因数与倍数知识点总结,小学五年级因数与倍数知识点归纳
因数与倍数知识点总结
1、如果a×b=c(a、b、c都是非0的自然数)那么a和b就是c的因数,c就是a和b的倍数。因数和倍数两个不同的概念是相互依存的,不能单独存在。例如4×3=12,12是4的倍数,12也是3的倍数,4和3都是12的因数。
2、因数的特点:一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。例:10的因数有1、2、5、10,其中最小的因数是1,最大的因数是10。(1是所有非0自然数的因数)
3、倍数的特点:一个数的倍数的个数是无限的,其中最小的倍数是它本身。例:3的倍数有:3、6、9、12…其中最小的倍数是3,没有最大的倍数。
4、2的倍数的特征:个位上是0、2、4、6、8的数都是2的倍数(2的倍数的数叫做偶数、不是2的倍数的数叫做奇数)。
5的倍数的特征:个位上是0或5的数,都是5的倍数。
3的倍数的特征:一个数的各位上的数的和是3的倍数,这个数就是3的倍数。
5、质数:一个数,如果只有1和它本身两个因数,这样的数叫做质数(也叫素数)。
如2,3,5,7都是质数。
合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,如4、6、8、9、12都是合数。
1既不是质数也不是合数。
最小质数是2。
最小合数是4。
6、奇数+奇数=偶数
偶数+偶数=偶数
奇数+偶数=奇数
7、最大公因数:几个数公有的因数,叫做这几个数的公因数。其中最大的一个,叫做这几个数的最大公因数。
8、求几个数的最大公因数的方法:(1)列举法;(2)先找出两个数中较小数的因数,从中找出另一个数的因数;(3)短除法。
9、互质数:公因数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:(1)1和任何大于1的自然数互质。(2)相邻的两个自然数互质。(3)两个不同的质数互质。(4)一质一合(不成倍数关系)的两个数互质。(5)相邻两个奇数互质。
(6)2和任何奇数都是互质数。如果几个数中任意两个都互质,就说这几个数两两互质。
10、公倍数和最小公倍数:几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个数,叫做最小公倍数。
11、求两个数最小公倍数的方法:(1)列举法;(2)先找出较大数的倍数,圈出较小数的倍数,找出最小的一个;(3)分解质因数法;(4)短除法。
12、如果两个数是互质数,它们的最大公因数就是1,最小公倍数是两者的积;如果两个数是倍数关系,它们的最大公因数是较小的数,最小公倍数是较大的数。例:25和5,25和5的最小公倍数是25,最大公因数是5。
13、几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。
因数与倍数知识点归纳
1、整除:被除数、除数和商都是自然数,(除数不能是0)
2、因数和倍数
(1)如果5*4=20,那么5和4是20的因数,20是5和4的倍数
(2)因数和倍数都指整数(不包括0)
(3)因数和倍数相依存,不能单独说一个数是因数,或者一个数是倍数,只能说一个数是
另一个数的因数,或者一个数是另一个数的倍数。
(4)因数和倍数的特征:
一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
(5)一个数最大的因数=最小的倍数=这个数本身
3、奇数和偶数
(1)定义:奇数:(也叫单数)自然数中不能被2整除的数
最小的奇数是1,偶数:(也叫双数)自然数中能被2整除的数
最小的偶数是0.(2)特征:奇数:个位上是1,3,5,7,9的数
偶数:个位上是0,2,4,6,8的数
(3)字母表示:奇数:2n+1(n>=0)
偶数:2n(n>=0)
(4)公式:奇数+奇数=偶数
奇数+偶数=奇数
偶数+偶数=偶数
(5)自然数中,不是奇数就是偶数。0是偶数。
4、倍数特征:
(1)2的倍数特征:个位上是02468的数。
(2)5的倍数特征:个位上是0或5的数。
(3)同时是2和5的倍数特征:个位上是0的数。
(4)3的倍数特征:各位上的数的和是3的倍数的数,这个数就是3的倍数
(5)9的倍数特征:各个数位上的数的和是9的倍数,这个数就是9的倍数
(6)能同时被2、3、5整除的最小的两位数是30,最大的两位数是90;最小的三位数是
120,最大的两位数是990。
5、质数和合数:
(1)定义:质数:只有1和它本身两个因数的数(共有2个因数)
合数:除了1和它本身之外还有别的因数的数(至少有3个因数),(2)最小的质数是2
最小的合数是4
(3)“1”既不是质数,也不是合数。
(因为1只有1个因数)。
(4)自然数中,除了0和1之外,不是质数就是合数
(5)在自然数里,不是奇数的质数只有2
(6)公式:质数*质数=合数
质数*合数=合数
合数*合数=合数
(7)100以内的质数:2、3、5、7和11,13后面是17,19、23、29,31、37、41,43、47、53,59、61、67,71、73、79,83、89、97。
6、分解质因数
用短除法分解质因数
(一个合数写成几个质数相乘的形式)
7、公因数、最大公因数
(1)几个数公有的因数叫这些数的公因数。其中最大的那个就叫它们的最大公因数。
(2)用短除法求两个数或三个数的最大公因数
(除到互质为止,把所有的除数连乘起来)
(3)几个数的公因数只有1,就说这几个数互质。
(4)两数互质的特殊情况:
⑴1和任何自然数互质;⑵相邻两个自然数互质;
⑶两个质数一定互质;
⑷2和所有奇数互质;
⑸质数与比它小的合数互质;
(5)如果两数是倍数关系时,那么较小的数就是它们的最大公因数。
如果两数互质时,那么1就是它们的最大公因数。
8、公倍数、最小公倍数
(1)几个数公有的倍数叫这些数的公倍数。其中最小的那个就叫它们的最小公倍数。
(2)用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)
用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来)
(3)如果两数是倍数关系时,那么较大的数就是它们的最小公倍数。
如果两数互质时,那么它们的积就是它们的最小公倍数。