首页 > 精品范文库 > 11号文库
农业智能大棚控制、溯源系统设计方案(共5篇)
编辑:星月相依 识别码:20-968139 11号文库 发布时间: 2024-04-20 04:01:45 来源:网络

第一篇:农业智能大棚控制、溯源系统设计方案

生态农业智能温室大棚 监测、溯源及控制系统

设 计 方 案

xxxxxxxx有限公司

目录

背景....................................................................................................3 一:客户需求....................................................................................3 二:系统结构及控制模式................................................................5 三:现场数据采集与控制功能........................................................6 四:监测软件数据平台....................................................................7 五:功能应用....................................................................................8 六:农产品溯源系统........................................................................8

七、条码仓储管理系统(WMS)......................................................10

八、商品盘点..................................................................................13

背景

温室智能控制系统是利用环境数据与作物信息,指导用户进行正确的栽培管理。物联网温室环境监测系统可广泛应用于农业、园艺、畜牧业等领域,在需要特殊环境要求的场所实施监控和管理,为实现对生态作物的健康成长和及时调整栽培、管理等措施提供及时的科学的依据,同时实现监管自动化。

近年来,随着温室大棚化种植、工厂化育秧和设施栽培等农业生产技术的广泛应用,快速准确地环境参数的收集和分析就成为现实的需求,利用计算机技术对相应的农业气象参数进行采集,则一方面可及时了解作物生长的环境参数,另一方面也可根据采集的参数控制大棚环境的调节从而为农作物的生长提供适宜的生长环境。由于温室内的湿度、温度等环境条件不适合于普通PC 机工作,故这里选用单片机进行数据采集,而采集的数据可通过串口发射接收设备传送给上位PC 机进行分析处理。

一:客户需求

(1)智能温室大棚控制系统

随着国民经济的迅速发展,现代农业得到了长足的进步,全国各地根据需要普遍建设了日光温室、塑料大棚等为农作物创造出良好的生长环境。温室工程成为高效农业的重要组成。

温室大棚就是建立一个模拟适合生物生长的气候条件,创造一个人工气象环境,来消除温度、湿度等对生物生长的限制。能使不同的农作物在不适合生长的季节产出,或完全的摆脱农作物对自然条件的依赖。

浙江托普仪器有限公司托普物联网部自主研发的智能温室大棚控制系统是针对温室大棚正常有效运转的控制要求配置的远程监控与管理系统。采用传感器技术、依托传统温室大棚生产工艺、设计的具有高可靠性、安全性、可扩展性的软硬件系统。

智能温室大棚监测控制系统充分利用物联网技术和组态软件实时远程获取温室大棚内部的空气温度、湿度、光照强度、土壤水分温度、二氧化碳浓度、叶面湿度、露点温度等环境参数及视频图像,通过模型分析,远程或自动控制湿帘风机、喷淋滴灌、内外遮阳、顶窗侧窗、加温补光等设备,保证温室大棚内的环境最适宜作物生长;同时,该系统还可以通过手机、PDA、计算机等信息终端向农户推送实时监测信息、预警信息、农技知识等,实现温室大棚集约化、网络化远程管理。

二:系统结构及控制模式

(1)系统两大组成

智能温室大棚监测控制系统主要包括:上位机中心服务器控制平台和下位机现场控制节点:

◇中心服务器控制平台可选用物联网感知应用平台或者是为客户专门定制的操作监测平台。能够实现监测、查询、运算、建模、统计、控制、存储、分析、报警等多项功能。

◇现场控制节点由测控模块、电磁阀、配电控制柜及安装附件组成,与中心服务器控制平台可通过有线、无线、4G方式连接到一起。根据温室大棚内空气温湿度、土壤温度水分、光照强度及二氧化碳浓度等参数,对环境调节设备进行控制,包括内遮阳、外遮阳、风机、湿帘水泵、顶部通风、电磁阀等设备。

(2)选择合适的控制方式

◇有线监控-----通过现场布线方式进行数据传输。

◇无线Zigbee监控-----利用Zigbee模块,对0-20KM范围为的数据监测传输。

◇4G网络监控-----利用通信网络形式,可监测传输距离无限远。◇有线和无线结合------根据实际现场环境,灵活结合。

三:现场数据采集与控制功能

智能温室大棚内的各参数传感器,对温室环境进行多点实时动态采集,经过A/D转换送入单片机处理,驱动执行装置从而实现温室环境的自动智能调节。显示装置实时显示温室内的温湿度、光照度等数值,能够更加一目了然地展示温室大棚数据全貌。

(1)温湿度监测

通过温湿度传感器监测大棚室外空气环境温湿度、室内空气环境温湿度、地表温湿度、土壤温湿度等,并能对数据进行采集、分析运算、控制、存储、发送等。

(2)光照度监测

通过光感和光敏传感器监测记录温室大棚内光线的强度,可以直接与相关的补光系统、遮阳系统等设备相连,必要时自动打开相关设备。通过无线传输技术将相关数据传送到用户监控终端。

(3)CO2、O2浓度监测

在温室大棚内部署二氧化碳浓度传感器,实时监测温室中二氧化碳的含量,当浓度超过系统设定阙值范围时,通过无线传输技术将相关数据传送到用户监控终端,由相关工作人员做出相应调整。

(4)分区域检测

同一个棚内划区域控制管理,可实现每个种植区不同温湿度、不同气体配置等环境技术指标。用户可以通过上位机来监测、查询各区域的数据。也可以对个分块进行单独控制和整体协调控制。

(5)灌溉及喷药施肥控制

水灌溉与农药喷洒采用一套管线系统,根据植物生长模式,可通过自动、手动方式进行操作。(6)报警控制

用户可设定某些参数指标的上限和下限。比如大棚温度应在30-15摄氏度之间,高于或低于这个温度范围都会产生报警信息,并在上位机中控平台和现场控制节点显示出来。

(7)节点故障通知

现场控制节点出现故障时可及时以中心服务器平台、手机短信、报警信息等方式通知管理者。

(8)备用冗余功能

为了避免设备故障及异常带来不便,影响作物的生长。设备可进行扩展冗余,当设备出现故障时,辅助设备进行0切换。从而实现连续无故障运行,增加系统稳定性和可靠性。

(9)自定义控制模式

可以根据温室大棚具体控制和监测需要,定制一些相应的监测项目及控制内容,该项目可以使模拟信号、数字信号、开关信号、频率信号等监测和控制。

四:监测软件数据平台

生态农业智能温室大棚自动监控软件,采集温室大棚内现场数据,经传感器数据模块传送至ZigBee节点或RS485节点上,然后通过有线、无线、4G网络传输到数据平台,按照相关设定进行分析展示并进一步完成相应控制。

(1)友好的用户登陆管理界面

规定用户使用权限,不同用户提供不同的操作权限,非用户不能登陆系统,保证系统安全,操作简单而富有人性化。

(2)实时历史、曲线报表数据分析

系统将采集到的数据信息以实时曲线的方式显示给用户,并根据需要按照日、月、季、年参数变化曲线生成历史报表。便于对温室大棚运转情况进行分析做出改进,提高温室大棚的生产效率。

(3)多种形式的报警功能,适合不同场合需要

工作人员根据温室大棚内的具体情况设置温度、湿度等参数限值。在监测时,如发现有监测结果超出设定的阈值时,系统会自动发出报警提醒工作人员,报警形式包括:声光报警、电话报警、短信报警、E-MAIL报警等。

(4)远程控制

现场采集设备将采集到的数据通过有线、无线、4G无线网络传输到中控数据平台,用户从终端可以查看温室大棚现场的实时数据,并使用远程控制功能通过继电器控制设备或模拟输出模块对温室大棚自动化设备进行控制操作,如自动喷洒系统、自动换气系统、自动浇灌系统。

(5)监控终端

监控终端通过可视化、多媒体的人机界面实现以下主要功能:①温室大棚内植物生长环境状况全面显示、查询,包括各种参数、光照强度以及历史数据等;②向温室大棚内监控系统发调度命令、调整设备运转状况,确保温室内为植物生长最适宜环境。

五:功能应用

1、房屋保温、保湿性能评价;

2、温室、大棚的温度、湿度监测管理;

3、仓库的温度、湿度监测管理;

4、蘑菇栽培的温度、湿度监测管理;

5、孵化室温度、湿度监测管理;

6、机房、图书馆、档案室、博物馆的环境监测管理;

7、烟草、粮库、医院等环境监测管理;

8、其它领域需要的温度、湿度监测管理。

六:农产品溯源系统

农产品溯源系统主要以二维条码为载体,对农产品质量安全进行全程追溯。通过在种植基地应用便携式农事信息采集系统,实现农产品履历信息的快速采集与实时上传,亦可对手工单据进行扫描采集上传。通过在生产企业应用农产品安全生产管理系统,实现有机生产的产前提示、产中预警和产后检测;通过将各生产企业数据汇集到园区管理部门,构建追溯平台数据库,实现上网、二维条码扫描、短信和触摸屏等方式的追溯,从而保障农产品质量。使企业能够实时地、精确地掌握整个生产及供应链上的产品流向和变化,控制整个生产流通环节安全可靠。

(一)、智能化信息采集功能。

种植、采购、生产、运输、政府监管到消费者查询追溯全程采用条码进行数据采集。

应用系统基于网联网架构(java开发)。种植点、生产工厂、分销机构和异地营业网点在同一套系统内使用。数据完整性好。可跨平台部署。支持Oracle、SQL Server等多种数据库。完全支持分布式部署。完善的数据同步处理机制。数据采集端采用C#开发,采集性能好,速度快。传输系统采用http协议进行传输,支持断点续传。采用多线程技术,可多点同时进行。传输数据经过高度压缩和加密处理。安全性好。条码解析器采用数据内存预加载方式。解码速度快。系统基础资料全部采用内存预加载方式处理,系统运行速度快。可对产品进行全程追溯(种植、采购、生产、运输、政府监管、消费者查询)。

(二)、系统优点

智能化信息采集功能。养殖、批发、零售、运输、屠宰、政府监管到消费者查询追溯全程采用RFID、二维条码交替进行数据采集。

应用系统基于网联网架构(java开发)。养殖场、分销机构和异地营业网店在同一套系统内使用。数据完整性好。可跨平台部署。支持Oracle、SQL Server等多种数据库。完全支持分布式部署。完善的数据同步处理机制。数据采集端采用C#开发,采集性能好,速度快。

传输系统采用http协议进行传输,支持断点续传。采用多线程技术,可多点同时进行。传输数据经过高度压缩和加密处理。安全性好。条码解析器采用数据内存预加载方式。解码速度快。系统基础资料全部采用内存预加载方式处理,系统运行速度快。可对产品进行全程追溯

七、条码仓储管理系统(WMS)

条码仓储管理系统WMS是基于RFID、条码的网络化供应链管理一体化仓储管理解决方案。包括了基本资料、采购管理、商品入库、销售出库、其它出库、盘点(条码管理商品盘点),商品条码(物流码)跟踪,商品出入库报告、系统管理等几大模块。

条形码标签编辑及打印

利用条形码打印机以及条形码编辑软件对标签进行打印。条形码标签的打印可以根据要求进行编辑,编辑规则自己定义,只要位数确定、单一标识符确定即可,在编辑软件里面选取字段进行编辑进行打印,也可以根据实际情况进行编辑打印,只要具有唯一性即可,随意性很强。标签打印好以后,将标签粘贴在每次入库的商品上,具有唯一性,以便商品入库或出库。采购入库

采购入库前,操作人员调出采购订单数据和安排商品单进行入库准备,商品进来以后,首先填写入库单,分别包括供应商信息和商品信息,包括产自、品名、PO号等等;填写好以后由主管部门审核,确认无误,则贴上条形码标签,手动在采集器上填写库位代号(例如1区、2区等),确认入库操作;系统操作简单,在首页面会有入库操作,点击后会有下拉菜单,首先第一项就是请填写入库单。产成品入库

用数据采集器扫描商品上的条形码,存储在数据采集器里面,手动书写库位代码、将扫描的条形码、库位及相关信息上传到系统里,(注:数据采集器将TXT文件数据导入到系统中产生进入库记录.),具体字段定义格式有产地、型号、PO、数量等等相关字段,并留出备用字段使用。(注:如果客户提供信息资料符合系统字段格式要求直接进行核对,如果不符合,则修改成为符合系统格式要求的字段进行核对)。条形码具有唯一性。与库位码相对应。确认入库完成。出库单

出库前,操作人员调出数据和安排商品出库单准备出库操作,得到出库前要填写出库单,出库单在系统里下载,填写出库单,出库单字段也是分为收货方信息和商品相关信息,单据在系统里自动验证,如果该商品已经出库,则显示红颜色标识该商品已出库.如果没有出库,则将出库单打印,到物流部审核,确认出库操作。同样在首页面会有出库操作,点击后会有下拉菜单,首先第一项就是请填写出库单。商品出库

在系统里调用数据库,查找出库商品库位,系统能够将进出库记录导出成Excel列举,查找所在相应库位,用数据采集器扫描条形码,将商品取下,将数据采集器信息上传到电脑里,记录相应取货人,取货时间等信息,形成出库记录,方便将来查找,此时出库完成。商品退货

商品出库以后,有时候会遇到商品折旧或者破损等情况,所以就要引进商品退库操作,商品退库操作主要分为几种情况的分类;商品破损、客户要求退库、错误出库、折旧等几种类型,分别以选项的形式列举,由操作人员选择;商品退还时候,选择退库原因,然后对商品进行扫描,并记录从新入库。

八、商品盘点

可以处理条码商品盘点和非条码商品盘点。

1、重要性

在仓库使用中,就应该有商品的盘点工作。原因是,无论起初的货位规划如何完美,不断改变的经营环境最终会导致目前规划不再适用。在仓库日常运作中,经营性的事项改变现有货品摆放格局的情况时有发生,还要兼顾损坏,日复一日,货位合理分配与调整被渐渐淡忘,这正是众多仓库并非进行每周或每月盘点的原因。无论是着手建设一座新仓库,还是想办法改善现有仓库的货位布置,合理进行商品的盘亏与盘赢都是节省投资,又能理想地提高仓库效率的有效手段。通过数据库或表格,我们可以在短时间内就可以完成一个仓库的货位盘点工作。

2、盘点具体操作说明

盘点前冻结库存,准备盘点,商品盘点操作分两种形式,如下:

第一种:首先从系统中将当前库存报表导出来,在将此报表导入数据采集器,用数据采集器到仓库里进行盘点,扫描每个库位上的条形码,从而在数据采集器上进行核对,在数据采集器上会显示应有数量与实有数量,将扫描的条形码与库存报表核对,从而体现盘亏与盘赢,此后将盘亏与盘赢的结果文件以TXT形式导入系统数据库进行保存以便将来查询。

第二种:首先用数据采集器对整个库存的每个库位上的条形码进行扫描,数据采集器将产生一个文件(TXT),将此文件导入系统,系统会将此文件与当前库存报表进行核对,体现盘亏与盘赢,并将结果保存在数据库里以便将来查询。商品物流码跟踪

只要输入商品条码获物流码,就可以对商品的所有出入库过程进行跟踪查询。可以详细地跟踪到商品的来源和去向。报表查询

系统提供各种仓储管理所需的报表的自行制作功能,比如每日出入库统计表、每日异常预警情况总表、单客户、单库位库存统计表等报表。

第二篇:农业物联网设施农业智能大棚系统

农业物联网设施农业智能大棚系统

佳多农林ATCSP物联网智能大棚利用先进的生物模拟技术,通过先进的网络设计,将复杂的系统模型转变成方便用户操作的电脑页面版本、手机页面版本,实现全天候实时操控;无线远程检测系统、环境检测系统、智能控制系统。结合当前棚内环境数据信息及历史大数据,系统分析对比运算,智能化对棚内滴灌、风机、遮阳网、卷帘等设施实施监控,模拟最适合棚内植物生长的环境,达到完全或部分摆脱对自然环境的依赖,实现农作物高效生产。

大棚作物的无线远程检测系统的应用。可全天候实时、定时采集棚内作物生长发育状态、病虫害活动的高清图片,棚内作物的大小也 清晰可见。其单路摄像,可进行焦距调节监控,达到近距离可以观测到植物叶面、茎干蚜虫等害虫。一般距离可以看到病虫害的发生状况、植物叶面等生长情况。远距离可观察作物整体长势状况。通过无线网络传输,千百里外也可以通过手机电脑实时监控,被称为测报人员的“听诊器”“千里眼”。

环境监测系统是智能大棚种植管理中的一项非常重要的功能。棚内空气温湿度、土壤温湿度、CO2、光照度等因素,对棚内农作物生长起着关键性作用。通过环境监测系统,可以帮助用户通过电脑、手机客户端监测整个棚内农作物生长情况,全天候无线网络传输,自动上传作物生长信息,可以及时快速的获取棚内环境变化。从而方便用户及时进行调控,保证适宜植物生长的环境。

拥有智能控制系统的农业大棚则是农业现代化的重要标志。智能控制系统;通过棚内感知层对作物生长环境中的信息参数进行无线传输上传,智能比对参数设置值,系统分析对比运算,自动进入模型控制卷帘、风机、生物补光等环境控制设备,智能化控制设施农业各项设备启闭,调控大棚内环境达到适宜植物生长的范围。“如果温度低了,自控系统将开启空调,自动给其加温;如果温度高了,自控系统将开启风机,通过通风自动给其降温;不需要阳光时,自动打开遮阳网。病虫害做为影响农作物生长的重要因素,在设施内可以通过杀菌灯和频振诱控技术进行智能无害化防治。

二氧化碳含量作为直接影响作物光合作用的重要环境因子。系统可智能化调整,预设二氧化碳浓度、阈值范围参数。将二氧化碳浓度,实时采集值与当前浓度阈值进行对比,如果小于所设二氧化碳浓度阈值,系统则自动打开二氧化碳气罐进行精准补给;如果大于所设二氧化碳浓度阈值,则自动打开风机进行适量排放。

佳多智能大棚系统中墒情监测、智能滴灌对不同作物的种类,生长阶段、生长环境、气候土壤条件实施智能化精细灌溉施肥。将微生物肥料、有机肥料与灌溉水一起均匀准确地输送到作物根部土壤。大幅度地提高了肥料的利用率,可减少50%的肥料用量,水量也只有传统浇灌的30%-40%。

佳多智能大棚系统;实现了对大棚作物生长环境的智能化干预、无害化防治、帮助用户实现更高层次的精耕细作。

第三篇:智能农业温室大棚管理系统项目计划书

智能农业温室大棚管理系统项目计划书

一、项目背景

近年来,农业温室基础设施发展迅速,但是在自动监控方面仍存在着诸多问题。温室监控区域较大,需要大量的传感器节点构成大型监控网络,通过各种传感器采集诸如温度、空气湿度、光照度、土壤湿度、EC值、pH值等信息,实现自动化监控。传统温室监测与控制系统多采用有线连接,布线复杂,往往造成温室内线缆纵横交错、使用不便、安装维护困难、可靠性差等问题。

无线传感器技术被认为是满足温室应用需求且代替有线连接的最好方式。惠企物联科技结合最新的ZIGBEE无线技术,将传感器整合到无线传送网络中:通过在农业大棚内布置温度、湿度、光照、等传感器,对棚内环境进行检测,从而对棚内的温湿度,光照等进行自动化控制。通过更加精细和动态监控的方式,来对农作物进行管理,更好的感知到农作物的环境,达到“智慧”状态,提高资源利用率和生产力水平。

二、现存问题

 首先是成本较高。一般来讲,一套智能化的控制系统成本主要包括硬件成本、运行成本和维护成本。硬件成本包括各仪器仪表、通信线缆等。整个系统也不能自由组合或者裁剪应用于不同的对象,使得难以得到推广和普及。同时,由于系统复杂、布线繁多、故障率高而且使得故障后的维修成本极大。另外,系统庞大造成的运行成本也不是一笔小费用。 其次是布线复杂。温室中有大量分散的传感器和执行机构,这些设备可能随着作物的改变而进行调整,同时错综复杂的线缆也需要重新铺设,工作量较大。为了科学、合理地实现大面积温室环境参数的自动检测与控制,电子检测装置和执行机构的设置不仅数量大而且分布广,连接着各个装置与机构的线缆,也因此纵横交错。当温室内生产的果蔬作物更替时,相应的电子检测装置和执行机构的位置常常需要调整,连接着各个装置与机构的线缆有时也需要重新布置。这不仅增大了温室的额外投资成本和安装与维护的难度,有时也影响了作物的良好生长。

 第三,故障解决难。当数据无法正常接收时,检查人员不知道是线路问题还是节点故障。另外,目前的控制系统多采用基于现场总线的分布式模式,当总线出现故障时,虽然各控制节点尚能正常工作,但是上位机却无法正常管理整个网络,专家控制策略无法实施。

三、项目意义

(1)实现广范围的测量,需求传感器节点多

当前温室生产的首要特点就是监控区域很大,普通单个连栋温室都有几千平方米,而一个园区温室群的面积可能会在几百亩以上,因此需要大量的传感器节点构建传感器网络,在每个温室中采集诸如空气温度、空气湿度、光照强度、土壤湿度、营养液EC值、pH值以及室外天气参数等信息,除此以外,目前对作物生理参数的检测也逐渐受到人们的重视,因此将会有更多的传感器节点被用于温室生产。另外,用于驱动温室中执行机构的控制节点的数量也不能忽略。由此可见,温室对其监测与控制系统的首要需求就是网络容量大。(2)检测点位置灵活变动 温室中大量分散的传感器,但随着作物的生长而需要不断调整位置;或者当温室内生产的作物更替时,相应的电子检测装置和执行机构的位置也常常需要调整;另外,温室的利用结构也会经常根据用户需要而不断改变,这就要求系统中各个节点能根据需要随意变换位置而不影响系统工作。(3)节点数目可随意增减

作物生长阶段不同,环境因子对作物的影响可能也不同,生长初期可能对温度比较敏感,而后期可能对光照比较敏感,这就要求系统可以随意改变节点的类型和数量。除此以外,随着作物的生长,用户可能还需要对植物的生理参数进行监测而需要不断增加传感器节点。在某些科研温室中,也经常需要改变传感器节点的类型和数量,以达到精确监测与控制。上述这些情况都需要所用的监控系统的节点能随意增减。(4)系统可靠性

系统故障而造成的经济损失不可估量。如果系统出现问题而未能被及时发觉和修复,那么可能对作物造成致命的伤害,尤其在一些恶劣的天气例如高温和寒冷气候条件下,这将直接影响产量和收益。另外,温室内湿度高、光照强、具有一定的酸性,都会导致线缆的腐蚀、老化,从而降低系统的可靠性和抗干扰性,这对于检查系统故障造成困难。例如,当数据无法正常接收时,检查人员不知道是线路问题还是节点故障,这对及时发现和解决故障带来不便。因此,温室测控系统必须要可靠。

四、项目介绍

4.1 ZIGBEE技术介绍

ZIGBEE技术是IEEE(美国电子和电气工程师协会)研发的新一代无线通讯技术。可应用在固定、便携或移动设备上的,低成本、低功耗的低速率无线连接技术;202_年8月,美国HONEYWELL等公司发起成立了ZigBee联盟,他们提出的ZigBee技术被确认为IEEE 802.15.4标准;现联盟内有众多的成员企业。

ZIGBEE技术现已被非常的应用,诸多的芯片厂家,如TI,三星,飞利浦等等,都生产出了与该协议技术兼容的芯片,并被大量的应用。

ZIGBEE属于微波段2.4GHZ频率,可实现远距离(0~1000米)传送给路由器;一般有3部分组成:ZIGBEE传感器标签、ZIGBEE路由器、ZIGBEE协调器组成,需外接2.4~3.7V的电源,当标签检测到现场的数据后,通过电磁波的传导,远距离的无线传输给路由器,路由器在已同样的原理传输给协调器,协调器一方面可以将数据通过串口传送给电脑,以供系统分析控制,一方面可以通过内置的单片系统处理、分析、控制所接受的数据。整个传输过程均通过无线传输,传送速率在250K/s,且在传送过程中对数据的加密保护,实现了快速、安全的现场数据采集。

ZIGBEE在无线传输的过程中,可以自动的实现自组网、多跳、就进识别的功能,当现场的单个路由出现问题时,其他路由会自动的寻找其他的线路,不会耽误系统的运行; 4.2系统简介

温室大棚对环境的要求非常高,温度、湿度、光照、CO2、等一系列的参数均对其影响重大。优秀的温室大棚管理,即对于以上环境变量的严格管理。

在本系统中,我们采用不同的传感器来实现对环境的监控,像无线温度传感器、无线湿度传感器、无线光照度传感器、无线CO2传感器等。以无线温度传感器为例,该传感器采用3大模块组成:

1、温度传感器模块;

2、单片机系统模块;

3、无线发送模块。温度传感器模块检测到现场的温度数据后,将数据交由单片机处理,单片机通过模拟转数字-数字转模拟的处理,最终驱动无线发送模块将数据无线发出。此无线温度传感器的传输距离可达120米。

无线温度传感器将数据向外发送,安装在室内的或室外的路由器接受该数据,并将数据整理后,发送给ZIGBEE协调器,协调器会将数据整理并通过串口上传电脑,电脑即根据现场的数据,与温度标准值进行比较,如若超出标准值,电脑则控制温室内外的:天窗、侧窗、内遮阳保温幕、外遮阳幕、风机、等开启。同时,温室内的传感器时时检测现场数据,当现场温度达到标准值后,电脑即关闭控制。

4.3系统硬件组成

系统硬件按照控制的流程分3大部分:数据采集部分、数据传输部分、控制部分。

4.3.1数据采集部分

 温度传感器:该传感器采用3大模块组成:

1、温度传感器模块,采用美国进口的DS18B20模拟头,精度等级在± 0.5℃;

2、单片机系统模块;

3、无线发送模块。

4、长待机电池。温度传感器模块检测到现场的温度数据后,将数据交由单片机处理,单片机通过模拟转数字-数字转模拟的处理,最终驱动无线发送模块将数据无线发出。每只传感器都带有一个ID号,而此ID号是有24位的字母、数字组成,可以实现无限的序号组合,即可实现全球唯一ID号;每只标签的ID号与其所在的位置是相对应的,这个可以在系统建数据库时,位置绑定在该ID号的信息中。即当系统读取到序号为“1234567”的ID号时,系统即会知道该标签是处于:第几号温室?那个位置段?,如该标签测量的数据较高时,系统就会知道具体的位置。此无线温度传感器的传输距离可达120米。

 湿度传感器:该传感器采用3大模块组成:

1、湿度传感器模块,采用美国进口的SHT11模拟头,精度等级在± 3%RH;

2、单片机系统模块;

3、无线发送模块。

4、长待机电池。湿度传感器模块检测到现场的湿度数据后,将数据交由单片机处理,单片机通过模拟转数字-数字转模拟的处理,最终驱动无线发送模块将数据无线发出。每只传感器都带有一个ID号,而此ID号是有24位的字母、数字组成,可以实现无限的序号组合,即可实现全球唯一ID号;每只标签的ID号与其所在的位置是相对应的,这个可以在系统建数据库时,位置绑定在该ID号的信息中。即当系统读取到序号为“1234567”的ID号时,系统即会知道该标签是处于:第几号温室?那个位置段?,如该标签测量的数据较高时,系统就会知道具体的位置。此无线湿度传感器的传输距离可达120米。

 光照度传感器:该传感器采用3大模块组成:

1、温度传感器,采用美国德州仪器的传感器,可测量0~20万lus;

2、单片机系统模块;

3、无线发送模块。

4、长待机电池。光照度传感器模块检测到现场的温度数据后,将数据交由单片机处理,单片机直接将接受到的传感器数字信号处理,并驱动无线发送模块将数据无线发出。每只传感器都带有一个ID号,而此ID号是有24位的字母、数字组成,可以实现无限的序号组合,即可实现全球唯一ID号;每只标签的ID号与其所在的位置是相对应的,这个可以在系统建数据库时,位置绑定在该ID号的信息中。即当系统读取到序号为“1234567”的ID号时,系统即会知道该标签是处于:第几号温室?那个位置段?,如该标签测量的数据较高时,系统就会知道具体的位置。此无线光照度传感器的传输距离可达120米。

 CO2传感器:该传感器采用美国(Telaire)公司产品,该传感器采用红外光谱形式,0-2000PPM 的量程能满足植物研究的所有需求。传感器对科研型温室高温、高湿不敏感。此传感器采用有线传输。该只传感器与其所在的位置是相对应的,这个可以在系统建数据库时,位置绑定在该ID号的信息中。即当系统读取到序号为“1234567”的ID号时,系统即会知道该标签是处于:第几号温室?那个位置段?,如该标签测量的数据较高时,系统就会知道具体的位置。

 雨量传感器:本仪器反斗部件翻转灵敏,性能稳定,工作可靠。承雨口采用不锈钢皮整体冲拉而成,光洁度高,滞水产生的误差小。仪器外壳用不锈钢制成,防锈能力强,外观质量佳。此传感器采用有线传输。该只传感器与其所在的位置是相对应的,这个可以在系统建数据库时,位置绑定在该ID号的信息中。即当系统读取到序号为“1234567”的ID号时,系统即会知道该标签是处于:第几号温室?那个位置段?,如该标签测量的数据较高时,系统就会知道具体的位置。

 降雨感知传感器:探头为美国德州仪器 TI 公司产品,主要用于探测是否有降雨,该产品具有判断降雨和结露的不同情况,具有工作可靠,价格便宜等特点。此传感器采用有线传输。该只传感器与其所在的位置是相对应的,这个可以在系统建数据库时,位置绑定在该ID号的信息中。即当系统读取到序号为“1234567”的ID号时,系统即会知道该标签是处于:第几号温室?那个位置段?,如该标签测量的数据较高时,系统就会知道具体的位置。

风速风向传感器:风速风向传感器”选用美国Davis(戴维斯)公司产品(Davis6410)。“风速风向传感器”内部装有精密旋转运动部件,这些机械部件的稳定性非常好,能在恶劣环境下保持传感器的测量精度。,外壳高强度特殊工程塑料具有极好的抗紫外老化作用。此传感器采用有线传输。该只传感器与其所在的位置是相对应的,这个可以在系统建数据库时,位置绑定在该ID号的信息中。即当系统读取到序号为“1234567”的ID号时,系统即会知道该标签是处于:第几号温室?那个位置段?,如该标签测量的数据较高时,系统就会知道具体的位置。

 土壤湿度传感器:采用水利部认证传感器,该传感器采用先进的“时域反射原理”,杆式设计,感应部分 48cm,适用于测量任何类型土壤的体积含水量,测量精确,性能稳定可靠,此传感器采用有线传输。该只传感器与其所在的位置是相对应的,这个可以在系统建数据库时,位置绑定在该ID号的信息中。即当系统读取到序号为“1234567”的ID号时,系统即会知道该标签是处于:第几号温室?那个位置段?,如该标签测量的数据较高时,系统就会知道具体的位置。

 水暖水温传感器与土壤温度传感器:采用美国DALAIS 公司温度传感器,外套“密封不锈钢铠甲”。特性:一致性好,精度高,密封性好,此传感器采用有线传输。该只传感器与其所在的位置是相对应的,这个可以在系统建数据库时,位置绑定在该ID号的信息中。即当系统读取到序号为“1234567”的ID号时,系统即会知道该标签是处于:第几号温室?那个位置段?,如该标签测量的数据较高时,系统就会知道具体的位置。

 液面湿度传感器: 主要测量植物表面的叶面蒸发程度及植物表面的湿度情况,适用于高档花卉。例:一品红,该系列传感器适用于农业、园林、气象、环保等领域对温度和湿度的测量,经过绝缘封装等加工工艺,可在高温高湿等恶劣环境中长期稳定地工作。此传感器采用有线传输。该只传感器与其所在的位置是相对应的,这个可以在系统建数据库时,位置绑定在该ID号的信息中。即当系统读取到序号为“1234567”的ID号时,系统即会知道该标签是处于:第几号温室?那个位置段?,如该标签测量的数据较高时,系统就会知道具体的位置。

以上的诸多品种传感器,可直接安放在温室内,或温室外。其中最为常用的传感器为温度传感器、湿度传感器、光照传感器,在本系统中针对此3种传感器,我们采用无线的传输方式,用无线模块将数据送至无线路由器。其他种类传感器因考虑用量较少,用无线传输方式成本较高,暂时用有线传输数据。

4.3.2数据传输部分

 无线路由器:识读标签;微波2.4~2.5GHz微波频段;吊挂式或固定支架安装,防尘防水,与标签的读写距离0~300米。

无线路由器的信号覆盖到无线传感器的接收范围内时,路由器即能采集到标签过来的数据信息;

因现场需要检测不同位置的环境,会安装较多的传感器,路由器接收的数据具备冗长性,通过数据融合,将多个无线传感器数据整理成更精准的数据,无线发送给协调器;

路由器除接收并发送无线传感器的数据外,还可以作为其他路由器的上位路由,其他路由可以借此路由进行与协调器的通讯。

 无线协调器:识读中继器,接收中继传送过来的信息,并将数据用串口上传工控机;识别距离0~300米可调;微波2.4~2.5GHz频段;吊挂式或固定支架安装,工业RS485串口,防尘防水。

协调器是最终连接电脑的设备,它前端采集路由数据,后端向电脑传送数据。当现场数据较大,较多时,亦不会产生数据的拥堵。

4.3.3控制部分

 工控机:采用工业PC机,较强的功能与性能,具备工业级别的串口通讯、I/O口输入输出。

内置强大的软件控制功能:稳定的数据采集、基于实际应用的数据分析、专家数据库、精准的控制逻辑。

 PLC控制:采用西门子公司的S7系列PLC;多路稳定的I/O控制、工业级别的串口通讯、精准的控制时序、 驱动控制:电机、气缸、电磁阀

 现场执行单元:内遮阳,外遮阳,顶开窗,侧开窗,湿帘外开窗,湿帘水泵,湿帘风机,2组风机,内循环风机,补光灯,喷雾,微喷等设备。(甲方单独配置)

4.4系统软件

本系统软件着重分析了温室中的:空气温度、空气湿度、土壤温度、光照度,4大参数,这是温室环境控制中最重要的4个参数。

4.4.1空气温度控制

4.4.1.1现场数据采集

在温室内安放多个无线传感器,因传感器无线发送数据,所以不用担心布线的繁杂,可以将传感器安放在温室内的任何一个地方,并且可以随意的调整位置。传感器还内存有ID号,每个传感器的ID是全球唯一,是代表该传感器的身份。传感器安放好后,传感器的ID号、采集的数据、所在位置等信息会一并的传给路由。

温度管理一般把一天分为午前、午后、前半夜和后半夜4个时段来进行温度调节。午前以促进光合作用、增加同化量为主;午后光合作用呈下降趋势;日落后以促进体内同化物的运转;夜温以抑制呼吸、减少消耗、增加积累; 传感器内置单片控制系统,因此可以设置传感器检测和外发数据的周期,就可以设置传感器外发数据的周期为1次/小时、1次/分钟、或1次/30秒等,一来可以根据现场的实际需求而定,二来可以为传感器节省电能,使用的时间更长久。

4.4.1.2数据传输

传感器将采集到的数据无线发送给室内的路由器,路由器接收并转化传感器的数据,标签是利用电磁波形式传递数据,路由接收后,解调该数据。在同一时间会有多个标签向路由发送数据,路由会将接收到的数据进行融合,整理成较精准的数据发出。如:

路由器除接收并发送无线传感器的数据外,还可以作为其他路由器的上位路由,其他路由可以借此路由进行与协调器的通讯。如图:

协调器是最终连接电脑的设备,它前端采集路由数据,后端向电脑传送数据。工业RS485串口连接电脑,防尘防水。4.4.1.3控制时序

A、温度高于标准值:每种植物都有不同的温度生长曲线,植物在不同的时间段都会有不同的适宜生长温度,如在每一天中,植物对于温度的需求就有4种,这是因为其处于不同的时段,会有不同的转化机能。当温室内的空气温度高于标准值时,系统会自动比较在某时段标准值与实际值的差异,进而来控制不同设备进行降温。

 如:ID号为“123456789”的传感器,检测到现场的温度数据为35.4℃时,数据经由无线路由,无线协调器,最终将数据上传给工控机。

 系统为保证该温度值不是瞬间的值,会在第一次接收到该ID号的数据后延时0~90秒,再取值比较,借以准确的判断该值是一个趋势值。

 系统会调出在该段时间的标准值27℃,并与现场数据比对,判断比现场的温度高8.4℃,即会控制降温设备开启。

 控制降温设备的开启顺序:系统在一定的时间内(0~99秒可调)判断当前温度值不能降低到目标值时,会顺序开启降温设备;当现场温度与目标温度相差较大时,系统控制跳跃开启其中的某项设备。

 天窗:分段开启顶开窗系统;通过室外自然温室调整温室内的温度,依此原理,直至顶开窗系统为 100%。

 侧窗:再分段开启侧窗通风系统;依此原理,直至侧开窗系统为 100%。

 强制降温过程:自然通风不能降低温室内的温度时,系统自动关闭自然通风相关设备,采用强制通风的方式来控制室内温度。延时后,关闭天窗,其次关闭侧窗。 湿帘外翻窗:开启湿帘外翻窗。 一组风机:开启第一组风机。  湿帘水泵:开启湿帘水泵。 二组风机:开启第二组风机。

 循环风机:在一定的时间内判断当温室内的温室不均匀时,开启循环风机。 喷林或喷雾:开启屋顶喷淋系统。

 报警:判断温度降不到目标值,则计算机会开启温度过高报警,提示用户需增加降温设备。系统会时时检测现场温度,当现场温度趋于目标温度时,系统即关闭降温设备。

B、温度低于标准值:

 如:ID号为“123456789”的传感器,检测到现场的温度数据为20℃时,数据经由无线路由,无线协调器,最终将数据上传给工控机。

 系统为保证该温度值不是瞬间的值,会在第一次接收到该ID号的数据后延时0~90秒,再取值比较,借以准确的判断该值是一个趋势值。

 系统会调出在该段时间的标准值27℃,并与现场数据比对,判断比现场的温度低7℃,即会控制升温设备开启。

 控制升温设备的开启顺序:系统在一定的时间内(0~99秒可调)判断当前温度值不能升温到目标值时,会顺序开启升温设备;当现场温度与目标温度相差较大时,系统控制跳跃开启其中的某项设备。

 内遮阳保温幕:拉下内遮阳保温幕,不使室内温度外泄。 外遮阳幕:若外界光照较强,可打开外遮阳幕,通过光照升温。 热风炉、水暖空调、暖气:打开加热装置,是室内温度升温。

 报警:判断温度降不到目标值,则计算机会开启温度过高报警,提示用户需增加降温设备。

系统会时时检测现场温度,当现场温度趋于目标温度时,系统即关闭升温设备。

4.4.2空气湿度控制

4.4.2.1现场数据采集

在温室内安放多个无线传感器,因传感器无线发送数据,所以不用担心布线的繁杂,可以将传感器安放在温室内的任何一个地方,并且可以随意的调整位置。传感器还内存有ID号,每个传感器的ID是全球唯一,是代表该传感器的身份。传感器安放好后,传感器的ID号、采集的数据、所在位置等信息会一并的传给路由。

湿度传感器内置单片控制系统,因此可以设置传感器检测和外发数据的周期,就可以设置传感器外发数据的周期为1次/小时、1次/分钟、或1次/30秒等,一来可以根据现场的实际需求而定,二来可以为传感器节省电能,使用的时间更长久。

4.4.2.2数据传输

传感器将采集到的数据无线发送给室内的路由器,路由器接收并转化传感器的数据,标签是利用电磁波形式传递数据,路由接收后,解调该数据。

在同一时间会有多个标签向路由发送数据,路由会将接收到的数据进行融合,整理成较精准的数据发出。如:

路由器除接收并发送无线传感器的数据外,还可以作为其他路由器的上位路由,其他路由可以借此路由进行与协调器的通讯。如图:

协调器是最终连接电脑的设备,它前端采集路由数据,后端向电脑传送数据。工业RS485串口连接电脑,防尘防水。

4.4.2.3控制时序

A、湿度高于标准值:

 如:ID号为“123456789”的传感器,检测到现场的湿度数据为80%RH时,数据经由无线路由,无线协调器,最终将数据上传给工控机。

 系统为保证该湿度值不是瞬间的值,会在第一次接收到该ID号的数据后延时0~90秒,再取值比较,借以准确的判断该值是一个趋势值。

 系统会调出在该段时间的标准值65%RH,并与现场数据比对,判断比现场的温度高15%RH,即会控制除湿设备开启。

 控制除湿设备的开启顺序:系统在一定的时间内(0~99秒可调)判断当前湿度值不能降低到目标值时,会顺序开启除湿设备;当现场湿度与目标湿度相差较大时,系统控制跳跃开启其中的某项设备。

 侧窗:分段开启侧窗通风系统,进行除湿,依此原理,直至侧开窗系统为 100%。 除湿机控制:开启除湿机进行除湿。

 报警:判断温度降不到目标值,则计算机会开启湿度过高报警,提示用户需增加除湿设备。

系统会时时检测现场湿度,当现场湿度趋于目标温度时,系统即关闭除湿设备。B、湿度低于标准值:

 如:ID号为“123456789”的传感器,检测到现场的湿度数据为40%RH时,数据经由无线路由,无线协调器,最终将数据上传给工控机。

 系统为保证该湿度值不是瞬间的值,会在第一次接收到该ID号的数据后延时0~90秒,再取值比较,借以准确的判断该值是一个趋势值。

 系统会调出在该段时间的标准值65%RH,并与现场数据比对,判断比现场的温度低15%RH,即会控制加湿设备开启。

 控制加湿设备的开启顺序:系统在一定的时间内(0~99秒可调)判断当前湿度值不能升到到目标值时,会顺序开启加湿设备;当现场湿度与目标湿度相差较大时,系统控制跳跃开启其中的某项设备。

 加湿机控制:开启加湿机进行加湿。需设置相应的目标值,系统就会自动运行。判断时间保证了不是判断瞬间湿度值的超标,而是判断湿度度整体趋势的变化;在一定的时间内湿度值都超标,才启动控制条件。稳定判断时间保证温室设备启动后,不判断瞬间达到目标值,而是稳定一段时间后才判断。避免了控制条件很快反复上升;也避免设备电机频繁启动,从而更好的保护电机. 报警:判断温度降不到目标值,则计算机会开启湿度过高报警,提示用户需增加除湿设备。

系统会时时检测现场湿度,当现场湿度趋于目标温度时,系统即关闭加湿设备。

4.4.3土壤温度控制

4.4.3.1现场数据采集 在温室内安放多个有线传感器,传感器时时的通过线缆向电脑发送数据。

4.4.3.2控制时序

土壤温度低于标准值:

 该传感器是数字传感器,内存有0~99的ID号,现场变送出数字信号传送给电脑。现场的温度数据为15℃时,系统为保证该湿度值不是瞬间的值,会在第一次接收到该ID号的数据后延时0~90秒,再取值比较,借以准确的判断该值是一个趋势值。

 系统会调出在该段时间的标准值25℃,并与现场数据比对,判断比现场的温度低10℃,即会控制升温设备开启。

 控制升温设备的开启顺序:系统在一定的时间内(0~99秒可调)判断当前湿度值不能提高到目标值时,会顺序开启升温设备;当现场温度与目标温度相差较大时,系统控制跳跃开启其中的某项设备。

 内遮阳保温幕:拉下内遮阳保温幕,不使室内温度外泄。 外遮阳幕:若外界光照较强,可打开外遮阳幕,通过光照升温。 热风炉、水暖空调、暖气:打开加热装置,是室内温度升温。

 报警:判断温度升不到目标值,则计算机会开启温度过低报警,提示用户需增加升温设备。

系统会时时检测现场温度,当现场温度趋于目标温度时,系统即关闭升温设备。

4.4.4光照度控制

4.4.4.1现场数据采集

在温室内安放多个无线光照传感器,因传感器无线发送数据,所以不用担心布线的繁杂,可以将传感器安放在温室内的任何一个地方,并且可以随意的调整位置。传感器还内存有ID号,每个传感器的ID是全球唯一,是代表该传感器的身份。传感器安放好后,传感器的ID号、采集的数据、所在位置等信息会一并的传给路由。

传感器内置单片控制系统,因此可以设置传感器检测和外发数据的周期,就可以设置传感器外发数据的周期为1次/小时、1次/分钟、或1次/30秒等,一来可以根据现场的实际需求而定,二来可以为传感器节省电能,使用的时间更长久。

4.4.4.2数据传输

传感器将采集到的数据无线发送给室内的路由器,路由器接收并转化传感器的数据,传感器是利用电磁波形式传递数据,路由接收后,解调该数据。

在同一时间会有多个标签向路由发送数据,路由会将接收到的数据进行融合,整理成较精准的数据发出。如:

路由器除接收并发送无线传感器的数据外,还可以作为其他路由器的上位路由,其他路由可以借此路由进行与协调器的通讯。如图:

协调器是最终连接电脑的设备,它前端采集路由数据,后端向电脑传送数据。工业RS485串口连接电脑,防尘防水。4.4.4.3控制时序

光照度低于标准值:每种植物都有不同的温度生长曲线,植物在不同的时间段都会有不同的适宜生长光照度,如在每一天中,植物对于光照度的需求就有多种,这是因为其处于不同的时段,会有不同的转化机能。当温室内的光照度高于标准值时,系统会自动比较在某时段标准值与实际值的差异,进而来控制不同设备进行调整。

 如:ID号为“123456789”的传感器,检测到现场的光照度数据为50lux时,数据经由无线路由,无线协调器,最终将数据上传给工控机。

 系统为保证该光照度值不是瞬间的值,会在第一次接收到该ID号的数据后延时0~90秒,再取值比较,借以准确的判断该值是一个趋势值。

 系统会调出在该段时间的标准值300lux,并与现场数据比对,判断比现场的温度低250lux,即会控制设备开启调控。

 控制光照设备的开启顺序:系统在一定的时间内(0~99秒可调)判断当前光照值不能升到目标值时,会顺序开启补光设备;当现场光照度与目标光照度相差较大时,系统控制跳跃开启其中的某项设备。

 外遮阳幕打开:徐缓的打开外遮阳棚,使室外的阳光能照射进来  内遮阳幕打开:打开外遮阳棚,使室外的阳光能照射进来  补光灯:打开补光灯,进行补光。

 报警:判断光照度降不到目标值,则计算机会开启光照度过高报警,提示用户需增加光照度设备。

系统会时时检测现场光照度,当现场光照度趋于目标温度时,系统即关闭光照设备。

4.4.5风速对外拉幕的保护

当室外风速超过保护值时,则系统自动启动外拉幕的风速保护功能。条件级别保证外拉幕在非正常情况下(例:大风),优先自动收拢外拉幕,避免外拉幕遭到毁灭性破坏。判断时间保证了不是判断瞬间风的超标,而是判断风整体趋势的变化;在一定的时间内风都超标,才启动控制条件。稳定判断时间保证温室设备启动后,不判断瞬间达到目标值,而是稳定一段时间后,才判断。避免了控制条件很快反复上升;也避免设备电机频繁启动,从而更好的保护电机。

4.4.6风向及风速对天窗的保护

大风、雨雪保护:系统不是判断瞬间风速的超标,而是判断风整体趋势的变化,以进行大风时的关闭通风窗的保护。风向传感器能判断出是迎风还是背风,以进行不同级别的保护。4.4.7 CO2施肥

通过定时控制设置,可设多组 co2 施肥时间规律的选择 4.4.8 专家数据库 系统内置最新的农业专家数据库,根据不同作物的生产特性和要求可以自动调用相对应的最佳控制方案和参数。

4.4.9 数据报表、绘制曲线:

记录的数据可以导出“EXECL”报表。同时可以生成全日、全周、全月的变化趋势曲线图。

五、项目扩展

5.1 GSM无线短信报警功能:(选配项)

系统可实现“GSM 无线短信报警”,可以将“温室的报警信息”以短信的方式迅速发到相关人员的“手机或PDA”上,请求人工干预。

不同的温室、不同的管理员手机号,均可以通过灵活的设定将他们组合关联起来。因此,任何一个温室出现报警都能迅速发到和该温室相关的一人或多人的手机号。5.2远程监控功能(选配项)

通过连接宽带互联网,可以实现互联网远程登陆访问功能,方便异地监控。

六、项目总结

本方案立足物联网的ZIGBEE应用技术,结合温室环境的实际应用,将先进的信息技术应用到传统的农业,解决了农业低成本、布线的繁杂、高故障率等问题。实现了温室内:传感器节点的简易扩展、快速的数据传送、稳定的系统控制。

第四篇:智能农业温室大棚管理系统项目计划书

智能农业温室大棚管理系统项目分析与设计

目 录

第一章 绪论

1.1项目背景

智能温室大棚是农业物联网的一个重要应用领域,是以全面感知、可靠传输和智能处理等物联网技术为支撑和手段,以温室大棚的自动化生产、最优化控制、智能化管理为主要目标的农业物联网的具体应用领域,也是目前应用需求最为迫切的领域之一。温室大棚以日光温室为主,温室结构简易,环境控制能力低。我国温室大棚的技术装备尽管有了较大发展,但是温室大棚种植普遍存在管理粗放、技术设施落实不到位、智能化水平低,导致单位生产效率低、投入产出比不高、农业产品质量安全水平起伏较大的现状,在温室环境、栽培管理技术、生物技术、人工智能技术、网络信息技术等方面和发达国家存在着较大差距。我国建设在南方的大型智能温室以生产花卉为主,北方的则以栽培蔬菜为主,少部分智能温室用于栽培苗木。

四川省成都市温江区响应国家号召,政府投资,在温江区实施高科技农业示范区,示范区位于成都市温江区,当地气候为亚热带季风气候,四季分明,七月份平均气温35℃,平均降雨量400mm,一月份平均气温9℃,平均降雨量300mm。全区占地面积为:24m*32m=768平方米,已经装有混凝土拱架塑料大棚,作为有机蔬菜以及园艺种植区域,产品规格为栋宽12米,间距4米,天沟(雨水槽底部局柱底高度)5米,顶高(屋脊到柱底高度)5.9米,屋面角度25度,外遮阳高度6.4米;排列方式为屋脊走向为:南北12m*4跨=48米,侧墙长(南北):4米*8榀=32米。现计划在该整片温室大棚种植区域安装基于物联网技术的全方位随时监控管理的智能温室大棚系统,作为农业示范区域,以便以后在整个成都片区实行推广。1.2现存问题

首先是成本较高。一般来讲,一套智能化的控制系统成本主要包括硬件成本、运行成本和维护成本。硬件成本包括各仪器仪表、通信线缆等。整个系统也不能自由组合或者裁剪应用于不同的对象,使得难以得到推广和普及。同时,由于系统复杂、布线繁多、故障率高而且使得故障后的维修成本极大。另外,系统庞大造成的运行成本也不是一笔小费用。

其次是布线复杂。温室中有大量分散的传感器和执行机构,这些设备可能随着作物的改变而进行调整,同时错综复杂的线缆也需要重新铺设,工作量较大。为了科学、合理地实现大面积温室环境参数的自动检测与控制,电子检测装置和执行机构的设置不仅数量大而且分布广,连接着各个装置与机构的线缆,也因此纵横交错。当温室内生产的果蔬作物更替时,相应的电子检测装置和执行机构的位置常常需要调整,连接着各个装置与机构的线缆有时也需要重新布置。这不仅增大了温室的额外投资成本和安装与维护的难度,有时也影响了作物的良好生长。

第三,故障解决难。当数据无法正常接收时,检查人员不知道是线路问题还是节点故障。另外,目前的控制系统多采用基于现场总线的分布式模式,当总线出现故障时,虽然各控制节点尚能正常工作,但是上位机却无法正常管理整个网络,专家控制策略无法实施。

1.2项目意义

(1)实现广范围的测量,需求传感器节点多当前温室生产的首要特点就是监控区域很大,普通单个连栋温室都有几千平方米,而一个园区温室群的面积可能会在几百亩以上,因此需要大量的传感器节点构建传感器网络,在每个温室中采集诸如空气温度、空气湿度、光照强度、土壤湿度、营养液EC值、pH值以及室外天气参数等信息,除此以外,目前对作物生理参数的检测也逐渐受到人们的重视,因此将会有更多的传感器节点被用于温室生产。另外,用于驱动温室中执行机构的控制节点的数量也不能忽略。由此可见,温室对其监测与控制系统的首要需求就是网络容量大。

(2)检测点位置灵活变动

温室中大量分散的传感器,但随着作物的生长而需要不断调整位置;或者当温室内生产的作物更替时,相应的电子检测装置和执行机构的位置也常常需要调整;另外,温室的利用结构也会经常根据用户需要而不断改变,这就要求系统中各个节点能根据需要随意变换位置而不影响系统工作。

(3)节点数目可随意增减

作物生长阶段不同,环境因子对作物的影响可能也不同,生长初期可能对温度比较敏感,而后期可能对光照比较敏感,这就要求系统可以随意改变节点的类型和数量。除此以外,随着作物的生长,用户可能还需要对植物的生理参数进行监测而需要不断增加传感器节点。在某些科研温室中,也经常需要改变传感器节点的类型和数量,以达到精确监测与控制。上述这些情况都需要所用的监控系统的节点能随意增减。

(4)系统可靠性

系统故障而造成的经济损失不可估量。如果系统出现问题而未能被及时发觉和修复,那么可能对作物造成致命的伤害,尤其在一些恶劣的天气例如高温和寒冷气候条件下,这将直接影响产量和收益。另外,温室内湿度高、光照强、具有一定的酸性,都会导致线缆的腐蚀、老化,从而降低系统的可靠性和抗干扰性,这对于检查系统故障造成困难。例如,当数据无法正常接收时,检查人员不知道是线路问题还是节点故障,这对及时发现和解决故障带来不便。因此,温室测控系统必须要可靠。

2、方案概述

本系统结构及配套设施:主体骨架为热镀锌型组装、覆盖材料、自然通风系统强制通风系统、内遮阳系统、外遮阳系统、环流风机系统、加热系统、补光系统、配电系统、监控系统、智能控制系统。

智能化大棚是一个半封闭系统,依靠覆盖材料形成与外界相对隔离的室内空间,一方面要以通风换气创造植物生长优于室外自然环境的条件;另一方面,室内产生的高温高湿和低二氧化碳浓度,通过通风换气来调控,创造植物生长的最佳环境。

3、系统功能描述

3.1、智能温室大棚物联网感知层

智能温室大棚物联网的应用一般对温室的七个方面进行监测,即通过土壤、气象、光照等传感器,实现对温室的温、水、肥、电、热、气、光进行实时调控与记录,保证温室内的有机蔬菜和花卉生产在良好的环境中。

3.2、智能温室大棚物联网传输层

一般情况下,在温室内部通过无线终端,实现实时远程监控温室环境和作物生长情况。通过手机网络和短信的方式,监测温室传感器网络所采集的信息,以作物生长模拟技术和传感器网络技术为基础,通过常见蔬菜生长模型和嵌入式模型的低成本智能网络终端。通过中继网关和远程服务器双向通信,服务器也可以进一步做出决策分析,对所部署的温室中灌溉等装备进行远程管理控制。

3.3、智能温室大棚物联网智能处理层

通过对获取信息的共享、交换、融合,获得最优和全方位的准确数据信息,实现对智能温室大棚作物的施肥、灌溉、播种、收获等的决策管理和指导。基于作物长势和病虫害等相关图形图像处理技术,实现对大棚作物的长势预测和病虫害监测和预警功能。还可以将监控信息实时地传输到信息处理平台,信息处理平台实时显示各个温室的环境状况,根据系统预设的阈值,控制通风/加热/降温等设备,达到温室内环境可知、可控。

4、系统架构

5、系统网络拓扑

6、各子系统设计6、1 感知层

(1)无线传感网络

无线传感器网络(WSN)就是由部署在监测区域内大量的廉价微型传感器节点组成,通过无线通信方式形成的一个多跳的自组织的网络系统,其目的是协作地感知、采集和处理网络覆盖区域中被感知对象的信息,并发送给观察者。传感器、感知对象和观察者构成了无线传感器网络的三个要素。

Zigbee网络组网

网关 :Zigbee—3G ZigBee节点是可以组建Mesh网络的,设置一个ZigBee节点为网络协调器,其他每个ZigBee节点都可以当做路由节点来使用,也可以设置为终端节点但是就失去了路由功能。

(2)视频监控

摄像机 : WIFI传感网络,对检测到的图像信息使用WIFI进行传输(3)设备供电

设备供电系统由最新的太阳能供电,AC 220V、DC 12V或者太阳能供电。

6、2

传输层

(1)网关:

3G无线网关:将Zigbe信号转化为3G信号进行传输(2)路由器

交换机

3G无线路由器、交换机,用于传输局域网和广域网的数据(3)供电设备: 采用标准220V电源供电 6、3

网络层

(1)终端服务器:采用电脑作为服务器终端(2)云服务平台:

采用云服务器,对大量的信息进行处理和保存(3)监控中心:

采用球机型无线WIFI摄像机对温室大棚的情况进行采集(4)供电方式:

采用220V标准电压供电6、4

应用层

(1)电脑终端:

采用台式电脑或者笔记本电脑作为应用层终端(2)手机终端:

采用智能手机作为终端,对采集的信息进行处理(3)供电方式: 220V标准供电

7、工程造价表

第五篇:农业大棚智能检测环境系统

龙源期刊网 http://.cn

农业大棚智能检测环境系统

作者:王峰萍 王佳

来源:《现代电子技术》202_年第14期

摘 要:介绍了以 STC89C52单片机为核心的光照和温度控制系统的工作原理和设计方法。系统由TSL2561光传感器和 DS18B20温度传感器采集数据传输给控制器,通过外围设备 LCM12864显示现场光照度和温度值,并设计上位机程序,通过串口通信实时获取光照度和温度,所采集的数据放入到Access数据库当中,然后从数据库读出光照度和温度的值,通过曲线显示到PC机上,进行实时曲线监控。同时,系统具有温度和光强报警功能。

关键词:STC89C52; VC++; Access; 照度和温度控制系统;DS18B20; TSL2561

农业智能大棚控制、溯源系统设计方案(共5篇)
TOP