代PLC的最基本功能,值得注意的是PLC并不等同于普通计算机,它与有关的外部设备,按照“易于与工业控制系统连成一体”和“便于扩充功能”的原则来设计。
用可编程控制器代替了继电器—接触器的控制,实现了逻辑控制功能,并且具有计算机功能灵活、通用性等有点,用程序代替硬接线,并且具有计算机功能灵活、通用性能强等优点,用程序代替硬接线,减少了重新设计,重新接线的工作,此种控制器借鉴计算机的高级语言,利用面向控制过程,面向问题的“自然语言”编程,其标志性语言是极易为IT电器人员掌握的梯形图语言,使得部熟悉计算机的人也能方便地使用。这样,工作人员不必在变成上发费大量地精力,只需集中精力区考虑如何操作并发挥改装置地功能即可,输入、输出电平与市电接口,市控制系统可方便地在需要地地方运行。所以,可编程控制器广泛地应用于各工业领域。
PLC问世时间不长,但是随着微处理器的发展,大规模、超大规模集成电路不断出现,数据通信技术不断进步,PLC迅速发展。PLC进入九十年代后,工业控制领域几乎全被PLC占领。国外专家预言,PLC技术将在工业自动化的三大支柱(PLC、机器人和CAC/CAM)种跃居首位。
我国在八十年代初才开始使用PLC,目前从国外应进的PLC使用较为普遍的由日本OMRON公司C系列、三菱公司F系列、美国GE公司GE系列和德国西门子公司S系列等。
1.2、PLC的发展
虽然PLC问世时间不长,但是随着微处理器的出现,大规模,超大规模集成电路技术的迅速发展和数据通讯技术的不断进步,PLC也迅速发展,其发展过程大致可分为三各阶段:
早期的PLC一般称为可编程逻辑控制器。这是的PLC多少由电继电器控制装置的替代物的含义,其主要功能只是执行原先由继电器完成的顺序控制、定时等。它在硬件上 以计算机的形式出现,在I/O接口电路上作了改进以适应工业控制现场的要求。装置种的器件主要采用分离元件和中小规模集成电路,存储器采用磁芯存储器。另外还采取了一些措施,以提高其抗干扰的能力。在软件编程上采用广大电器工程技术人员所熟悉的继电器控制线路的方式—梯形图。因此,早期的PLC的性能要优于继电器控制装置,其优点包括简单易懂,便于安装,体积小,能耗低,有故障指示,能重复使用等。其中PLC特有的编程语言—梯形图一直沿用至今。
在七十年代,微处理器的出现使PLC发生了巨大的变化。美国,日本,德国等一些厂家先后开始采用微处理器作为PLC的中央处理单元(CPU)。
这样,使PLC的功能大大增强。在软件方面,除了保持其原有的逻辑运算、计时、计数等功能以外,还增加了算术运算、数据处理和传送、通讯、自诊断等功能。再硬件方面,除了保持其原有的开关模块以外,还增加了模拟量快、远程I/O模块、各种特殊功能模块。并扩大了存储器的容量,是各种逻辑线圈的数量增加,还提供了一定数量的数据寄存器,使PLC的应用范围得以扩大。
进入八十年代中、后期,由于插大规模集成电路技术的迅速发展,微处理器的市场价格大幅度下跌,使得各种类型的PLC所采用的微处理器的档次普遍提高。而且,为了进一步提高PLC的处理速度,各制造厂商纷纷开发研制了专用逻辑处理芯片。这样使得PLC软、硬功能发生了巨大变化。
1.3、PLC的未来展望
21世纪,PLC会有更大的发展。从技术上看,计算机技术的新成果会更多地应用于可编程控制器的设计和制造上,会有运算速度更快、存储容量更大、智能更强的品种出现;从产品规模上看,会进一步向超小型及超大型方向发展;从产品的配套性上看,产品的品种会更丰富、规格更齐全,完美的人机界面、完备的通信设备会更好地适应各种工业控制场合的需求;从市场上看,各国各自生产多品种产品的情况会随着国际竞争的加剧而打破,会出现少数几个品牌垄断国际市场的局面,会出现国际通用的编程语言;从网络的发展情况来看,可编程控制器和其它工业控制计算机组网构成大型的控制系统是可编程控制器技术的发展方向。目前的计算机集散控制系统DCS(Distributed Control System)中已有大量的可编程控制器应用。伴随着计算机网络的发展,可编程控制器作为自动化控制网络和国际通用网络的重要组成部分,将在工业及工业以外的众多领域发挥越来越大的作用。
1.4、PLC的特点 可靠性高,抗干扰能力强
高可靠性是电气控制设备的关键性能。PLC由于采用现代大规模集成电路技术,采用严格的生产工艺制造,内部电路采取了先进的抗干扰技术,具有很高的可靠性。例如三菱公司生产的F系列PLC平均无故障时间高达30万小时。一些使用冗余CPU的PLC的平均无故障工作时间则更长。从PLC的机外电路来说,使用PLC构成控制系统,和同等规模的继电接触器系统相比,电气接线及开关接点已减少到数百甚至数千分之一,故障也就大大降低。此外,PLC带有硬件故障自我检测功能,出现故障时可及时发出警报信息。在应用软件中,应用者还可以编入外围器件的故障自诊断程序,使系统中除PLC以外的电路及设备也获得故障自诊断保护。这样,整个系统具有极高的可靠性也就不奇怪了。配套齐全,功能完善,适用性强
PLC发展到今天,已经形成了大、中、小各种规模的系列化产品。可以用于各种规模的工业控制场合。除了逻辑处理功能以外,现代PLC大多具有完善的数据运算能力,可用于各种数字控制领域。近年来PLC的功能单元大量涌现,使PLC渗透到了位置控制、温度控制、CNC等各种工业控制中。加上PLC通信能力的增强及人机界面技术的发展,使用PLC组成各种控制系统变得非常容易。易学易用,深受工程技术人员欢迎
PLC作为通用工业控制计算机,是面向工矿企业的工控设备。它接口容易,编程语言易于为工程技术人员接受。梯形图语言的图形符号与表达方式和继电器电路图相当接近,只用PLC的少量开关量逻辑控制指令就可以方便地实现继电器电路的功能。为不熟悉电子电路、不懂计算机原理和汇编语言的人使用计算机从事工业控制打开了方便之门。系统的设计、建造工作量小,维护方便,容易改造
PLC用存储逻辑代替接线逻辑,大大减少了控制设备外部的接线,使控制系统设计及建造的周期大为缩短,同时维护也变得容易起来。更重要的是使同一设备经过改变程序改变生产过程成为可能。这很适合多品种、小批量的生产场合。体积小,重量轻,能耗低
以超小型PLC为例,新近出产的品种底部尺寸小于100mm,重量小于150g,功耗仅数瓦。由于体积小很容易装入机械内部,是实现机电一体化的理想控制设备。
1.5、PLC的组成
PLC的硬件主要是由中央处理器(CPU)、存储器、输入单元、输出单元,通信接口、扩展接口电源等部分组成。其中,CPU是PLC的核心,输入单元与输出单元是连接现场输入/输出设备与CPU之间的接口电路,通信接口用于与编程器、上位计算机等外设连接。典型PLC组成框图如图1.1所示。
图1.1 典型PLC组成框图
1.5.1、中央处理单元(CPU)中央处理单元(CPU)是PLC控制中枢。它PLC系统程序赋予功能接收并存储从编程器键入用户程序和数据;检查电源、存储器、I/O以及警戒定时器状态,并能诊断用户程序中语法错误。当PLC投入运行时,首先它以扫描方式接收现场各输入装置状态和数据,并分别存入I/O映象区,然后从用户程序存储器中逐条读取用户程序,命令解释后按指令规定执行逻辑或算数运算结果送入I/O映象区或数据寄存器内。等所有用户程序执行完毕之后,最后将I/O映象区各输出状态或输出寄存器内数据传送到相应输出装置,如此循环运行,直到停止运行。
进一步提高PLC可靠性,近年来对大型PLC还采用双CPU构成冗余系统,或采用三CPU表决式系统。这样,某个CPU出现故障,整个系统仍能正常运行。
1.5.2、存储器
存放系统软件存储器称为系统程序存储器。存放应用软件存储器称为用户程序存储器。
1、PLC常用存储器类型
(1)RAM(Random Assess Memory)这是一种读/写存储器(随机存
储器),其存取速度最快,由锂电池支持。
(2)EPROM(Erasable Programmable Read Only Memory)这是一种可擦除只读存储器。断电情况下,存储器内所有内容保持不变。紫外线连续照射下可擦除存储器内容)。
(3)EEPROM(Electrical Erasable Programmable Read Only Memory)这是一种电可擦除只读存储器。使用编程器就能很容易对其所存储内容进行修改。
2、PLC存储空间分配
各种PLCCPU最大寻址空间各不相同,PLC工作原理,其存储空间一般包括以下三个区域:
(1)系统程序存储区
(2)系统RAM存储区(包括I/O映象区和系统软设备等)(3)用户程序存储区
系统程序存储区:系统程序存储区中存放着相当于计算机操作系统系统程序。包括监控程序、管理程序、命令解释程序、功能子程序、系统诊断子程序等。由制造厂商将其固化EPROM中,用户不能直接存取。它和硬件一起决定了该PLC性能。
系统RAM存储区:系统RAM存储区包括I/O映象区以及各类软设备,如:逻辑线圈;数据寄存器;计时器;计数器;变址寄存器;累加器等存储器。
(1)I/O映象区:PLC投入运行后,输入采样阶段才依次读入各输入状态和数据,输出刷新阶段才将输出状态和数据送至相应外设。它需要一定数量存储单元(RAM)以存放I/O状态和数据,这些单元称作I/O映象区。一个开关量I/O占用存储单元中一个位(bit),一个模拟量I/O占用存储单元中一个字(16个bit)。整个I/O映象区可看作两个部分组成:开关量I/O映象区;模拟量I/O映象区。
(2)系统软设备存储区 :I/O映象区区以外,系统RAM存储区还包括PLC内部各类软设备(逻辑线圈、计时器、计数器、数据寄存器和累加器等)存储区。该存储区又分为具有失电保持存储区域和无失电保持存储区域,前者PLC断电时,由内部锂电池供电,数据不会遗失;后者当PLC
断电时,数据被清零。
用户程序存储区:主要用来存放用户的应用程序。所谓用户程序时指使用户根据工程现场的的产生过程和工艺要求编写的控制程序。次程序由使用者通过编程器输入到PLC机的RAM存贮器中,以便于用户随时修改。也可将用户程序存放在EEPROM中。
1.5.3、输入/输出模块
输入/输出模块是可编程控制器与工业生产设备或工业生产过程连接的借口。现场的输入信号,如按钮开关,行程开关、限位开关以及传感输出的开关量或模拟量(压力、流量、温度、电压、电流)等,都要通过输入模块送到PLC。由于这些信号电平各式各样,而可编程控制器CPU所处理的信息只能是标准电平,所以输入模块还需将这些信号转换成PLC能够接受和处理的数字信号。输入模块的作用是接收中央处理器处理过的数字信号,并把它转换成现场执行部件所能接收的控制信号,以驱动如电磁阀、灯光显示、电机等执行机构。可编程控制器有多种输入/输出模块其类型有数字量输入/输出模块和模拟量输入/输出模块。这些模块分直流和交流、电压和电流类型,每种类型又有不同的参数等级,主要有数字量输入/输出模块和模拟量输入输出/模块,部件上都设有接线端子排,为了滤除信号的噪声和便于PLC内部对信号的处理,这些模块上都带有滤波、电平转换、信号锁存电路。数字量输入模块带有广电耦合电路,其目的是把PLC与外部电路隔离起来,以提高PLC的抗干扰能力。数字两输出有继电器输出、晶体管输出和可控硅输出三种方式。模拟量输入/输出模块主要用来实现模拟量与数字量之间的转换,即A/D或D/A转换。由于工业控制系统中有传感器或执行机构有一些信号是连续变化的模拟量,因此这些模拟量必须通过模拟量输入/输出模块与PLC的中央处理器连接。模拟量输入模块A/D转换后的二进制数字量,经光电耦合器和输出锁存器宇PLC的1/0总线挂接。现在标准量程的模拟电压主要是0—5伏和0—10伏两种。模拟量输入模块接收标准量程的模拟电压或电流猴,把它转换成8未、10未或12位的二进制数字信号,送给中央处理器进行处理。模拟量输出模块将中央处理器的二进制数字信号转换成标准量程的电压或电流输出信号,提供给
执行机构。
1.5.4、扩展模块
当一个PLC中心单元的I/O点数不够用时,就要对系统进行扩展,扩展接口就是用于连接中心基本单元与扩展单元的。模块随着可编程控制器在工业控制中的广泛应用和发展,使可编程控制器的功能更加强大和完善。只能I/O接口模块种类很多,例如高速计数模块、PLCA控制模块、数字位基于PLC的变频恒压供水系统的设计置译码模块、阀门控制模块、智能存贮弄快以及智能I/O模块等。
1.5.5、编程器
它的作用是供用户进行程序的编制、编辑、调试和监视。有的编程器还可与打印机或磁带机相连,以将用户程序和有关信息打印出来或存放在它的作用是供用户进行程序的编制、编辑、调试和监视。有的编程器还可与打印机或磁带机相连,以将用户程序和有关信息打印出来或存放在磁带上,磁带上的信息可以重新装入PLC。
目前编程器主要有以下三种类型:
1.便携式编程器(也叫简易编程器);2.图形编程器;3.用于IBM—PC及其兼容机的编程器。
便于携带的特点,一般只能用指令形式编程,通过按键输入指令,通过数码管或液晶显示器加以显示、这种编程器适合小型可编程控制器的编程要求。
图形编程器以液晶显示器(LCD)或阴极射线管(CRT)作屏幕,用来显示编程内容和提供如输入、输出、辅助继电器的占有情况、程序容量等各种信息,还可在调试程序、检查程序执行时显示各种信号状态、出错提示等。
使用图形编程器可以月多种编程语言编程,梯形图显示在屏幕上十分直观。图形编程器还可与打印机、录音机、绘画仪等设备连接,有较强的监控功能。但它的价格高,适用于中、大型可编程控制器的编程要求。
用于IBM—PC及其兼容机的编程器是个人计算机加上适当的硬件接口和软件包作为编程器,也可直接编制成梯形图,其监控功能也很强。编程器工作方式主要有编程和监控两种,编程工作方式是在PLC机处于停机状态
时可以进行编程,它的功能主要是输入新的程序,或者对已有的程序予以编辑和修改。
监控工作方式可以对运行中的控制器工作状态进行监视和跟踪,一般可以对某一线圈或触点的工作状态进行监视,也可以对成组器件的工作状态进行监视,还可以跟踪某一器件在不同时间的工作状态,除搜索、监视、跟踪外,还可以对一些器件进行操作。因此编程器的监控方式对控制器中新输入程序的调试与试运行是非常有用和方便的。编程器的结构一般包括显示部分与键盘部分。显示一般用液晶显示器,主要的显示内容包括地址、数据、工作方式、指令执行情况及系统工作状态等。键盘有单功能键和双功能键,在使用双功能键的时候键盘中都备有一个选择键,以选择其中一种方式工作。
现在产品越来越模块化,可编程控制器也不例外,它的结构紧密、坚固,外形小巧,CPU本身只提供了一定数量的数字输入和输出点数。不同厂家、不同型号的PLC的输入/输出点数也不同,有的大型机输入/输出点数可达16K,而很多小型机仅有10来点,而且CPU本身不带模拟输入与输出,但CPU一般都带有扩展接口。因此,用户选型后,所需的输入或输出点数不够时,就需对系统做出必要的扩展,各个厂家也生产了专用于扩展用的各模板供用户选用。扩展模板的外形一般也小巧、坚固,有易于接线的端子排,带有扩展总线或通过总线连接器与CPU相连。主要有数字输入/输出模板,模拟输入/输出模板,热电阻、热电偶扩展模板,还有智能模板等许多具有专用功能的特殊模板。
用扩展模板来扩展系统具有以下的优点:
用户可根据自己时间控制系统的要求,选用各种合适的扩展模块对PLC作硬件组态,以求达到各种功能或控制精度,同时节省开支,减少不必要的投资。
当已运行的系统需要改造或扩充时,PLC可以随时进行升级或改版,所作的工作仅仅是替换或增加扩展模板和修改相应的控制软件。特殊模板及智能模板的开发将进一步扩展可编程控制的功能,专用模板的开发不仅扩大了可编程控制系统的控制功能,而且将进一步提高控制质量与可靠性。
1.5.6、电源
PLC中的电源一般有三类:
1、+5V、±15V直流电源:供PLC中TTL芯片和集成运放使用;
2、供输出接口使用的高压大电流的功率电源;
3、锂电池及其充电电源。
考虑到系统的可靠性以及光电隔离器的使用,不同类型的电源其地线也不同。
目前PLC的发展非常迅速,型号众多,各种特殊功能模板不断涌现。通常根据其I/O点的数量将 PLC分为三大类:
小型机:256点以下(无模拟量);
中型机:256 ~ 202_点(64 ~ 128路模拟量);
大型机:202_点以上(128 ~ 512路模拟量)。
具体实现时,通常采用模板式结构,以便用户根据实际应用需求进行配置。但一些小型机常制作成一体机,其配置固定,主要供定型成套设备使用;而一些大型机一般在电源、或者CPU,甚至两者都作了热备份。
1.6、PLC的工作原理
最初研制生产的PLC主要用于代替传统的由继电器接触器构成的控制装置,但这两者的运行方式是不相同的:
继电器控制装置采用硬逻辑并行运行的方式,即如果这个继电器的线圈通电或断电,该继电器所有的触点(包括其常开或常闭触点)在继电器控制线路的哪个位置上都会立即同时动作。而PLC的CPU则采用顺序逻辑扫描用户程序的运行方式,即如果一个输出线圈或逻辑线圈被接通或断开,该线圈的所有触点(包括其常开或常闭触点)不会立即动作,必须等扫描到该触点时才会动作。
为了消除二者之间由于运行方式不同而造成的差异,考虑到继电器控制装置各类触点的动作时间一般在100ms以上,而PLC扫描用户程序的时间一般均小于100ms,因此,PLC采用了一种不同于一般微型计算机的运行方式---扫描技术。这样在对于I/O响应要求不高的场合,PLC
与继电器控制装置的处理结果上就没有什么区别了。
1.6.1、扫描技术
当PLC投入运行后,其工作过程一般分为三个阶段,即输入采样、用户程序执行和输出刷新三个阶段。完成上述三个阶段称作一个扫描周期。在整个运行期间,PLC的CPU以一定的扫描速度重复执行上述三个阶段。如图2.2所示:
图1.2 PLC 扫描周期
1、输入采样阶段:在输入采样阶段,PLC以扫描方式依次地读入所有输入状态和数据,并将它们存入I/O映象区中的相应得单元内。输入采样结束后,转入用户程序执行和输出刷新阶段。在这两个阶段中,即使输入状态和数据发生变化,I/O映象区中的相应单元的状态和数据也不会改变。因此,如果输入是脉冲信号,则该脉冲信号的宽度必须大于一个扫描周期,才能保证在任何情况下,该输入均能被读入。
2、用户程序执行阶段 :在用户程序执行阶段,PLC总是按由上而下的顺序依次地扫描用户程序(梯形图)。在扫描每一条梯形图时,又总是先扫描梯形图左边的由各触点构成的控制线路,并按先左后右、先上后下的顺序对由触点构成的控制线路进行逻辑运算,然后根据逻辑运算的结果,刷新该逻辑线圈在系统RAM存储区中对应位的状态;或者刷新该输出线圈在I/O映象区中对应位的状态;或者确定是否要执行该梯形图所规定的特殊功能指令。即,在用户程序执行过程中,只有输入点在I/O映象区内的状态和数据不会发生变化,而其他输出点和软设备在I/O映象区或系统RAM存储区内的状态和数据都有可能发生变化,而且排在上面的梯形图,其程序执行结果会对排在下面的凡是用到这些线圈或数据的梯形图起作用;相反,排在下面的梯形图,其被刷新的逻辑线圈的状态或数据只能到下一个扫描周期才能对排在其上面的程序起作用。
3、输出刷新阶段:当扫描用户程序结束后,PLC就进入输出刷新阶段。在此期间,CPU按照I/O映象区内对应的状态和数据刷新所有的输出锁存电路,再经输出电路驱动相应的外设。这时,才是PLC的真正输出。
1.6.2、PLC的I/O响应时间
为了增强PLC的抗干扰能力,提高其可*性,PLC的每个开关量输入端都采用光电隔离等技术。为了能实现继电器控制线路的硬逻辑并行控制,PLC采用了不同于一般微型计算机的运行方式(扫描技术)。以上两个主要原因,使得PLC得I/O响应比一般微型计算机构成的工业控制系统满的多,其响应时间至少等于一个扫描周期,一般均大于一个扫描周期甚至更长。所谓I/O响应时间指从PLC的某一输入信号变化开始到系统有关输出端信号的改变所需的时间。
1.7、梯形图程序设计
梯形图编程语言是一种图形化编程语言,它沿用了传统的继电接触器控制中的触点、线圈、串并联等术语和图形符号,与传统的继电器控制原理电路图非常相似,但又加入了许多功能强而又使用灵活的指令,它比较直观、形象,对于那些熟悉继电器一接触器控制系统的人来说,易被接受。继电器梯形图多半适用于比较简单的控制功能的编程,绝大多数PLC用户都首选使用梯形图编程。
指令是用英文名称的缩写字母来表达PLC的各种功能的助记符号,类似于计算机汇编语言。由指令构成的能够完成控制任务的指令组合就是指令表,每一条指令一般由指令助记符和作用器件编号组成,比较抽象,通常都先用其它方式表达,然后改写成相应的语句表,编程设备简单价廉。
通常微、小型PLC主要采用继电器梯形图编程,其编程的一般规则有:
1、梯形图按自上而下、从左到右的顺序排列。每一个逻辑行起始于左母线然后是触点的各种连接,最后是线圈或线圈与右母线相连,整个图形
呈阶梯形。梯形图所使用的元件编号地址必须在所使用PLC的有效范围内。
2、梯形图是PLC形象化的编程方式,其左右两侧母线并不接任何电源,因而图中各支路也没有真实的电流流过。但为了读图方便,常用“有电流”、“得电”等来形象地描述用户程序解算中满足输出线圈的动作条件,它仅仅是概念上虚拟的“电流”,而且认为它只能由左向右单方向流:层次的改变也只能自上而下。
3、梯形图中的继电器实质上是变量存储器中的位触发器,相应某位触发器为“l态”,表示该继电器线圈通电,其动合触点闭合,动断触点打开,反之为“o态”。梯形图中继电器的线圈又是广义的,除了输出继电器、内部继电器线圈外,还包括定时器、计数器、移位寄存器、状态器等的线圈以及各种比较、运算的结果。
4、梯形图中信息流程从左到右,继电器线圈应与右母线直接相连,线圈的右边不能有触点,而左边必须有触点。
5、继电器线圈在一个程序中不能重复使用:而继电器的触点,编程中可以重复使用,且使用次数不受限制。
6、PLC在解算用户逻辑时,是按照梯形图由上而下、从左到右的先后顺序逐步进行的,即按扫描方式顺序执行程序,不存在几条并列支路同时动作,这在设计梯形图时,可以减少许多有约束关系的联锁电路,从而使电路设计大大简化。所以,由梯形图编写指令程序时,应遵循自上而下、从左到右的顺序,梯形图中的每个符号对应于一条指令,一条指令为一个步序。
当PLC运行时,用户程序中有众多的操作需要去执行,但CPU是不能同时去执行多个操作的,它只能按分时操作原理每一时刻执行一个操作。这种分时操作的过程称为CPU对程序的扫描。扫描从0000号存储地址所存放的第一条用户程序开始,在无中断或跳转控制的情况下,按存储地址号递增顺序逐条扫描用户程序,也就是顺序逐条执行用户程序,直到程序结束。每扫描完一次程序就构成一个扫描周期,然后再从头开始扫描,并周而复始。
2方案的论证
2.1、工艺过程分析
水塔水位控制系统过程分析:设水塔、水池初始状态都为空着的,此时S4,S3,S2,S1均为ON。当系统启动时,扫描到水池为液位低于水池下限位时,电磁阀Y打开(10.02通电),开始往水池里进水,如果进水超过4S,而水池液位没有超过水池下限位(传感器S4仍为ON),说明系统出现故障,系统故障指示灯闪烁(10.03闪烁)。若4S后只有水池液位按预定的超过水池下限位(传感器S4变为OFF),说明系统在正常的工作。此时只有水池下限位有水,系统检测到此信号时,由于水塔液位低于水塔水位下限(S2为ON),故水泵M(10.04通电)开始工作,向水塔供水,当水池的液位超过水池上限液位时(传感器S3变为OFF),电磁阀Y就关闭(10.02失电)。但是水塔现在还没有装满,水泵M继续工作,在水池抽水向水塔供水,水塔装满时(传感器S1变为OFF),水泵M停止供水(10.04失电),此次给水塔供水完成。
2.2、PLC型号的选择
输入:系统启动按钮一个,系统停止按钮一个,液位传感器四个分别表示为S4,S3,S2和S1。输入一共有6个,考虑到留有15%~20%的余量即6×(1+15%)=6.9取整数7,所以共需7个输入点。
输出:Y阀,故障指示灯 ,水泵M。输出共有3个,3×(1+15%)=3.45取整数4,所以共需4个输出点。可以选OMRON公司的CPM1A/CPM2A型PLC就能满足此例的要求。
2.3、工作控制方式
采用工控机作为上位机、PLC系统作为下位机的两级控制模式。PLC控制系统是该程控系统的核心,工控机作为监控机械手的运行状态使用。
1、上位机:计算机作为上位机,用于完成状态显示、打印输出、向PLC发送分类控制信号等功能,从而实现对控制系统的实时监控。同时,计算机还是图象处理的核心。
2、下位机:PLC作为下位机,用来完成状态判别、输出控制等工作。它直接控制电磁阀、继电器,从而实现对各执行元件的控制。本系统采用价格适中、可靠性高、维护方便且抗干扰能力强的可编程控制器欧姆龙CPM2A型PLC来实现水塔水位控制系统工艺的控制要求的。欧姆龙PLC是由电源、中央处理器和I/O元件组成的严密高速的程序控制器,配有丰富的指令系统,易于用户编程,具有丰富的特殊模块和通信能力,可以满足生产自动化的多级要求。本系统采用CPM2A是一种功能完善的紧凑型PLC,大程序容量和存储单位。另外CPU单元带RS-232C接口,具有PPI、MPI等通信协议可实现程序传送,数据通信等功能。
欧姆龙公司C系列的小型机CPM2A型PLC 20点输入/输出,配有CX-Programmer软件用于控制部分编程时使用。
3、通信方式:CPM2A CPU支持多样的通信协议:点到点(Point-to-Point)接口(PPI)、多点接口(Multi-Point)(MPI)。这些都基于系统内通信结构模型,都是异步、基于字符的协议。其中PPI方式是非常简单方便的通信协议,只需要一根RS-232C线进行数据信号的传递,不需要额外再配置模块或软件。因此,本系统选择PPI方式,简单且能满足通信要求。CPM2A型PLC上配有RS-232C的通信接口,因此在不增加任何硬件的情况下,可以很方便地将PLC和计算机互联。
上位机与下位机之间通过RS-232连接构成HOST LINK协议进行通信。RS-232又称为EIA-232C或RS-232C,是最通用的一种串行通讯标准。它是一种点到点的通信方式,只能连接两个通信设备。19200波特率时,最大距离为75米;9600波特率时,最大距离为900米。计算机的串口即为标准的RS-232接口。使用RS-232转换器可以免掉一个RS-422串行接口板。
3、水塔水位系统PLC硬件设计
水塔水位控制系统结构图如图3.1所示
图3.1 水塔水位自动控制示意图
3.1、水塔水位系统控制电路
图3.2 水塔水位控制系统电路图
3.2、输入/输出分配
水塔水位控制系统I/O分配表见表3.1。
表3.1 水塔水位自动控制系统I/O分配表
输入
操作功能 启动按钮 停止按钮 液位传感器s4 液位传感器s3 液位传感器s2 液位传感器s1
地址 0.00 0.01 0.02 0.03 0.04 0.05
Y阀
输出
操作功能 故障指示灯 水泵M
地址 10.02 10.03 10.04 3.3、水塔水位系统的接线图
水塔水位控制系统的I/O接线图如3.3 所示:
图3.3 水塔水位控制系统接线图
4、水塔水位控制系统PLC软件设计
4.1、程序流程图
水塔水位控制系统的流程图,根据设计要求控制流程图如图5.1:
图4.1 水塔液位自动控制系统流程图
4.2、梯形图
PLC控制程序用CX-Programmer编程软件开发。CX-Programmer是OMRON公司PLC的软件编程﹑调试的工具程序,其运行在Windows操作系统下,具有丰富、简捷的操作环境和强大的编程、调试功能。可实现梯形图的编程、监视和控制等功能,尤其擅长于大型程序的编写,弥补了手编程器编程效率低的不足[1]。CX-Programmer编程软件支持模块化设计,在程序编写时可以直接将编写好的程序通过RS-232C传送到PLC来控制现场设备。根据程序流程图设计的梯形图如5.2所示:
图4.2 水塔水位控制系统梯形图
4.3、系统程序的具体分析
PLC采用循环扫描的的工作方式,这种工作方式是在系统软件控制下,顺次扫描各输入点的状态,按用户程序进行运算处理,然后顺序向各输出点发出相应的控制信号,任一时刻它只能执行一条指令,这就是说PLC是以“串行”方式工作的,它能有效地避免继电接触器控制系统中易出现的触点竞争和时序失配的问题。
PLC执行用户程序是从梯形图左母线开始由上至下,由左向右逐个扫描每个梯级的每个元素,进行运算,此时CPU只是与映象区进行数据交换,读取输入数据,送出输出信号。当CPU执行到END指令时,表示程序段结束,则此次扫描用户程序结束。PLC控制程序分析
实现功能:当按下00000系统启动按钮,中间继电器20001得电并自锁,系统处于等待状态并一直保持。按下00001停止按钮系统的运行停止。
实现功能:当水池水位低于水池低水位界(S4为ON表示),阀Y打开进水(Y为ON),当S3为ON后,阀Y关闭(Y为OFF)。
实现功能:当Y打开进水(Y为ON)定时器开始定时,4秒后,如果S4还不为OFF,那么阀Y指示灯闪烁,表示阀Y没有进水,出现故障。
实现功能:当S4为OFF时(表示水池水位高于水池低水位界),且水塔水位低于水塔低水位界时S2为ON,电机M运转抽水。当水塔水位高于水塔高水位界时电机M停止。
4.4、水塔水位控制系统梯形图的对应指令表
水塔水位控制系统指令表如图4.3所示:
图4.3 水塔水位控制系统的指令表
总结
五个星期的PLC实训很快结束了,在这短暂的实训时间里,经过老师、同学的指导,我获益匪浅,学习了不少关于自己专业方面的知识。
在完成项目期间,我们组的分工明确,有负责编程的,有负责报告找资料,有负责画电路图的……虽说分工明确,但在完成项目过程中遇到些麻烦的话组员之间还是相互配合相互帮助尽量让每个学员学到更多的专业知识,使每个组员更上一个层次。实训期间,我主要负责编程、报告及找资料,但这并不是说我在其他组员做他们任务时置之不理,与我无关。我在旁边和组员一起,参与其中的讨论分析,并会不时帮助他们完成任务。而同样我在做我的任务时,他们也会经常帮我解决一些我无法解决的问题。这样,我们组在完成这两个项目还是比较顺利的。
我做的这个题目是有关与PLC系统理论与实践相结合的设计。在此时对以前学习的知识的挑战与突破。在对这个设计的材料搜索进行独立搜索时,对于办公软件的应用有了进一步的提高。同时在对搜集的材料进行整核,结合所学理论知识,以及实际应用操作的情况下,提高了实际操作和独立解决问题的能力。
通过这次设计实践。让我更熟练的掌握了PLC软件的简单编程方法,对于PLC的工作原理和使用方法也有了更深刻的理解。在理论的运用中,也提高了我的工程素质。刚开始学习PLC软件时,由于我对一些细节的不加重视,当我把自己想出来的一些认为是对的程序运用到梯形图编辑时,问题出现了。转换成指令表后则显示不出很多正确的指令程序,这主要是因为我没有把理论和实践相结合,缺乏动手能力而造成的结果,最后通过老师的纠正和自己的实际操作,终于把正确的结果做了出来,同样也看清了自己的不足之处。
如今设计是做完了,可是我的学习之路还没有完,这次实训让不仅学习了不少与自己专业相关的知识,而且还懂得了团队的力量,并且让自己更相信一分努力一分收获,积极的学习态度在以后的学习、工作中是永远缺少不了的!并明白人这一辈子不能仅仅局限于那一点点满足感,要放眼望去,通过去参与各种实践,提升自己的动手能力,创造属于自己的未来。
致
谢
本文是在指导老师悉心指导下完成的。从论文的选题到相关材料的收集,从论文框架的设计到具体内容遣词造句,每一章节都凝聚着指导老师的心血。在此,学生表示最诚挚的谢意。在老师严谨的治学态度、积极的人生观、学术上孜孜追求的精神以及对学生无微不至的关怀,都给我留下了终生难忘的印象,必然将对我以后的学习和生活产生重要影响。
在完成整个论文期间,对各位老师、同学、朋友、亲人辛勤劳动以及他们在治学和人品上给予我的深刻影响,我同样铭记在心,并表示由衷的感谢。
在此,我向所有在学业上、生活上帮助、理解、支持我的老师、同学、朋友和亲人致以最真诚的谢意。
最后,感谢各位专家、学者在百忙之中审阅我的拙作。
参考文献
[1] 廖常初.《PLC基础及应用》.北京 机械工业出版社,202_ [2] 王兆义.《可编程序控制器教程》.北京机械工业出版社 202_ [3] 张万忠.《可编程控制器应用技术》.北京:化学工业出版社,202_ [4] 方承远.《工厂电气控制技术》.北京:机械工业出版社,202_ [5] 肖峰.《PLC编程100例》.北京:中国电力出版社,202_ [6] 张桂香.《电气控制与PLC应用》.北京:化学工业出版社,202_ [7] 吕景泉.《可编程序控制器技术教程》.北京:高等教育出版社,202_ [8] 李俊季、赵黎明.《可编程控制应用技术实训指导》.北京:化学工业出版社,202_