首页 > 精品范文库 > 12号文库
纳米材料与精密加工课程论文
编辑:风起云涌 识别码:21-646379 12号文库 发布时间: 2023-08-20 09:54:10 来源:网络

第一篇:纳米材料与精密加工课程论文

纳米生物机器人与药物靶向递送技术概述

天津大学机械学院机械制造及其自动化专业2013级硕士生

摘要:本文结合纳米技术课程所学相关知识,对纳米生物机器人与药物靶向递送技术进行概述。首先从该项技术的产生背景着眼,介绍国内外对于纳米机器人的研究现状,并引出用于医学的药物靶向递送机器人,论述其应用前景和实用优势;其次,着重介绍该技术的实现机理以及应用进展,并总结目前该技术中存在主要难题和研究方向;最后,展望微纳米生物机器人在生物医学特别是药物靶向递送领域的未来前景及巨大的发展潜力。关键词:纳米机器人 药物靶向递送技术

0 前言

纳米机器人通常是指按照分子水平生物学原理设计制造的可对纳米空间进行操作的“功能分子器件”,也称分子机器人,属于分子仿生学的范畴 ;某些情况下,能进行纳米尺度微加工或操作的自动化装置也被称之为纳米机器人。

当前生物纳米机器人研究工作已从第一代生物机械简单结合系统(例如用碳纳米管作结构件,分子马达作为动力组件,DNA关节作为连接件等)发展到第二代由原子或分子装配的具有特定功能的分子器件(例如直接用原子、DNA片断或者蛋白质分子装配成生物纳米机器人),未来还将向第三代包含纳米计算机在内的进行人机对话的操控性纳米机器人发展。第三代生物纳米机器人目前还处于设想阶段。[1]

纳米医疗机器人是可以在细胞内或血液中对纳米空间进行操作的“功能分子器件”,在生物医学工程 中可充当微型医生,解决传统医生难以解决的问题。国内外研究现状

目前,纳米机器人尚在研究开发阶段,但其潜在应用十分广泛,主要体现在医疗和军事上,其中,纳米机器人在医疗上的潜在应用价值尤其被国内外研究人员重视。在生物医学上,纳米技术具有无限的潜力,纳米机器人的研制成功成为纳米研发领域的骄傲。纳米机器人不但能够修复细胞与基因,还能够清除体内垃圾、养护血管。

2005 年,美国加利福尼亚大学洛杉矶分校的科学家研制出一种微型机器,该微型机器能够凭借自

身生长的肌肉行走。科学家在一个长约200微米的硅制框架上,附上肌肉细胞,这些细胞从鼠的心脏中取出,在机器接近自然状况的培养环境中生长分裂。肌肉从溶液中吸收葡萄糖,进行收缩和舒张,使得附着在肌肉上的这种卫星及其能缓慢前行。这项发明为微型机器人动力研制提供了方法,以后可能用于研制纳米机器人,在医学上可用于来清除血管内的脂肪斑。[2]

2010 年,美国哥伦比亚大学科学家研制出一种由DNA分子构成的“纳米蜘蛛”微型机器人,如图 1,它只有4纳米,可以跟随 DNA 运行轨迹行走、移动,并且具有在二维体表面行走 100 纳米的能力,比以前提高了 30 多倍,如果将其用于医疗事业,可以帮助人类诊疗癌症病患,帮助人类完成外科手术,清理动脉血管垃圾等。[3]

图1 美国研制的“纳米蜘蛛”

加拿大很多医学博士院校也都在这个领域投入大量的资金,如萨斯卡彻温大学工程学院 Chris ZHANG 的研究团队已建立了精确追踪流体介质中的纳米粒子的理论,该理论的建立为追踪人体如血管中的纳米机器人奠定了基础[4]。2007 年 3 月,蒙特利尔理工大学纳米机器人实验室的研究人员在医用机器人领域实现了一个重大技术突破。他们第一次在计算机控制下,成功地引导一个微型装置在活体动脉内以每秒10厘米的速度运动[5]。

2007 年,法国与德国科学家合作首次成功研制出可旋转的“分子轮”,并组装出第一台真正意义上的分子机器——生物纳米机器,其包括2个直径0.7纳米、由三苯甲基分子组成的“车轮”,所有的分子机器的化学结构均被固定在铜基上。该研究成果对于以后制造复杂的纳米机器人有着非比寻常的意义[6]。瑞士苏黎世实验室和巴塞尔大学的科学家也都在研究利用DNA(脱氧核糖核酸)的结构特性为微型机器人提供动力的新方法。利用这一方法,科学家可能制造出不用电池的新一代微型机器人。

国内的重庆某研究院研制的名为“OMOM 胶囊内镜系统”的纳米机器人医生[7],如图2所示。

图2 OMOM胶囊内镜系统

它可以钻进人的肚子里把人体内的图像传输到电脑屏幕上,该项技术在全球领先地位。据介绍,该纳米机器人医生以纳米技术的微机电系统为核心,内置有摄像与信号传输等智能装置,外包无毒耐酸碱塑料,为一次性使用品。中科院沈阳自动化所成功研制了一台“纳米微操作”的机器人系统样机,即可以在纳米尺度上进行操作,其在移动纳米碳管的操作中,重复定位精度达到30 nm。纳米生物机器人与药物靶向递送技术进行概述

2.1 背景介绍

将纳米生物机器人用于癌症治疗的药物靶向递送技术是纳米机器人学和纳米医学、纳米生物学的有机结合,显示了引人瞩目的应用前景。癌症是严重危害人类健康的常见病、多发病。大多数实体肿瘤外科手术移除后,剩余的癌细胞用放疗、化疗、免疫疗法等进行处理。但是一旦癌细胞转移,化疗就成为主要的手段了。在传统的药物递送系统里,常规化疗药物可以静脉注射,也可以口服。药物从被注射的地方或者经胃肠吸收进入血液循环,运动到心脏再到全身其他区域,对于药物要靶向的小区域来说,这个方法的效率非常低,想达到希望浓度就导致要使用大剂量化疗剂(通常为有毒药物),化

疗剂在杀伤癌细胞的同时,也产生了全身严重的毒副作用。因此迫切需要研究如何采用最有效的方法和途径使药物进入并作用到身体的希望靶点。药物靶向递送治疗可以有效解决这些问题,它通过将药物尽可能有选择地运送到靶部位,提高靶部位的药物浓度,减少药物对全身正常组织毒副作用,来改善癌症治疗的效果。因此,药物靶向递送有巨大的潜力。

药物靶向递送有多种分类,目前主要采用按靶 向作用方式分类:被动靶向,对靶细胞无识别能力,但可经血循环到达它们不能通过的毛细血管床,并在该部位释药;主动靶向,表面经修饰的药物载体可以不被吞噬系统识别,或连接有特定的配体,与靶细胞的受体结合;物理靶向,应用外加温度或磁场等将药物载体控制靶向到特定部位。

被动靶向和主动靶向都是按照药物在体内的沉积来完成的,在靶向精确性、药物浓度方面还存在很多不足。因此,用于把药物定向到靶点物理靶向是一个很有前途的方法。磁性药物靶向治疗是物理靶向药物递送的一种。常用的一种方法是磁性纳米粒子表面涂覆高分子,与药物结合后静脉注射到动物体内,在外加磁场下通过纳米微粒的磁性导航,使其移向病变部位,达到定向治疗的目的。这就是磁性纳米粒子在药物学中应用的基本原理。这里,将磁性纳米粒子看作是纳米机器人,它可以自复制,且被外加磁场所控制,在血管中运动到靶部位并在靶部位聚集以释放药物。

本文介绍了纳米技术结合生物医学的应用,特别是用于癌症治疗的磁性药物靶向递送技术的研究进展。提出用红细胞包覆磁性纳米粒子作为治疗药物载体的假设,这样一群磁性载药红细胞机器人在磁场控制下,完成在血管里的运动并将药物递送到期望靶点(肿瘤等)。2.2 应用机理

携带药物的磁性载体机器人在外磁场作用下,在体内定位移动、聚集,以提高靶部位药物的浓度,降低药物对正常组织的毒性和副作用。磁性药物靶向的原理由两步骤组成:一,递送载药机器人到器官里的靶部位。二,载体机器人在靶部位释放药物。其中递送载药机器人到器官靶部位是更为关键的步骤,实现这一步骤的方法有以下几种。(1)外部磁场作用下的磁性药物靶向系统

单一磁场作用在磁性靶向系统上,最常见的一种是在肿瘤部位加外磁场,磁场装置可以是永磁铁或电磁铁,结构可以采用单极式、双极式。单极式指在肿瘤部位的一侧加磁极;双极式指在肿瘤部位的两侧加磁极,将上下磁极做成不同的形状使其产生不均匀磁场。基于磁性靶向的药物递送对于体内药物定位是很有吸引力的方法,因为磁力可以在相对大的范围内作用,而且磁场不会对绝大多数生物组织产生影响。过去对于递送磁性载体药物到体内特定点的设备和方法依赖于单个磁场源,磁场既要磁化载体又要拉动它们到体内特定点。而且,随着靶向点在体内的深入,场强度很快衰减。因此,考虑外部磁场结合 内部植入共同作用成为新的研究课题。(2)外部磁场与内部植入磁体共同作用下的磁性药物靶向系统

虽然身体外部磁场源能非常好地磁化载体颗粒,但是它们仅能提供一个弱的磁场梯度来吸引载体颗粒。而内部磁体植入提供了一个强的磁场梯度来吸引载体颗粒,但是它的场强衰退得非常快,以至于不能磁化大量注入的载体颗粒。因此一个新的方法就是利用两个独立的磁性源来将药物靶向递送到局部区域。分别通过利用微米大小的磁体植入以及结合大范围的外部磁场来分别完成磁化载体和提供磁场梯度。

(3)利用高梯度磁性分离原理指导磁性药物靶向

在磁场区域(血管分叉点)放置一磁性金属丝,来增加局部磁场梯度,当外部磁场作用时,金属丝被赋予磁能,金属丝的曲率越高(比如直径越小),磁场的梯度越大,因此磁性药物载体颗粒受到的力越大。其目的是考虑用磁场的磁力引导磁性药物载体颗粒通过血液流到靶点,并被磁力驻留在靶点上。该系统由一个铁磁体探针(比如针、导管或者外科植入)、磁场生成器(比如外部永磁铁或电磁场)和磁性药物载体颗粒组成。用这个方法能创建一个有效的磁性药物靶向系统,来治疗人类疾病。

这种利用HGMS原理的新型磁性药物靶向方法,虽然由于要插入探针、注射器或者导管而导致轻微的介入,但是比传统的非介入法(比如单独应用外部磁场),对于在靶点收集磁性药物载体颗粒更有优势,特别在局部疾病点比如肿瘤及心血管疾病的治疗上。

(4)利用磁流变特性形成栓塞的磁性靶向系统

Folkman[8]的研究表明,肿瘤包含一个复杂的血管网络,当肿瘤达到几个立方毫米大小时,它朝着相邻血管释放出血管生成因子,发生了血管新生。

一旦肿瘤得到新的血液供应,它将继续成长直到扩散到其他器官,因而需提出血管新生抑制物作为新的癌症治疗方式。但癌细胞可能会变异来抵制药物,表现为药物的不可选择性。目前有不少工作已经证明,用磁流变流体和一个应用磁场来阻止血液流动到肿瘤来治疗肿瘤是可行的。

由于磁流变流体的显微结构具有因磁场变化而变化的特性,当磁场存在时,流体从液相转变为固相。与其他固体栓塞形成之后就不再变化不同,磁流变流体的固化仅仅是在磁场下,一旦磁场移走,热能导致固化的颗粒分解,并转变为其原始的液体状。注射磁流变流体到血液里,在肿瘤部位加磁场,使其在磁场作用下固化而堵塞肿瘤血管,使血液不能供给肿瘤,最终导致肿瘤死亡。

2.3 纳米机器人及靶向药物递送的关键技术和主要

难题

将纳米生物机器人用于磁性药物靶向递送可 以解决传统医学无法解决的难题,不过国内外磁性药物靶向治疗的整体发展水平仍然处于基础研究阶段。用纳米生物机器人进行靶 向药物递送的研究,关键技术和主要难题如下:

(1)磁性载药机器人本身的性质,如粒径大小、磁粒子含量、药物含量、稳定性及释药速率等。要保证在磁场作用下,合适的颗粒粒径能在肿瘤或肿瘤周围的血管系统形成较高浓度。

(2)磁场性质,如磁场强度、磁场梯度、磁场时间和外磁场的类型等。要保证足够大 的磁场梯度以吸引磁性载药机器人能到达靶部位。(3)为了理解纳米机器人的原理以及在体内微循环水平上在组织里聚集药物的机制,还需要考虑载药机器人的参数(载药机器人的表面特征、体积、浓度、边界条件、血管脉动、血液流速、药物绑定的可逆性和强度及释放特征),载药机器人接近器官的方式(注入的时间/路线/期限/率)、磁场的尺寸和强度及磁场应用的持续时间。

(4)肿瘤部位的性质,如血管分布、通透性、肿瘤部位离磁场的距离、肿瘤部位离给药部位的距离等。(5)生物安全问题,可分以下几点:电磁场对人体是否有影响,涉及到电磁场对人体生物效应的问题,关于载体的生物可降解性。药物载体的降解和磁粒子的降解也是非常重要的问题,即药物载体必须采用良好的生物可降解性材料制备,否则会发生阻塞毛细血管的危险。3 纳米机器人与药物靶向递送技术展望

纳米机器人学是独具特色、自成体系的,其建立不仅是因为有迫切的需要,而且也因为有了实现的可能。对于人体疾病的探索,从肉眼观察的器官水平,到光学显微镜观察的细胞水平,再到电子显微镜观察的纳米结构水平的发展过程,每一步前进虽然都带来过一次飞跃,但疾病对人类的威胁依然存在,人们对疾病的征服还远远未能达到理想的水平。

把纳米生物机器人技术的理论与方法引入医学的相关研究领域,将成为纳米科技的重要分支,它是机器人学、动力学、纳米科学、生物学和医学等多学科的交叉产物,虽然在国际上刚崭露头角,而且各项关键技术都处于基础研究阶段,但其发展的巨大潜力己经明示在人们面前。美国、日本、英国等国家纷纷投入大量资金开始这方面的研究。相信在不久的将来,随着各个学科的飞速发展,微纳米生物机器人在药物靶向治疗上的研究将发展到一个新的高度,在临床上得到广泛的应用,在造福人类的领域建功立业。

[1]平朝霞.纳米机器人的研究进展[J].新材料产业,2012,12:25-28.[2] 佚名.美国研制出纳米机器人[E].中国高校科技与产业化,2004,(5):12.[3] 美科学家指出纳米机器人清理动脉血管垃圾[EB/OL].新华网,2010-5.[4] Wenting Chen.Investigation of Functionalized Carbon Nanotubes as a Delivery System for Enhanced Gene Expression with Implications in Developing DNA Vaccines for Hepatitis C Virus [D].Saskatoon,Canada,2008.[5] 未艾.世界医用机器人中第一个成功地无线控制动脉内装置运动[E].中国医疗器械杂志,2007,31(3):162.[6] 科技日报评出的2007年国际十大科技新闻[N].科技日报,2005.[7] 杨爱敏.纳米机器人——人体健康的清道夫[J].农村实用科技,2007,(3):40.[8] Folkman.J.Fighting cancer by attacking its blood supply[J].Scientific American, 1996, 275(3): 150.

第二篇:“纳米材料与纳米技术”课程论文

课程名称:纳米材料与纳米技术

论文题目:纳米材料与技术的发展现状与趋势

学院:材料与能源学院

姓名:夏国东

学好:3110006707

纳米材料与技术的反转现状与趋势

21世纪前20年,是发展纳米技术的关键时期。由于纳米材料特殊的性能,将纳米科技和纳米材料应用到工业生产的各个领域都能带来产品性能上的改变,或在性能上有较大程度的提高。利用纳米科技对传统工业,特别是重工业进行改造,将会带来新的机遇,其中存在很大的拓展空间,这已是国外大企业的技术秘密。英特尔、IBM、SONY、夏普、东芝、丰田、三菱、日立、富士等具有国际影响的大型企业集团纷纷投入巨资开发自己的纳米技术,并到得了令世人瞩目的研究成果。纳米技术在经历了从无到有的发展之后,已经初步形成了规模化的产业。欧盟、日本、俄罗斯、澳大利亚、加拿大、中国、韩国、以色列、新西兰等国在纳米材料领域的投资较大。日本国会提出要把发展纳米技术作为今后数十年日本的立国之本,政府机构和大公司是其研究资金的主要来源,中小企业的作用很小。

中国在上世纪80年代,将纳米材料科学列入国家“863计划”、和国家自然基金项目,投资上亿元用于有关纳米材料和技术的研究项目。但我国的纳米技术水平与欧美等国的差距很大。目前我国有50 多个大学20多家研究机构和300多所企业从事纳米研究,已经建立了10多条纳米技术生产线,以纳米技术注册的公司100多个,主要生产超细纳米粉末、生物化学纳米粉末等初级产品。

目前纳米材料与技术在各方面的应用越来越广泛,小到日常使用的刀具,大到航空航天,都遍布纳米材料的身影。

1、纳米技术在建筑涂料中的应用

涂料是建筑物的内衣(内墙涂料)和外衣(外墙涂料),国内传统的涂料普遍存在悬浮稳定性差、不耐老化、耐洗刷性差、光洁度不高等缺陷。纳米复合涂料就是将纳米粉体用于涂料中所得到的一类具有耐老化、抗辐射、剥离强度高或具有某些特殊功能的涂料。在建材(特别是建筑涂料)方面的应用已经显示出了它的独特魅力。

2、纳米技术在混凝土材料中的应用

随着社会工业化的深入发展和我国基础建设的广泛开展,水泥混凝土作为一种传统的建材,其产量和用量都在不断地增加,高性能混凝土已成为水泥基复合材料领域中的研究热点。同时,许多特殊领域要求水泥混凝土具有一定的功能性,如希望其具有吸声、防冻、高强且高韧性等功能。纳米材料由于具有小尺寸效应、量子效应、表面及界面效应等优异特性,因而能够在结构或功能上赋予其所添加体系许多不同于传统材料的性能。利用纳米技术开发新型的混凝土可大幅度提高混凝土的强度、施工性能和耐久性能。

3、纳米技术在陶瓷材料中的应用

二十世纪90年代初,日本Nihara首次报道了以纳米尺寸SiC颗粒为第二相的纳米复相陶瓷具有很高的力学性能,并具有很多独特的性能。含有20%纳米钴粉的金属陶瓷是火箭喷气口的耐高温材料。氧化物纳米材料在这方面都优于同质传统陶瓷材料,在陶瓷基中添加其他纳米微粒的效果也正在研究。利用纳米粒子特殊的光电磁特性制成太阳能陶瓷、远红外陶瓷等,用于建筑物饰面,可开发太阳能,调节环境温度,促进人们身体健康。纳米技术在陶瓷上的应用潜力不可估量。

4、在国防科技上的应用

纳米技术将对国防军事领域带来革命性的影响。例如:纳米电子器件将用于虚拟训练系统和战场上的实时联系;对化学、生物、核武器的纳米探测系统;新型纳米材料可以提高常规武器的打击与防护能力;由纳米微机械系统制造的小型机器人可以完成特殊的侦察和打击任务;纳米卫星可用一枚小型运载火箭发射千百颗,按不同轨道组成卫星网,监视地球上的每一个角落,使战场更加透明。而纳米材料在隐身技术上的应用尤其引人注目。在雷达隐身技术中,超高频段电磁波吸波材料的制备是关键。纳米材料正被作为新一代隐身材料加以研制。

5、纳米医学和生物学

从蛋白质、DNA、RNA到病毒,都在1-100nm的尺度范围,从而纳米结构也是生命现象中基本的东西。细胞中的细胞器和其它的结构单元都是执行某种功能的“纳米机械”,细胞就象一个个“纳米车间”,植物中的光合作用等都是“纳米工厂”的典型例子。纳米微粒的尺寸常常比生物体内的细胞、红血球还要小,这就为医学研究提供了新的契机。

经过几十年对纳米技术的研究探索,现在科学家已经能够在实验室操纵单个原子,纳米技术有了飞跃式的发展。纳米技术的应用研究正在半导体芯片、癌症诊断、光学新材料和生物分子追踪4大领域高速发展。可以预测:不久的将来纳米金属氧化物半导体场效应管、平面显示用发光纳米粒子与纳米复合物、纳米光子晶体将应运而生;用于集成电路的单电子晶体管、记忆及逻辑元件、分子化学组装计算机将投入应用;分子、原子簇的控制和自组装、量子逻辑器件、分子电子器件、纳米机器人、集成生物化学传感器等将被研究制造出来。

新产物的出现总是伴随着优点与缺点,纳米材料的发展也不是一帆风顺的,随着人们对纳米材料的认识不断加深,一些存在的问题也不断被发掘出来。

1、职业暴露人群,包括纳米技术的研发人员和工人的健康安全问题。根据现有的毒理学研究,纳米粉尘和颗粒有可能通过呼吸和皮肤接触进入人体。这就给长期暴露在纳米材料氛围中的一线工人和研发人员的健康带来潜在威胁。此外,纳米材料还有一个特点就是易燃易爆。万一因为操作不当等带来火灾或者爆炸,后果不堪设想。因此,如何切实保护在纳米材料生产场所中暴露人员的健康,以及实验室和工作场所纳米材料的管理、纳米材料运输过程中的安全措施以及一旦发生危险的危机处理问题等应该成为劳动保护法和工业环境法研究和关注的对象。

2、消费者的权益问题。随着纳米技术的产业化程度的提高,目前,在化妆品和食品中纳米技术的应用越来越多。市场上的化妆品和体育用品有许多是纳米材料产品,比如说防晒霜和口红。食品包装中的聚合物基纳米复合材料(PNMC)的应用、作为食品机械的润滑剂、纳米磁致冷工质和食品机械原材料中橡胶和塑料的改性等等都用到纳米材料。毫无疑问这些材料具有独特的优点。但是在安全上也具有不确定性。但目前进行标识的纳米材料还微乎其微。从知情同意的伦理原则出发,消费者和相关人员有权知道自己所接触的材料的内容及其风险程度。

3、环境保护问题。研究证明,不仅在纳米技术的工作场所的环境问题关系到相关人员的健康,而且废弃的纳米材料进入空气、土壤、水体等环境后,可以产生一系列环境过程,最终对人和整个生物链产生负面影响。由于纳米材料具有强烈的吸附能力。在扩散、迁移过程中,还能吸附大气、土壤中存在的一些常见化学污染物如多环芳烃、农药、重金属离子等。因此,环境法应该研究纳米材料的环境问题,尤其必须加强废弃纳米材料的管理。

4、隐私权的保护问题。随着纳米器件的微型化,纳米技术在医学、社会治安和国防方面具有广泛的作用,但同时也构成对个人隐私的威胁。比如,通过将纳米设备嵌入对象物(身体或者物件)中,可以监视和跟踪目标,搜集个人信息和行为习惯。而可以储存一个人的全部基因和疾病信息的纳米芯片有可能成为被利用的工具,在劳资关系方面,成为企业用人歧视的理由或者成为保险公司限制患者自由的砝码。面对高新技术的应用如何保护个人的隐私权,是摆在我们法律工作者面前的一个重要问题

在技术和经济全球化的今天,纳米技术的许多前沿问题亦如能源问题、环境问题以及生物技术的问题一样,不是基于一个国家的力量所能解决的。一旦国家之间与纳米技术相关的法律框架存在不同,就不可避免地会导致国际间合作研究的障碍,以及全球纳米技术风险与利益分配不公等问题,因此,有必要在一定的国际法体系下就纳米技术发展中的某些基本的标准、原理达成一致意见,实现各国相关法律体系的协调。在此基础上,制定全球性的指导纳米技术发展的基本原则框架,促进成员国和公众对于纳米技术的关注,真正推动纳米技术风险的“善治”。而如果没有一个全球治理的框架协议,将导致纳米技术发展中的恶意竞争,从而最终阻碍纳米技术的健康发展。

纳米材料作为一种新型高科技材料,毫无疑问会引起一系列强烈的变革,中国对与纳米材料的研究与重视程度仍然落后于西方国家,在未来,如何在纳米材料领域更进一步不单是前人的责任更是我们大学生的责任,只有不断的自强不息,才能让祖国在未来高科技时代中不落于人后!

关 键 词:纳米材料,纳米科技,进展,应用,前景,问题

摘 要: 纳米材料是21世纪的新型发展领域,在各个方面都有重大的应用,带来很多技术改革和创新,但是也存在一些不用忽视的问题,未来的发展需要靠我们的努力。

参考文献:国家新材料行业生产力促进中心、国家新材料产业发展战略咨询委员会和北京麦肯资讯有限公司联合编辑出版的《中国新材料发展报告》

倪星元 姚兰芳 沈军 周斌 编著 《纳米材料制备技术》 化学工业出版社 张立德,牟季美,纳米材料和纳米结构,科学出版社,2001

第三篇:纳米材料与纳米技术课程论文要求

“纳米材料与纳米技术”课程论文要求

根据本课程的教学内容,结合参考文献,对纳米材料与纳米技术进行综述。具体要求如下:

1.封面:广东工业大学课程论文,课程名称,论文题目,姓名、学院、学号

(10分)2.正文4000-6000字

(15分)

3.A4纸单面打印,正确排版(5号字,小标题,页码,行距,等等)

(15分)4.正文内容:要求用自己的语言,按自己的逻辑对纳米材料与纳米技术现状、应用、发展趋势、存在问题等进行论述,要有自己的分析和见解

(50分)

5.摘要、关键词及3篇以上参考文献,不可或缺;参考文献写作格式:1)作者,作者,作者等.论文名称.刊物名称,年(期):起止页.,2)作者,作者,作者等.著作名称.出版社,出版地址,出版年月.(10分)

6.严禁在网上直接下载,一经发现,取消该课程成绩。

第四篇:纳米材料课程论文

一维CeO2纳米材料的制备、表征及其性能研究

0 引言

纳米技术是近几年崛起的一门崭新的高科技技术. 它是研究现代技术与科学的一门重要学科,也是当前物理、化学和材料科学的一个活跃的研究领域。它是在纳米尺度上(即1~100nm)研究物质(包括分子和原子)的特性和相互作用,纳米材料具有小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应,在催化、光学、电磁、超导、化学和生物活性等方面呈现出优良的物理化学特性【1-2】等, 引起了各国科学家的广泛关注。

在纳米材料制备和应用研究所产生的纳米技术成为本世纪主导技术的今天,对纳米材料的研究已从单分散纳米颗粒发展到了纳米管、纳米线、纳米棒和纳米膜的制备与应用研究[101]。它们在纳米尺度电子器件、敏感器件、生物器件、纳米医药胶囊、纳米化学、电极材料和储氢能源材料等领域的潜在应用已成为国际研究的焦点[102, 103]。另外,纳米管、纳米线等一维结构的纳米材料既是研究其他低维材料的基础,又与纳米电子器件及微型传感器件密切相关[104],所以进行设计合成尺寸规则、形貌可控、结构稳定的纳米管、线等一维纳米材料及其相关物性的研究就有着重要的理论意义和学术价值。

作为新材料中的一员——稀土纳米材料的研究也成为世界各国科学家研究的热点之一。纳米二氧化铈具有晶型单一,电学性能和光学性能良好等优点,因此被广泛应用于SOFCS电极、光催化剂、防腐涂层、气体传感器、燃料电池、离子薄膜等方面【3-4】。近年来国内外研究者对纳米二氧化铈的制备及性能等进行了大量研究。下面就近年来有关二氧化铈纳米管和纳米线的制备方法及其性质和应用研究报道进行综述。

[101] Yang R., Guo L., Chinese Journal of Inorganic Chemistry, 2004, 20, 152.[102] Philip G.C., Zettl A., Hiroshi B., Andreas T., Smalley R.E., Science, 1997, 279, 100.[103] Hu J., Ouyang M., Yang P., Lieber C.M., Nature, 1999, 399, 48.[104] Huang Y., Science, 2001, 294, 1313.1、一维CeO2纳米材料的制备方法

一维纳米结构材料如纳米线(棒)、纳米管等的制备通常采用水热合成法、模板法、非模板法等。1.1声波降解法

这种方法是近年来提出的一种较新颖的方法,方法简单是其最大的特点。X i a等[401]以此法制得了硒的纳米线(见图1)。他们首先采用过量的联氨还原硒酸得到了球状的无定形硒胶体(粒径约在 0.1-2um),然后进行干燥、在醇中重新分散并对其施加超声辐照。从图中可以看出,开始时由于声空化作用在胶体表面产生品种,随后胶体不断消耗,直至完全长成纳米线。此外Zhu等[402]将 Bi(NO3)2,Na2S2O3和三乙醇胺(TEA)的水溶液在20kHz,60W·c m-2 的高强度超声下辐照2h,制得了直径10-15nm,长度60-150nm的Bi2S3纳米棒。产品结晶度良好、形貌均一,且纯度较高。

[401] Xia Y,Gates B, Mayers B,et a1.A sonochemical approach to the synthesis of crystalline

selenium nanowires in solutions and on solid supports [J] Adv.Mater., 2004,16(16):1448.[402] Zhu J M,Yang K,Zhu J J,et a1.The mierostrueture studies of bismuth sulfide nanorods prep-ared by sonochemical method [J].Optical Material,2003,23(1-2):89.

1.2水热合成法

该法是指以水为分散溶剂,将反应物放入内含聚四氟乙烯衬底的不锈钢反应釜中,在高温高压条件下使之发生化学反应。先利用水热反应得到不同形貌的前驱体,再于空气中在一定温度下灼烧前驱体而得到所需纳米材料。这是一种制备形貌各异的纳米氧化物的有效方法之一[307]。该法具有条件温和、产物纯度高、晶粒发育完整、粒径小且分布较均匀、无团聚、分散性好、形状可控等优点,且其合成过程简单、装置简易及促使反应物能够在较低的温度反应生长,是一个非常有应用前景的合成新型一维结构稀土化合物的方法。

Xu等〔308〕以Dy2O3粉末为前驱体用水热法成功的合成了形貌独特的Dy(OH)3纳米管。水热合成法不仅可以制备出单一稀土氧化物 纳米线,而且可以制备出复合氧化物纳米线,Liu等[310]采用水热合成法合成出了La0.55Ba0.5MnO3(A=sr,Mn)纳米线。水热法过程简单、原料价格低廉且容易得到形貌独特的稀土材料,是一种可推广到制备其它稀土化合物的方法。1.3模板合成法

水热合成法在制备一维纳米结构稀土化合物的优势是简单易行,但是不足之处在于粒子大小和形貌不易控制、粒子无序排列等。因此探索既能方便地制备出粒子的尺寸和形貌可控、粒子排列又有序的方法是纳米材料研究领域中的一个难点。近年来,随着对纳米材料研究的不断深人,模板合成方法越来越引起人们的关注。根据模板剂的结构可分为软模板法和硬模板法。软模板法是指利用表面活性剂液晶模板的原理诱导粒子的生长,硬模板法则是以含有有序多孔材料为模板,在孔内合成所要的各种微米和纳米有序阵列[315] 1.3.1软模板合成法

氧化物纳米管、纳米线的软模板法合成途径是通过溶液中表面活性剂的自组装或有机凝胶的诱导组装而实现的。Yada等[316]以十二烷基硫酸钠为软模板、尿素为沉淀剂的均匀沉淀法通过分子自组装方式合成出了稀土氧化物纳米管。1.3.2硬模板合成法

硬模板合成法是利用硬模板剂的孔径限制和诱导纳米线、纳米棒的生长而得到形貌各异的一维纳米材料,其最大特点是能真正实现对材料形貌、粒子大小的调变,从而成为应用最广泛的可控制备方法之一。常用的硬模板有阳极氧化铝(AAO)、聚碳酸酯及碳纳米管等。采 用硬模板法合成纳米材料时应考虑3个方面情况:(l)前驱体溶液必须能够湿润孔(即亲水/疏水特性);(2)沉积反应过程不宜太快,以免堵塞孔道;(3)在反应条件下,基体膜必须具备高的热稳定性和化学稳定性。基于此,前驱物在模板孔内的沉积方式通常有电化学沉积法、化学镀、化学聚合、化学气相沉积、溶胶一凝胶沉积及模板在溶液中直接浸渍等6种方式,而最常用的则为最后两种方式。所得纳米材料的形貌及粒径大小除与所选硬模板剂有关外,还与其沉积方式、时间等有很大关系。1.4非模板合成法

除了水热法和模板法可合成出一维纳米结构材料外,Yada等[323]提出了无需利用模板剂的新合成方法,该法是添加无机物Na2SO4,NaHPO4等,通过共存离子自组装进人反应物混合体系,进而形成氧化物空心纳米管。通过比较Yada的模板合成法和无模板合成法,可知无模板的合成法所得稀土氧化物纳米管的种类多于模板合成法的,且前者的纳米管直径较大。

[307] Xu R R, Pang W Q.Inorganic Synthetic and Preparative Chemistry [M].Beijing:Higher Education Press,2001.[308] Xu A W, Fang Y P, You L P, et al.A simple method to synthesize Dy2O3 and Dy(OH)3 nanotubes [J].J.Am.Chem.Soc., 2003,125:1494.[310] Liu J B, Wang H, Zhu M K, et al.Synthesis of La0.55Ba0.5MnO3(A=sr,Mn)by a hydrothermal method at low temperature [J].Mater Res.Bull.,2003,38:817.[315] 包建春,徐 正.纳米有序体系的模板合成及其应用[J].无机化学学报, 2002, 18(10): 965.[316] Yada M, Mihara M,Mouri S, et al.Rare earth oxide nanotubes templated by dodecylsulfate assemblies[J].Adv.Mater., 2002,14(4):309.[323] Yada M, Taniguchi C,Torikai T, et al.Hierarchical two-and three-dimensional microstructures composed of rare-earth compound nano-tubes [J].Adv.Mater., 2004,16(16):1448.[001]吕仁江,周志波,高晓辉.CeO2 纳米线阵列的制备[J].无机化学学报, 2002, 18(10): 965.纳米CeO2粉体及其固溶体的研究进展

摘要:本文综述了纳米CeO2的几种主要制备方法,以及CexZr1-xO2固溶体在汽车尾气净化催化剂中的作用、铈锆氧化物的体相结构及影响铈锆氧化物固溶体储氧能力(OSC)和织构热稳定性的因素对其在催化剂中的应用作了简要陈述。介绍了掺杂对CeO2 结构的影响及其在催化剂方面的应用研究,展望了掺杂对改进CeO2性能的研究方向。

关键词:纳米CeO2;掺杂;CexZr1-xO2,三效催化剂;储氧能力

0 引言

由于纳米材料具有量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应等,使其呈现出许多独特的性质,在结构与功

能陶瓷,涂层材料,磁性材料,气敏材料,催化材料,医药材料等

领域具有广阔的应用前景L 1 ]。

纳米稀土氧化物粉末是纳米稀土材料的重要组成部分,它

既是一种可实用的新材料,同时又可为其它大块新材料的制备

提供原料。其中,纳米 C e O。粉末由于具有独特的立方萤石型结

构特征L 2 ],尤为引人关注。近年来,国内外研究人员已用多种方

法制备出了单一的和某些复杂 的纳米 C e O 粉末,并详细研究

了它们的物性及在多种领域的应用。

纳米CeO2具有比表面积大, 储氧性能好, 负载金属分散度高等许多优良特性, 掺杂对CeO2的结构及性能又有进一步改善, 因而是目前研究的热点。

CexZr1-xO2固溶体(简称CZ)具有高的储氧能力(OSC)[111-112]和良好的热稳定性[113],用作汽车尾气净化催化剂载体受到了广泛的关注,是目前催化剂领域的研究热点之一。研究工作主要集中于CZ的结构表征,结构与热稳定性、OSC的关系以及CZ基催化剂的催化作用等。本文主要介绍近年来国内外有关CZ在上述方面的研究进展。

0 引言

纳米技术是近几年崛起的一门崭新的高科技技术. 它是研究现代技术与科学的一门重要学科,也是当前物理、化学和材料科学的一个活跃的研究领域。它是在纳米尺度上(即1~100nm)研究物质(包括分子和原子)的特性和相互作用,纳米材料具有小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应,在催化、光学、电磁、超导、化学和生物活性等方面呈现出优良的物理化学特性【1-2】等, 引起了各国科学家的广泛关注。利用这些特性所开发出来的多学科的高新科技,成为特殊功能材料发展的基础。纳米氧化物作为纳米材料中的重要一员,在精密陶瓷、光电池、磁记录和传感器、催化剂、发光材料等方面有着重要的应用。因此,人们对纳米氧化物的制备和性能进行了广泛的研究。

作为新材料中的一员——稀土纳米材料的研究也成为世界各国科学家研究的热点之一。纳米二氧化铈具有晶型单一,电学性能和光学性能良好等优点,因此被广泛应用于SOFCS电极、光催化剂、防腐涂层、气体传感器、燃料电池、离子薄膜等方面【3-4】。近年来国内外研究者对纳米二氧化铈的制备及性能等进行了大量研究。纳米技术简介【5】

纳米技术(nanometer technology)主要针对 1~100 nm之间的尺寸,该尺寸处在原子、分子为代表的微观世界和宏观物体交界的过渡区域 ,这样的系统既非典型的微观系统亦非典型的宏观系统 , 突出表现为四大效应: 表面效应:指纳米粒子的表面原子数与总体积原子数之比随粒径的变小而急剧增大 ,从而引起的性质上的突变。粒径到达 10 nm 以下 ,表面原子之比迅速增大。当粒径降至 1 nm时 ,表面原子数之比超过 90 %以上,原子几乎全部集中到粒子的表面,表面悬空键增多 ,化学活性增强。

体积效应:由于纳米粒子体积极小 ,包含极少的原子 ,相应的质量也很小。因此 ,呈现出与通常由无限个原子构成的块状物质不同的性质 ,这种特殊的现象通常称之为体积效应。

量子效应:当纳米粒子的尺寸下降到一定程度 ,金属粒子费米面附近电子能级由准连续变为离散;纳米半导体微粒存在不连续的最高被占据的分子轨道能级和最低未被占据的分子轨道能级 ,从而使得能隙变宽 ,这种现象 ,称为量子尺寸效应。

宏观量子隧道效应:纳米粒子具有贯穿势垒的能力称为隧道效应。近来年 ,人们发现一些宏观量 ,例如微颗粒的磁化强度、量子相干器件中的磁通量以及电荷等亦具有隧道效应 ,它们可以穿越宏观系统的势垒。

研究表明,纳米材料的颗粒尺寸小,表面的键态和电子态与颗粒内部不同,表面原子配位不全,导致表面活性位置增加,而且随着粒径的减小,表面光滑度变差,形成了凹凸不平的原子台阶,从而增加了化学反应的接触面,具有很强的催化性能。因此,纳米催化材料是纳米材料研究的一个重要方向。纳米稀土材料是纳米催化材料的一个重要组成部分,它既具有纳米材料的优点,又具备稀土材料化学活性高、氧化还原能力强和配位数多变的特点,集两种材料的优势于一身,是比纯粹的纳米材料和稀土材料更优良的的新型复合材料;广泛应用于稀土化合物纳米粉体、稀土纳米复合材料、稀土纳米环保材料、稀土纳米催化剂等方面,具有广阔的市场前景。氧化铈是稀土族中一个重要的化合物,是一种用途非常广泛的材料,在玻璃、陶瓷、荧光粉、催化剂等领域中有广泛的应用,特别是在机动车尾气净化催化剂中,氧化铈作为一种重要的助剂,对改进催化剂的性能起着举足轻重的作用 [6-7]。

c e()2 将在高薪技术领域发挥更大的潜力

二氧化铈的资源状况

我国稀土资源具有分布广,品种多,质量好的特点I 5 ]。

据公布资料显示,我 国稀土工业储量为 4 3 0 0万吨(以 R E O

计),远景储量为 4 8 0 0万吨,占全球储量 9 1 0 0万吨的 4 3 . 4

%左右,居全球之首。铈在地壳中的丰度占第 2 5位,与铜的丰度相当。

铈与其它稀土元素一样性质活跃,为亲石元素。铈的主

要资源来 自氟碳铈矿和独居石。工业开采的铈的稀土矿物

主要有包头混合型稀土矿(氟碳铈矿和独居石混合的矿物)、独居石、氟碳铈矿及离子型吸附矿,山东微山和四川冕宁地

区的单一氟碳铈矿床。这些矿物中氟碳铈矿、独居石、氟碳

钙铈矿含铈量(以C e 2 o 3 计)都超过 5 0%,如: 氟碳铈矿中已

达 7 4%,独居石含铈量约 6 O%,氟碳钙铈矿含铈量为 5 3 ~

2%。这为我国大力发展稀土铈工业提供了必要的物质基

础和优势。

目前我国c a 3 2 产品的原料包括下列几种_ 6

J :(1)混合型

氧氧化稀土[ R E(OH)

]。它是由混合型稀土精矿(包头稀土

矿)及氟碳铈矿精矿经处理后而制成的。R E(OH)中含

R E O 6 0%,C e O 2 5 0%。(2)稀土精矿(R E O> ~5 0%,C e O 2 4 8

%~5 0%)。它可用包头稀土矿或 四川氟碳铈矿精矿处理

后而制 成。(3)硫酸 稀土 和氯化稀 土 [ R E 2(S()4)3中含

R E O 5 0%,C e O 2 5 0%; 在 RE C l 中含 R E o≥4 5%,C e C h ≥ 5%]。均可由稀土精矿处理后而获得。上述三种原料 为

我国目前生产二氧化铈提供充足的原料。国内外应用研究现状

目前旧内外正在开发和研究应用的领域

(1)紫外线吸收剂方面的应用

目前大量使用的是有机紫外线吸收剂,有饥物的最大缺

点足稳定性差,容易分解,分解产物还会加速其它高分子材

料老化,最终影响产品的长期使用效果。此外有机吸收剂本

身或其分解产物具有一定的毒性,符合绿色环保要求,影

响产品出口和使用范围。

普通氧化铈用于紫外战吸收0 已在玻璃行业得到应用。纳米 C e 的4

f

电子结卡 勾,埘光吸收非常敏感,而且吸收波 0 3 1 3 2 左右 段大多在紫外区(如图(3)示,实验室自制粒度在 的(的紫外吸收网),冈此所得的纳米复合抗紫外线剂,n m),高效长久(比

具有吸收效率高、吸收波段宽(2 0 0 ~4 0 0 有机抗紫外线剂要长数倍),防止高分子材料老化的功能将

更强,绿色环保,而且综合成本低。粒径 8

n m的)2 超微

粉对紫外线吸收能力和遮断效果显著,可用于基材涂料提高

耐候性。目前我国许多公司

在开发将其应用于涂料,防止

坦克、汽车、储油灌等的紫外老化; 日本无机化学公司在该方

面也研制成功 了一种名为 C e f i g u a ~的紫外线遮断剂,并建

立 铈防护剂生产线,该产品与同类产品比较,紫外线遮断

效果相同,但透明性较其它产品优 良。今后,随着铈防护剂[10]

纳米材料因其独特 的表面效应、量子尺寸效应等而表现 出

不同于常规材料的特殊性能,因而在各个领域得到了广泛 的使

用。我国拥有丰富的稀土资源,由于稀土元素具有独特的 f 电子

构型,因此具有其独特的光、电、磁性质。为了进一步研究和开发

新型纳米稀土材料,纳米稀土材料 的合成及应用成为了世界各

国科学家研究的热点之一。

C e Oz 属于立方晶系,具有萤石结构。C e 0。作为一种典型的稀土氧化物有着多方面的功能特性,被广泛用于 电子陶瓷、玻璃

抛光、耐辐射玻璃、发光材料等。最新研究表明,由于Ce O。独特 的储放氧功能及高温快速氧空位扩散能力,因此可以被应用于

氧化还原反应 中,成为极具应用前景的催化材料n ]、高温氧敏

材料[ ‘ ]、p H传感材料n ]、电化学池中膜反应器材料n 3、燃料 电

池的中间材料 ]、中温固体氧化物燃料 电池(S OF C)用电极 材

料[ g

0 ] 以及化学机械抛光(C MP)浆料[,在现代高新技术领域

有 着巨大的发展潜力。而高科技的发展对 C e O。的要求越来越高,因此 C e O。纳 米粉体的制备技 术也已成为必须迫切解决的问题。本文即根据最新 资料文献,重点介绍了纳米 C e O。在高新

技术领域中的应用 以及国内外有关纳米 C e O。制备方法的研究

进展,同时对纳米 C e O。研 究的发展趋势提 出了新的展望,以期

为进一步深入研究和开发高性能新型 C e O。功能纳米材料提供

参考和借鉴。

纳米氧化铈在高新技术领域的应用. 1

在汽车尾气探测及净化催化中的应用 随着汽车用量的增加,环境污染越来越严重。由于环保法规

日趋严格,汽车尾气探测和净化用催化剂的消费量大幅度增加,这不仅是因为汽车尾气净化已经普及,而且环保标准逐步提高。

表 1 所示为美国联邦政府、加利福尼亚州和欧盟制定的汽车尾

气排放标准[ 】。

显然,如此严格的标准单靠汽车工业本身的努力远远不够,必须开发新型材料来限制汽车尾气的排放以控制 日益严重的环

境污染。C e 02 于还原气氛中很容易被还原为低价氧化物,转化为缺氧型非化学计量氧化物 C e O

… 尽管在晶格上失去相当数

量的氧而形成大量氧空位,但 C e O

仍然能保持萤石型晶体结

构。这种亚稳氧化物暴露在氧化环境中,又极 易被氧化为 C e O。

由于 Ce 0 具有这种独特的储放氧功能 以及高温化学稳定性和

快速氧空位扩散能力(1 2 4 3 K时的扩散系数为 1 0 c m / s),而成

为性能优越的高温氧敏材料,最适合作 为探测汽车尾气氧浓度

和控制发动机空燃 比的探头(一探头),以及探测低 氧分压的氧

敏传感器

]。C e O 能够改善催化剂中活性组分在载体上的分散

度,因此也被广泛应用于催化氧化还原反应。在控制汽车尾气过

程中,C e O 是三效催化剂中最重要的助剂[ 1。研究表明L 1

],利用纳米 C e 0 的 比表面积大,化学活性高,稳 定性好的特性,将 c e 0 作为助剂与添 加剂,与贵金属(P t,P d,R u等)联用,也

可将 C e O 作为载体或做成复合载体,负载过渡金属,可很大程

度提高储氧放氧能力,明显改善催化性能。

. 2 在化学机械抛光(C MP)中的应用

化学机械抛光(C MP)是集成 电路(I C)生产中硅晶圆片整

个沉积和蚀刻工艺的重要组成部分。它借助 C MP浆料 中超微

研磨粒子的机械研磨作用以及浆料的化学腐蚀作用,用专用抛

光盘在 已制作 电路 图形的硅 晶圆片上形成高度平整的表面,是

目前能够提供超大规模集成电路制造过程中全局平坦化的一种

新技术n。其中应用最广泛的是层间介电层(I L D)的抛光,S i O2

则是最常用的层间介电层材料。要获得最佳的抛光效果,需要制

备高效、高质、高选择性的 C MP浆料。

由于纳米 C e O 具有强氧化作用,作为层 间 S i O 介 电层抛

光的研磨粒子,具有平整质量高、抛光速率快、选择性好的优点。

C e 0 粒子 比 s i 0 粒子柔软[ 1,因此在抛光过程中,不容易刮 S i O 抛光面。尽管 C e O 粒子硬度小,却具有抛光速率快 的 点,这主要在于 C e O 粒子在抛光过程中所起的化学作用。C 粒 子抛 光 S i 0 介 电层 的机 理 如下

一 一

中的界面氧原子将与细胞色素 C中赖氨酸残基上的质子化氨基

相互作用并形成细胞色素 C与电极之 间的电子传递通道,可以

获得细胞色素 C的快速传递反应。C e 0 粒子越小,比表面积越

大,界面的氧原子数就越多,因而可在电极表面产生越多的电化

学活 性 点,得到 更好 的反应 促进 效 果L 2。

. 4 在燃料电池 电极 中的应用

电极在燃料 电池电化学 中有着十分重要的作用,以 YS Z为

电解 质,阴阳两极分别 为 L a(S t)Mn O。和 Ni — YS Z的 S OF C一

度 占据统治地位,但是 C H。在 Ni 上快速积炭,阻碍 了 s 0F c甲

烷的直接氧化反应路径的开发,而且以 Ni 为阳极催化剂存在着

抗硫能力差,长时间操作会引起 Ni 烧结。C e O 作为一种新型材

料,有着以下几个优点 :(1)C e O 是一种混合 型导体。可 以将阳

极氧化反应面扩大到 TP B面(气相一 电极催化剂一 电解质三者的 界面);(2)C e O 的离子电导大于 YS Z,可 以协助 01从 电解质

向阳极传递 ;(3)C e O 易于储氧、传输氧,纳米级 C e 0 比表面积

大,增加了储氧的能力。因此 C e 0 能够在阳极上应用,解决 C Ht

直接应用于固体氧化物燃料电池的积炭问题L 2。

[1]Charlier J C,Vita A D,Blasé X Science,1997,275,646 [2]Nie S M,Emory S R,Science,1997,275,1102 [3]Izaki M,SaitoT,Chigane M.J Mater Chem,2001,8(11):1972—1974.[4]Suzuki T,Kosacki I,Anderson HU,Colomban P.J AM Ceram Soc,2001, 9(84):2007—2014.[5]张立德,牟季美等编著.纳米材料和纳米结构[M],北京:科学出版社,2001.2.[6]Alessandro Trovarelli,Carla de Leitenburg,Marta Boaro,et al.Giuliano dolceffi[J].Catalpsis Today,1999,50:353

[7]Josph R,Theis Mark V,Casarelia Stephen T,et al.SAE Paper,931034,1993.[111] Trovarelli A, et a1.Nanophase fluorite –structured CeO2-ZrO2 catalysts prepared by high-e nergy mechanical milling [J].Journal of Catalysis,1997,169(4):490-502.

[112] Formasiero P, et a1.Rh-loaded CeO2-ZrO2 solid solutions as highly effects oxygen exchanger:Dependence of the reductions behavior and the oxygen storage capacity on the structural properti-es[J].Journal of Catalysis, 1995, 151(1):168 —177.

[113] Piholat M, et a1.Thermal stability of doped ceria: experiment and modeling [J].J Chem Soc Faraday Trans, 1995, 91(21):3941—3948.

第五篇:课程论文 纳米陶瓷

课程论文

学生姓名:

王园园

学号:20130540

学院:材料科学与工程学院

专业年级:材料化学2013级

题目:纳米陶瓷的研究现状及发展趋势

指导教师:李万千老师

评阅教师:

2015年5月

目录

摘要....................................................................................................3 Abstract.............................................................错误!未定义书签。1.前言.............................................................错误!未定义书签。2.纳米陶瓷的概念及其发展..........................................................5 3.纳米陶瓷的制备..........................................................................7 3.1纳米陶瓷粉体的物理法制备.............................................7 3.2纳米陶瓷粉体的化学法制备.............................................8 4.纳米陶瓷粉体的表征................................................................10 4.1化学成分表征...................................................................10 4.2晶态表征...........................................................................11 4.3颗粒度表征.......................................................................11 4.4团聚体表征.......................................................................12 5.纳米陶瓷的性能........................................................................12

5.1纳米陶瓷的致密化...........................................................12 5.2纳米陶瓷的力学性能.......................................................13 6.纳米陶瓷的应用及其展望........................................................13 7.参考文献……………………………………………………… 12 摘要

20世纪80年代中期发展起来的纳米陶瓷,对陶瓷材料的性能产生了重要的影响,为陶瓷材料的利用开拓了一个新的领域,已成为材料科学研究的热点之一。综述了纳米陶瓷材料近年来的发展与应用,重点论述了纳米陶瓷的制备、性能及应用现状,并对纳米陶瓷的未来发展进行了展望。

Abstract Nanometer ceramics which are developed in the mid-eighties of the twentieth century have an important affect on the properties of ceramic materials.They have formed promising fields for the utilization of materials which has been one of the most popular fields of material research.The preparation and characterization of nanometer ceramic powders and the properties and application of nanometer ceramics are summarized.The future developments of nanometer ceramics were discussed.4 1.前言

纳米陶瓷是一类颗粒直径界于1到100nm之间的多晶体烧结体。每个单晶颗粒的直径非常小,例如,当单晶颗粒直径为5nm时,材料中的界面的体积约为总体积的50%,特就是说,组成材料的原子有一半左右分布在界面上,这样就减少了材料内部晶体和晶界的性质差异,使得纳米陶瓷具有许多特殊的性质[1]。纳米功能陶瓷是指通过有效的分散复合而使异质相纳米颗粒均匀弥散地保留于陶瓷基质结构中而得到的复合材料,当其具有某种特殊功能时便称之为纳米功能陶瓷。纳米功能陶瓷的性能是和其特殊的微观结构相对应的,它的性能不仅取决于纳米材料本身的特性,还取决于纳米材料的物质结构和显微结构[2]。

纳米陶瓷是纳米科学技术的重要分支,是纳米材料科学的一个重要领域。纳米陶瓷的研究是当前陶瓷材料发展的重大课题之一。陶瓷是一种多晶体材料,是由晶粒和晶界所组成的烧结体,由于工艺上的原因,很难避免材料中存在气孔和微小裂纹。决定陶瓷材料性能的主要因素有:组成和显微结构,即晶粒、晶界、气孔或裂纹的组合性状,其中最主要的是晶粒尺寸问题,晶粒尺寸的减小将对陶瓷材料的力学性能产生重大影响。图1是陶瓷晶粒尺寸强度的关系图。

图1中的实线部分是现在已经达到的,而延伸的虚线部分是希望达到的。从图1中可见,晶粒尺寸的减小将使材料的力学性能有数量级的提高,同时由于晶界数量的大大增加,使可能分布于晶界处的第二相物质的数量减小,晶界变薄使晶界物质对材料性能的负影响减少到最低程度;其次晶粒的细化使材料不易造成穿晶断裂,有利于提高材料的断裂韧性;再次,晶粒的细化将有助于晶粒间的滑移,使材料具有塑性行为。纳米材料的问世将使材料的强度、韧性和超塑性大大提高。纳米陶瓷由于是介于宏观和微观原子、分子的中间研究领域,它的出现开拓了人们认识物质世界的新层次,将给传统陶瓷工艺、性能及陶瓷学的研究带来更多更新的科学内涵。

2.纳米陶瓷的概念及其发展

所谓纳米陶瓷,是指显微结构中的物相具有纳米级尺度的陶瓷材

料,也就是说晶粒尺寸、晶界宽度、第二相分布、缺陷尺寸等都是在纳米量级的水平上。陶瓷材料的脆性大、不耐热冲击、不均匀、强度差、可靠性低、加工困难等缺点大大地限制了陶瓷的应用。随着纳米技术的广泛应用,希望以纳米技术来克服陶瓷材料的这些缺点,如降低陶瓷材料的脆性,使陶瓷具有像金属一样的柔韧性和可加工性。因此纳米陶瓷被认为是解决陶瓷脆性的战略途径[3]。同时,纳米陶瓷也为改善陶瓷材料的烧结性和可加工性提供了一条崭新的途径。

正是由于纳米科学和陶瓷工艺学的发展与完善,使纳米陶瓷概念的提出有了理论基础。再加之研究手段和设备的进步,比如电子显微镜,透射电子显微镜以及高分辨电镜和分析电镜等现代表征技术的发展,使纳米陶瓷的研究、分析成为可能。另外由于纳米材料的特殊性能,其与陶瓷材料结合不仅可以提高陶瓷本身一些重要的性能,而且也克服了陶瓷的缺点——脆性、热冲低等,使纳米陶瓷有了发展的空间与必要。在这种情况下,科研工作者在20世纪80年代中期开始了纳米陶瓷的研究,并且逐步取得了一些重要得成果。1987年,德国的Karch等首次报道了所研制得纳米陶瓷具有高韧性与低温超塑性行为。目前,各国都相继加大了对纳米陶瓷研究的力度,以便能使传统的性能优良的陶瓷材料与新兴的纳米科技结合,从而产生“1+1>2”的效果,使纳米陶瓷具有更高的特殊的使用性能,将其应用到工业生产、国防保护等领域必然会取得巨大的经济效益。虽然纳米陶瓷的研究时间还不长,许多理论尚未清楚,但经过各国工作者的辛勤努力,在纳米陶瓷研究方面还有许多成果,无论是对纳米陶瓷的制备工艺还是性能都有

很大的提高。例如,美国的“Morton International's Advanced Materials Group”公司开发了一条生产SiC陶瓷的革命性工艺——CVD原位一步合成纳米陶瓷工艺。我国的科研工作者对该工艺进行了研究,也取得了一些成果[4]。

3.纳米陶瓷的制备

3.1纳米陶瓷粉体的物理法制备

目前物理方法制备清洁界面的纳米粉体及固体的主要方法之一是惰性气体冷凝法[5]。制备过程为:在真空蒸发室内充入低压惰性气体,加热金属或化合物蒸发源,由此产生的原子雾与惰性气体原子碰撞而失去能量,凝聚而成纳米尺寸的团簇并,在液氮冷却棒上聚集起来,最后得到纳米粉体。其优点是可在体系中加置原位压实装置,即可直接得到纳米陶瓷材料。1987年美国Argonne实验室的Siegles采用此方法成功地制备了TiO2纳米陶瓷粉体,粉体粒径为5~20nm。此方法的缺点是装备巨大,设备投资昂贵不,能制备高熔点的氮化物和碳化物粉体,所得粉体粒径分布范围宽[5,6]。

还有一种方法叫高能机械球磨法,就是通过无外部热能供给,干的高球磨过程制备纳米粉体。它除了可用来制备单质金属纳米粉体外,还可通过颗粒间的固相反应直接合成化合物粉体,如金属碳化物、氟化物、氮化物、金属-氧化物复合粉体等。近年来通过对高能机械球磨过程中的气氛控制和外部磁场的引入,使得这一技术有了进一步发

展。该方法操作简单、成本低。中科院上海硅酸盐研究所的姜继森等报导了在高性能球磨的作用下,通过α-Fe2O3和ZnO及NiO粉体之间的机械化学反应合成Ni-Zn铁氧体纳米晶的结果[7]。此外还有机械粉碎、火花爆炸等其它物理制备方法。

3.2纳米陶瓷粉体的化学法制备

湿化学法制备工艺主要适用于纳米氧化物粉体,它主要通过液相来合成粉体。这种方法具有苛刻的物理条件、易中试放大、产物组分含量可精确控制,可实现分子/原子尺度水平上的混合等特点,可制得粒度分布窄、形貌规整的粉体。但采用液相法合成的粉体可能形成严重的团聚,直接从液相合成的粉体的化学组成和相组成往往不同于设计要求,因此需要采取一定形式的后处理。

它包括沉淀法。该法是在金属盐溶液中加入适当的沉淀剂来得到陶瓷前驱体沉淀物,再将此沉淀物煅烧成纳米陶瓷粉体。根据沉淀的方式可分为直接沉淀法、共沉淀法和均匀沉淀法。为了避免沉淀法制备粉体过程中形成严重的硬团聚,往往在其过程中引入冷冻干燥、超临界干燥、共沸蒸馏等技术手段,取得了较好的效果。沉淀法操作简单,成本低,但易引进杂质,难以制得粒径小的纳米粉体。上海硅酸盐研究所以共沉淀-共沸蒸馏法制得了纳米氧化锆粉体,试验中的共沸蒸馏技术有效地防止了硬团聚的形成,制得的氧化锆粉体具有很高的烧结活性[8]。

溶胶-凝胶法。该法是指在水溶液中加入有机配体与金属离子形

成配合物,通过控制pH值、反应温度等条件让其水解、聚合,历经溶胶-凝胶途径而形成一种空间骨架结构,经过脱水焙烧得到目的产物的一种方法。溶胶-凝胶工艺被广泛应用于制备均匀高活性超细粉体,起始材料通常都是金属醇盐。图2为溶胶-凝胶法的制备流程图。

图2 溶胶-凝胶法制备流程

图2中用金属醇盐溶胶-凝胶制备PZT系列超微粉[9]。也有不用醇盐的,哈尔滨工业大学以硝酸氧锆代替锆的醇盐用溶胶-凝胶法同样合成了PZT纳米粉[10]。另外,以廉价的无机盐为原料,采用溶胶-凝胶法结合超临界流体干燥制备了纳米级的TiO2[11]。

喷雾热解法。该法是将金属盐溶液以雾状喷入高温气氛中,此时立即引起溶剂的蒸发和金属盐的热分解,随后因过饱和而析出固相,从而直接得到氧化物纳米陶瓷粉体,或者是将溶液喷入高温气氛中干燥,然后再进行热处理形成粉体。形成的颗粒大小与喷雾工况参数有很大的关系。采用此方法制得的颗粒,通常情况下是空心的。通过仔

细选择前驱物种类、溶液的浓度及加热速度,也可制得实心颗粒。水热法。该法是指在密闭的压力窗口容器中,以水为溶剂制备材料的一种方法。近十几年来在陶瓷粉体制备方面取得了相当好的成果[12]。同时,水热法陶瓷粉体制备技术也有了新的改进和发展。如将微波技术引入水热制备系统的微波水热法。反应电极埋弧也是水热法制备纳米陶瓷粉体的新技术,这种方法是将两块金属电极浸入到能与金属反应的电解质流体中,电解质一般采用去离子水,借助低电压、大电流在电极间产生电火花提供局部区域内短暂的、极高的温度和压力,导致电级和周围电解质流体的蒸发,并沉淀在周围的电解质溶液中。此外,用有机溶剂代替水作为反应介质的溶剂热反应,在陶瓷粉体制备中也表现出良好的前景。

此外,还有化学气相法,它又包括化学气相沉积法(CVD),激光诱导气相沉积法(LICVD),等离子体气相合成法(PCVD法)等方法,在此不一一介绍。

4.纳米陶瓷粉体的表征

4.1化学成分表征

化学组成是决定粉体及其制品性质的最基本因素,除了主要成分外,次要成分、添加剂、杂质等对其烧结及制品性能往往也有很大关系,因而对粉体化学组成的种类、含量,特别是微量添加剂、杂质的含量级别及分布进行检测,是十分重要和必要的。化学组成的表征方

法有许多种,主要可分为化学反应分析法和仪器分析法。化学分析法具有足够的准确性和可靠性。对于化学稳定性好的粉体材料来说,经典化学分析方法则受到限制。相比之下,仪器分析则显示出独特的优越性。如采用X射线荧光(XPFS)和电子探针微区分析法(EPMA),可对粉体的整体及微区的化学成分进行测试,而且还可与扫描电子光谱(AES)、原子发射光谱(AAS)结合对粉体的化学成分进行定性及定量分析;采用X光电子能谱法(XPS)分析粉体的化学组成并分析结构、原子价态等与化学键有关的性质[13]。

4.2晶态表征

X射线衍射(XRD)仍是目前应用最广、最为成熟的一种粉体晶态的测试方法。此外,电子衍射(ED)法还可用于粉体物相、粉体中个别颗粒直至颗粒中某一区域的结构分析;用高分辨率电子显微分析(HREM)、扫描隧道显微镜(STM)分析粉体的空间结构和表面微观结构。

4.3颗粒度表征

在纳米陶瓷粉体颗粒度测试中,透射电子显微镜是最常用、最直观的手段。但是,如粉体颗粒不规则或选区受到局限等,均会给测量造成较大的误差。常见的粉体颗粒测试手段还有X射线离心沉降法(测量范围为0.01~5μm)、气体吸附法(测量范围0.01~10μm)、X射线小角度散射法(测量范围为0.001~0.2μm)、激光光散射法(测量范围0.002~2μm)等[14]。

4.4团聚体表征

团聚体的性质可分为团聚体的尺寸、形状、分布、含量,气孔率、气孔尺寸及分布,密度,内部显微结构,强度,团聚体内一次颗粒之间的键和性质等。目前常用的团聚体表征方法主要有显微结构观察法、素坯密度-压力法以及压汞法等。

5.纳米陶瓷的性能

5.1纳米陶瓷的致密化

超细粉末的应用引起了烧结过程中的新问题,纳米粉末的巨大表面积,使得材料的烧结驱动力亦随之剧增,扩散速率的增加以及扩散路径的缩短,大大加速了整个烧结过程,使得烧结温度大幅度降低。例如:1nm的纳米颗粒与1μm的微米级颗粒相比,其致密化速率将提高108。目前,上海硅酸盐研究所通过对含Y2O3(3mol%)ZrO2纳米粉末的致密化和晶粒生长这两个高温动力学过程的研究发现:对颗粒大小为10~15nm的细粉末,其烧结温度仅需1200~1250℃,密度达理论密度的98.5%,比传统的烧结温度降低近400℃。进一步的研究表明:由于晶粒尺寸小,分布窄,晶界与气孔的分离区减小以及烧结温度的降低使得烧结过程中不易出现晶粒的异常生长。控制烧结的条件,已能获得晶粒分布均匀,大小为120nm的Y-TZP陶瓷体。

用激光法所制的15~25nm Si3N4粉末比一般陶瓷烧结温度降低了200~300℃,所得晶粒大小为150nm Si3N4陶瓷,其弯曲变形为微

米级陶瓷的2倍[15]。

5.2纳米陶瓷的力学性能

大量研究表明,纳米陶瓷材料具有超塑性性能,所谓超塑性是指材料在一定的应变速率下产生较大的拉伸应变。纳米TiO2陶瓷在室温下就能发生塑性形变,在180℃下塑性变形可达100%。若试样中存在微裂纹,在180℃下进行弯曲时,也不会发生裂纹扩展[16]。对晶粒尺寸为350nm的3Y-TZD陶瓷进行循环拉伸试验发现,在室温下就已出现形变现象。纳米Si3N4陶瓷在1300℃下即可产生200%以上的形变。关于纳米陶瓷生产超塑性的原因,一般认为是扩散蠕变引起晶界滑移所致。扩散蠕变速率与扩散系数成正比,与晶粒尺寸的三次方成反比,当纳米粒子尺寸减小时,扩散系数非常高,从而造成扩散蠕变异常。因此在较低温度下,因材料具有很高的扩散蠕变速率,当受到外力后能迅速作出反应,造成晶界方向的平移,从而表现出超塑性,塑性的提高也使其韧性大为提高。纳米陶瓷的硬度和强度也明显高于普通材料。在陶瓷基体中引入纳米分散相进行复合,对材料的断裂强度、断裂韧性会有大幅度的提高,还能提高材料的硬度、弹性模量、抗热震性以及耐高温性能。

6.纳米陶瓷的应用及其展望

纳米陶瓷在力学、化学、光吸收、磁性、烧结等方面具有很多优异的性能,因此,在今后的新材料与新技术方面将会起到重要的作用。

随着纳米陶瓷制备技术的提高和精密技术对粉体微细化的要求,纳米陶瓷将在许多领域得到应用(如纳米陶瓷在结构陶瓷、功能陶瓷、电子陶瓷、生物陶瓷等领域)。不过从目前的研究来看,纳米陶瓷获得应用的性能有以下几个方面: 1)室温超塑性是纳米陶瓷最具应用前景的性能之一。纳米陶瓷克服了普通陶瓷的脆性,使陶瓷的锻造、积压、拉拔等加工工艺成为可能,从而能够制得各种特殊的部件,应用到精密设备中去。

2)高韧性是纳米陶瓷另一个具有很高应用的性能。陶瓷韧性的提高使得陶瓷的应用领域极度的扩大,因为今后纳米陶瓷就可以像钢铁、塑料等主流材料一样的应用,而不是人们心目中的“易碎品”。

3)纳米陶瓷的应用还可以节约能源、减少环境污染(传统的陶瓷工业能耗高、污染重)。纳米陶瓷的烧结温度比普通陶瓷的低几百度,而且还可能继续下降,这样不仅可节省大量能源,还有利于环境的净化。

7.参考文献

[1] 谢少艾,陈虹锦,舒谋海编著.元素化学简明教程.上海交通大学出版社.2006年,(11.5.3)纳米陶瓷

[2]林志伟.功能陶瓷材料研究进展综述.广东科技,2010,7(241):36 [3] Cahn R W.Nanomaterials coming of age.Nature,1988,332(60~61):112~115 [4] 杨修春,丁子上.原位一步合成纳米陶瓷新工艺.材料 导报,1995(3):48~49 [5] 严东生.纳米材料的合成与制备.无机材料学报,1995,10(1):1

[6] Yoshimura.Rapid rate sintering of nano-grained ZrO2-based composites using pulse electric current sintering method.J Mater Sci Lett,1998,19:1389 [7] 姜继森,高濂,郭景坤.Ni-Zn铁氧体纳米晶的机械化学合成.无机材料学报,1998,13(3):415 [8] 仇海波,等.纳米氧化锆粉体的共沸蒸馏法制备及研究.无机化学学报,1994,9(3):365 [9] 王秉济,马桂英.溶胶-凝胶法合成PLZT微细粉末.硅酸盐学报,1994,22(1):57 [10]刘大格,蔡伟,等.以硝酸氧锆为锆源溶胶-凝胶合成PZT纳米晶的研究.硅酸盐学

报,1998,26(3):313 [11] 张敬畅,等.超临界流体干燥法制备纳米级TiO2的研究.无机材料学报,1999,14(1):29 [12] 施尔畏,夏长泰,王步国,等.水热法的应用与进展.无机材料学报,1996,11(2):193 [13] 施剑林.低比表面积高烧结活性氧化锆粉体的制作方法.科技开发动态,2005,4:41 [14] 戴春雷,杨金龙.凝胶注模成型延迟固化研究.无机材料学报,2005,20(1):83 [15] 刘永胜,等.CVI制备C/Si3N4复合材料及其表征.无机材料学报,2005,20(5):1208 [16] 梁忠友.纳米材料性能及应用展望.陶瓷研究,1999,14(1):13

纳米材料与精密加工课程论文
TOP