首页 > 精品范文库 > 12号文库
为掌握日本福岛核泄漏对西太平洋及我国海洋环境的影响
编辑:独酌月影 识别码:21-564935 12号文库 发布时间: 2023-07-07 22:20:38 来源:网络

第一篇:为掌握日本福岛核泄漏对西太平洋及我国海洋环境的影响

为掌握日本福岛核泄漏对西太平洋及我国海洋环境的影响,2011年6月16日至7月4日,国家海洋局对日本福岛以东的西太平洋海域开展了海洋环境放射性监测,结果显示,日本福岛以东及东南方向的西太平洋海域已受到福岛核泄漏的显著影响。

(一)海水

监测海域海水中均检出了铯-137和锶-90,94%监测站位样品中检出了正常情况下无法检出的铯-134。71%监测站位铯-137含量超过我国海域本底范围,其中铯-137和锶-90最高含量分别为我国海域本底范围300倍和10倍。

监测海域海水样品中未检出碘-131。

(二)海洋生物—鱿鱼(巴特柔鱼)

监测海域鱿鱼(巴特柔鱼)放射性检测结果显示,锶-90的放射性比活度为我国沿海生物样品放射性本底平均值的29倍。此外,样品中还检出了我国沿海生物样品中正常情况下难以检出的银-110m和铯-134。

鉴于日本福岛以东及东南方向的西太平洋海域已受到福岛核泄漏的显著影响,建议国务院有关部门加强对来自该海域海产品的放射性检测,确保我国公众的健康安全。

第二篇:日本福岛核泄漏对海洋环境的影响

日本福岛核泄漏对海洋环境的影响

摘要::2011 年3 月12 日日本仙台以东120 公里发生里氏9.0 级地震,地震引发海啸,福岛核电站发生爆炸,核泄漏使周围区域遭受辐射影响。日本方面将核污染废水排放入大海中。这种不负责任的做法使周围邻国也遭受了巨大的影响,其影响己经超出了日本国界, 造成全球性核污染事故。关键词:核污染,海洋环境,影响

1.日本福岛核电站核泄漏的原因

根据报道, 2011 年在3月11 日下午地震发生之后, 福岛第一核电站1号、2 号、3 号机组在第一时间自动停堆, 这说明核电站设计的停堆能力经受地震扔发挥了作用。地震后电厂发电的设备都停下来了, 外电网也没有了, 机组应急柴油发电机启动运行后又遭遇海啸袭击, 应急电源遭到损坏, 交流电源全部丧失, 堆芯失去冷却, 余热无法导出, 反应堆内部温度和压力急剧上升, 不得不通过打开阀门泄压, 大量放射性物质排放到了外界[1]。另外, 乏燃料水池在冷却系统停止运行后水温上升, 大量产生蒸汽。由于反应堆燃料的包壳材料是锆合金, 在高温下与水蒸气发生了化学反应产生大量的氢气, 氢气进入反应堆厂房因集聚而发生爆炸, 加剧了污染物的泄漏。3 月12 日机组注入海水冷却, 但是还没有完全度过危机。应当说这次事故中堆芯燃料失去冷却及氢气爆炸是致命的[2]。目前的压水堆核电站设置有氢气消除系统, 或者采用氢气复合器, 或者采用点火器, 防止浓度增加发生燃烧或爆炸。福岛第一核电站安全壳内没有消氢系统, 核电站内没有很好的可燃气体的控制系统, 氢气产生后没有有效的控制措施, 结果引起氢气爆炸。福岛第一核电站有6 个机组, 1 号、2 号和3 号机组相继发生氢气炸, 破坏是比较大一点, 4 号乏燃料池也遭到破坏, 不过4 号、5 号和6 号正好在停堆检修, 因为停运, 剩余热量比较少, 情况稍好些。2.福岛核电站核泄漏当时的基本情况

2011年3月13日,日本原子能安全保安院按照“国际核能事件分类表”把核电站爆炸事故定为4 级。“国际核能事件分类表”把核事件按严重程度分为0-7级。4 级意味着核事件可定性为“事故”。然而,由于福岛核电站的多个反应堆发生爆炸,造成福岛核电站周围核辐射严重超标,3月18日,日本原子能安全保安院将核电站事故等级调高至5 级。另据路透社报道,法国核安全局将日本福岛第一核电站多个核反应堆发生爆炸列为6 级事故[3]。4月12日, 日本原子能安全保安院依据泄漏的放射性物质总量, 将核电站事故等级调至最高级7级。

据4月6日《读卖新闻》网站报道,日本福岛第一核电站1-3号反应堆内放射线检测值正式公布。1号反应堆和3号反应堆的核燃料于3月14日上午部分露出水面, 当时两个反应堆内的放射线数值为正常工作状态下的10万倍, 达到每小时167 希沃特(SV)[4]。根据这个数值对燃料棒上的小孔和龟裂情况进行推算,1号反应堆内70%的燃料棒发生损坏,2号反应堆内30%的燃料棒发生损坏,3号反应堆内损坏的燃料棒达到25%[5]。

3.福岛核电站核泄漏事件造成的海洋环境危害 3.1大量放射性污水直接排入海中造成水体污染

由于地震造成了核电站设施的损坏, 加上早期处置反应堆降温引入大量海水,造成大量含放射性物质的污水泄漏。此外, 东京电力公司4月4日宣布, 将把福岛第一核电站厂区内1.15万t含低浓度放射性物质的污水排入海中, 为储存高辐射性污水腾出空间。此举引起当地渔民与国际环保人士的抗议与反对。日本政府救灾总部说, 到4月9日晚为止, 福岛第一核电站通过10台大型水泵向附近海域排放的低放射性污水己经达到7700t,最后剩下的800t, 将在9日晚至10日全部排放完毕。此外,2号机组周围尚有2万t高放射性污水,存在泄漏入海的风险[6]。

据报道, 在福岛附近的鱼类中已检测到放射性物质。日本茨城县渔业协会4月5日宣布, 从4日在北茨城市附近海域捕捞的玉筋鱼幼鱼体内检测出放射性艳达到每千克526Bq, 超过食品卫生法放射物暂定标准值设定的每千克50Bq, 这是首次从鱼类体内检测出放射性物质超标。此外, 在这种小鱼体内还检测出每千克170 Bq的放射性碘。4月1日, 在同一地区捕捞的玉筋鱼体内也检测出每千克4080Bq 的放射性碘, 茨城县渔业协会已要求全县渔民不要再捕捞玉筋鱼。3.2福岛核事故威胁国际海洋生态安全

实际上,日本福岛核事故已经对国际海洋生态安全构成严重威胁。虽然污染不太可能直接造成海洋生物的死亡,但一些半衰期较长的放射性同位素会在食物链中积聚起来,有可能导致鱼类和海洋哺乳动物群体死亡率上升的问题。法国一个研究团队的研究表明,福岛周围300公里以内放射性活动异常。福岛周围300

[7]公里范围海域内大约有50种放射性同位素,每升海水中放射性活度大约为10000贝可。在事故发生前,这一区域内每升海水中的铯-137放射性活度大约为0.003贝可,而碘-131则未检测到[8]。尽管目前对福岛核事故海洋生态环境影响还很难做出全面评估,但至少从一般意义上而言,福岛核事故已经构成对国际海洋生态安全的直接威胁:

第一,该事故对海洋生态安全的影响将长期存在。虽然碘的半衰期只有8天,但铯的衰变时间长达30年,这样大量含放射性物质的污水进入海洋,随着海水的运动和时间的增加,放射性物质不但会进入食物链,影响海洋生物繁衍,还会影响到海底淤泥,造成海洋污染[9]。

第二,该事故对海洋生态安全的影响范围广泛,而不是如日本所言主要影响其本国海域。因为海洋具有整体性和流动性。日本东北沿岸强大的洋流会把海草、浮游生物和浮游动物带走,鱼类也会跟随这些食物来源移动,或者进行自然迁徙。

第三,从事故对海洋生态安全的后果看,无疑事故所排放的放射性物质会通过食物链进入海洋生态过程,对海洋生态安全带来影响,但这种影响究竟有多大,就目前的情况看很难做出评估。因为相对于陆地生物链而言,海洋生物链更为复杂。我们熟悉的陆地食物链通常只有两个或三个独立的步骤,所以可以得到控制或修改。但是在水环境中,要搞清楚复杂的食物链和捕食层次之间的相互关系对人类的影响几乎是不可能的。7再加上食物链传递中的“生物富集放大”因素,核事故损害后果极具复杂性[10]。4.关于福岛核泄漏事件的思考

日本福岛核泄漏事件是1986年苏联切尔诺贝利核电站事故之后的最大核灾难, 对福岛核电站周围地区的大气、水体(包括地下水)和土壤造成了严重的环境污染。福岛核泄漏事件引发的环境危害已波及全球众多国家与地区, 其后果有可能持续数十年。分析总结此次核泄漏事件的原因,有如下几点值得关注4.1福岛核电站设计抗灾能力不足

建核电站首先应该合理选址, 避开可能的地震带。福岛核电站设计的时候没有考虑到发生9级地震的情况, 也没有考虑到抗巨大海啸的能力。9级地震己经超出人们的一般预料了。这次地震并没有使福岛几个核电站全部垮掉, 海啸对它们的影响更大一些。地震和海啸导致停电, 而备用电源也失灵, 无法应急启动。没

[11]

。有多份的备用电源, 导致冷却系统失效, 从而造成了燃料棒熔化的严重事故。机组温度越来越高, 就出现了一号机组、三号机组, 二号机组先后爆炸、起火等事故, 造成严重核泄漏事件。此外, 大量放射性污水无处存放, 只能直接排入海中, 引起国际社会与当地民众强烈不满。由此可见, 安全可靠的设计将是未来核电站最为核心的内容。

4.2福岛核泄漏事件处置过程暴露核事故救援存在诸多问题

据媒体报道,3月11日大地震发生后, 东京电力公司在应急救援方面处置不力, 心存侥幸,延误了处置时机。由于缺少训练有素的专业应急救援队伍, 面对如此严重的事故, 日本显得有点束手无策。尽管日本自卫队特殊防化部队在福岛核泄漏事件的救援中发挥了一定的作用, 但因平时缺少相关训练, 其救援作用与社会期待和实际需求相差较远。此外, 政府管理部门在事故处置中存在决策指挥与协调力度不够, 致使事态没有得到及时、有效的控制。因此, 加强核设施的安全防护、建立有效的应急指挥与救援机构, 是未来必须重点关注的领域。5.结语

日本福岛核电站发生的严重核泄漏,对全人类都是一次极为深刻的教育。人与环境相互依存的关系永远无法改变,人类活动既能为海洋环境造福,也能给海洋环境带来巨大破坏,而最终自食其果的仍然是人类自身。因此, 在开发核能源满足生活需要的同时,把海洋环境保护摆在首要位置。

参考文献

[1]何德功.日本核泄漏波及他国,危机应对方式遭质疑[N].北京青年报.2011-03-28(A3).[2]蒋跃进.海洋环境污染危害人类身体健康浅析[J].广东航海,2003(4):48-54.[3]蒋跃进.新世纪船舶污染动向及应对措施[J].广东航海,2004(3):39-43.[4]刘亚平,颜昌武,从“变化”走向“进步”:三聚氰胺事件的启示[J].武汉大学学报:哲学社会科学版,2011(02):81.[5]唐森铭,商照荣.近海辐射环境与生物多样性保护[J].核安全,2009(002):1-10.[6]沙勇忠,解志元,论公共危机的协同治理[J].中国行政管理,2010(4):73.[7]日本福岛核电站泄漏通报[Z].环球时报,2011:4.6.[8]乔方利,王关锁,赵伟等.2011年3月日本福岛核泄漏物质输运扩散路径的情景模拟和预测[J].科学通报,2011,56(12):964-971.[9]夏治强,李国胜.日本福岛核电站核事故分析[J].防化研究,2011,4:11-20.[10]余潇枫.非传统安全与公共危机治理[M].杭州:浙江大学出版社,2007:2.[11]郝晓峰.核电快速发展中的核安全问题探讨[J].核电,2010,20(6):7-9.

第三篇:日本福岛核泄漏影响

福岛核电站正在发生什么

1号和3号机组:厂房内氢气爆炸

(在阅读本专题之前需要阅读《不必担心日本“核爆炸”》了解背景知识)

如图,在正常情况下,压力容器中的蒸气会被排出去发电,发完电后经过冷却变成水又回到容器中,但是由于失去电力供应,这个循环过程没法完成。核燃料产生的衰变热把水变成蒸气,使得容器内压力变大,而且随着水位下降,包裹核燃料的锆合金暴露在蒸气中,无法被水冷却,温度越来越高,当超过1200度时,锆合金会与水分子发生反应,产生大量氢气。容器内压力的增大会让容器壁难以承受,而且高压使得水无法注入,所以需要把蒸气排出去(尽管这个过程也会把放射性物质带出去)。蒸气先被排到抑压水池,水会把蒸气中的部分放射性物质滞留住,然后蒸气通过抑压水池上的阀门排到厂房里,蒸汽中的氢气与厂房中的氧气混合发生爆炸,炸毁了厂房,但是没有伤及安全壳(图中灰色部分)。…[详细]

2号机组:抑压水池爆炸,安全壳或受损

2号机组经历的本该与上述过程相同,但出乎意料的是,氢气在抑压水池部分就爆炸了,说明这个地方 混入了空气。爆炸发生的详情没有披露,造成的后果也未知,这个爆炸有可能伤及安全壳,甚至有可能

伤及压力容器,如果二者都被损伤,那么相当于给里面的放射性物质开了一个出口,这时候,只能祈求注水成功,使核燃料不至于熔化(核燃料是一种陶瓷,熔点2800度),完好的核燃料本身就可以滞留

90%以上的放射性。

4号机组:核废料池冷却不足

福岛第一核电站有6座机组,4、5、6号机组都在例行检修,所以反应堆本身就是停止运作的,目前情况也很稳定,麻烦的是核废料池(乏燃料池)。在安全壳的外面、厂房的里面有一个核废料池,里面盛着水,用完的核燃料先要放到这个池子里冷却,因为废料中的铯和碘等元素还在衰变产生热量。由于电

力故障或者别的什么原因,核废料池的水循环也出了问题,池子里的水被持续加热沸腾进而变成蒸气,这就和上述几个机组容器内的情况是一样的,只不过核废料池的外面既没有容器壳也没有安全壳,所以产生的放射性物质就直接排到外面了。15日,核废料池也发生了氢气爆炸,炸坏了厂房,这可能也是锆合金裸露在水外,温度升高与水分子反应产生氢气所致。另一种说法是,这是3号机组产生的氢气通过共用管道流入而引起。目前,日本官方正考虑用直升飞机或消防车向核废料池注水。

最坏情况分析

现在最可能的情况就是:1号、3号和2号机组通过蒸气排放排出了放射性物质;如果2号机组的容器壳和安全壳受损,则放射性物质也可以通过破损口排出;4号机组的核废料池本身就没有防泄漏外壳,产生的放射性物质直接排了出去。如果情况进一步恶化,达到的最坏情况可能是:1号、3号机组注水失败,核燃料熔化,跌落在容器壳上,将钢壳熔穿,然后跌落到安全壳上,再将钢筋混凝土壳(熔点1600度)熔穿,泄漏到外界;2号机组除了上述过程外,还可能两个壳子早就被炸坏,已经在源源不断的泄漏放射性物质;4号机组核废料池注水失败,核废料熔化直接排放放射性物质。

泄漏的放射性物质会影响到中国吗

什么是核辐射

辐射可以粗略地分成两类,核辐射和电磁辐射。核辐射就是指一些元素(放射性元素),携带有很高能量的质子、中子、氦原子核、电子、光子等等,这些粒子可能脱离这些元素而射出去。如何脱离呢?有的是因为元素本身不稳定,比如《不必担心日本“核爆炸”》提到的铯和碘同位素,它们衰变的过程就是射出高能粒子的过程;有的是因为发生核裂变,一个大原子核分裂成几个小原子核,过程中射出粒子,核燃料铀235就是这样;还有的是因为聚变,几个小原子核合成大原子核,射出粒子;还有就是来自宇宙的高能粒子(宇宙辐射)。由于裂变和聚变往往是人为驱使的,所以日常接触不到这两种辐射,但是人体却不停的接受着衰变辐射和宇宙辐射。

现在福岛核电站的情况是,核燃料中铀的核裂变已经停止,但是核燃料中还有铯和碘等放射性元素,这些元素衰变得慢,可能飘到你的周围才射出粒子。…[详细]

核辐射如何危害人体

粒子射出后,会打到组成人体细胞的分子,把分子结构破坏,这会产生三种结果:

1、细胞受损坏掉,被人体分解、吸收、重新利用,不会造成很大伤害;

2、打到生殖细胞,改变了染色体上DNA(基因)的结构,导致生育的后代是“怪胎”;

3、打到体细胞,体细胞DNA发生变化,如果这种变化不能修复并

且细胞仍然存活,就有可能出现细胞不受控制地复制的情况,就成了癌细胞。结论就是,人体总在接受辐射;辐射未必会产生危害;更多的辐射会增加危害的概率。

如何应对核辐射

日常的核辐射,对人体产生危害的概率太小,可以忽略。如果遇到核电站泄漏这种非常规情况,也要看泄露出来的剂量大小,如上图所示,人体受辐射大于100毫希弗才有风险。对于泄露出来的放射性元素,我们要尽量把它们隔绝在皮肤外,衣服沾上了就把衣服换掉。如果皮肤也粘上了,就洗澡洗掉。当然更要防止吸入、或吃入体内。核电站泄漏后,“主力军”就有碘,而人的甲状腺是会吸收碘的,我们可以提前吃没有放射性的碘,甲状腺吸收到足够多的碘,就不会去吸收放射性碘了。怎样吃碘呢?方舟子给出了意见:在吸入放射性碘数小时前服用碘片可起到100%保护作用,在吸入的同时服用也基本可保护,所以没必要提前服用。碘片剂量(100毫克)远远超出碘的每日限量(一天1.1毫克),没事不要乱吃。…[详

细]

目前普通人需要做什么

东京离福岛200多公里,辐射超标23倍,但也不过是每小时0.809微希弗,而坐飞机是每小时4.25微希弗。中国大陆离福岛最近的部分都有上千公里,虽然放射性元素的扩散与气候和风向等有关,但距离越远浓度越小是肯定的,所以中国大陆普通老百姓该吃吃,该喝喝,该上班上班,其它的都是瞎折腾。…[详

细]

万一出现最坏情况呢

万一出现最坏情况,各机组的核燃料都泄露,会是什么局面呢?我们可以拿切尔诺贝利事故作类比。切尔诺贝利事故至少有两个方面比福岛糟得多,第一是控制棒没能插入反应堆,所以核裂变没有停止;第二是没有安全壳,爆炸后核燃料完全暴露了。而福岛完全暴露的是核废料,反应堆中的核燃料应该不会全都冲破安全壳,且都是裂变停止的状态,也就是说福岛情况再坏也要比切尔诺贝利好很多。切尔诺贝利造成的损害范围主要在几百公里以内,所以即便是福岛出现最坏情况,给中国大陆造成严重危害的可

能性也很小。…[详细]

谨慎的人自然可以多做防范,但是像抹碘酒这类行为,那不叫防范,叫

胡闹。

第四篇:日本核泄漏对我国的影响分析

日本核泄漏对我国的影响分析

【摘要】 论文通过建立核污染物的大气传播扩散的线性模型,高斯模型和ADMS模型和海洋环流扩散模型,从理论计算值和实际监测值两个方面都说明了日本核泄漏的辐射物质不会对我国产生直接的影响,在模型的建立过程中也通过模型间的比较,找出更具有实用价值和更具有推广性的模型,通过模型的计算可以看出高斯模型较线性模型更具有使用价值,而ADMS模型较高斯模型又有进一步的推广实用性。

通过海洋环流模型的分析可以知道,若泄漏源设置在近地层992hPa, 10 d 后影响范围可达北美大部地区, 但浓度比所设置的源区浓度低约6 个量级, 15 d 后可影响到欧洲, 20 d 后前锋进入中国西部地区, 30 d 后则布满整个纬带;若泄漏源在5 km 高度, 泄漏10 d 后影响范围可覆盖欧洲, 15 d 即可布满整个纬带;若泄漏源在10 km 高度, 10 d后即可影响中国大部分区域.核泄漏物质通过海洋表层通道向东输运则缓慢得多, 50 d 后到达150°E 左右, 且影响范围仅在一条狭窄条带内。

通过对本文模型的分析,日本核泄漏物质可能有微量会覆盖我国全境,而且在3月25号日核泄漏物的辐射量达到最大值,但我国的核辐射量仍然处于人体可以接受的安全的值。也就是说,日本核泄漏物质不会多我国造成直接的危害。

【关键字】 核污染

流体传播

影响分析

一、问题重述与分析

1、问题重述

在日本大地震导致核泄漏后,关于核扩散而引起的安全问题已经受到广泛的关注,在我国也一度引起了人民的恐慌。根据人们的这种恐慌心理,提出合理的假设建立数学模型,解决以下两点问题:

① 日本的核泄漏物体究竟会不会覆盖我国的全国范围,对广大人民的人生安全又会不会产生危害【1】。

② 由于人体对辐射物质有一定承受能力,只有当大气中的辐射物质达到一定程度的时候才会对人体产生危害,那么在我国,大气中的核辐射物质会不会达到危害人体的程度,如果会,那么会在什么时候达到,如果不会,那么我国的哪一地区受到的核污染最严重,并通过数学模型分析在什么时候达到最严重的程度。

2、问题分析

由于核泄漏物在空气中的传播类似于流体运动,受到诸多因素的影响,如风速,,核污染源头的控制,大自然对核泄漏物质的吸收能力等多方面,另一方面由于我国地域辽阔,各地地形差异也较大,所以各地距日本核泄漏源的距离也有明显的差异,所以各地受到核污染的危害也肯定有所不同,通过建立流体运动的模型,同时考虑到诸多影响流体运动的因素,就可以大概的估算出我国是否会全境被日本的核泄漏物质所覆盖,另一方面,由于流体是要不断的流动的,所以不会产生聚集,也就说,只要当核泄漏物质的扩散高峰期通过我国时没有达到对人体产生危害的程度,则以后就不会对我国居民的身体产生危害,通过建立数学优化模型,以日本核泄漏程度及扩散情况为主要影响因素,就可以估算出日本核泄漏物质在我国达到最大影响程度的时间

二、问题背景 2011年3月11日,日本近海发生9.0级地震并引发了大海啸,沿海核电站受到破坏,开始释放具有放射性物质。很多人担心这些物质会危害自己的健康,因此急切希望了解:地震中损坏的日本核电站散发的放射性物质,究竟会在什么时候到达自己的身边,以及什么时候会达到对人体有害的程度。

专家们认为,对日本之外的国家和地区而言,会随空气移动的发射性粉尘可能是主要的威胁。若对此进行预测,需要考虑到风向,风速以及距离受损核电站的远近。截止到2011年3月30日,在我国上海,天津,重庆,河北,山西,内蒙古,吉林,黑龙江,江苏,安徽,浙江,福建,河南,广东,广西,四川,陕西,宁夏,部分地区空气中监测到来自日本核事故释放放出的极微量人工放射性核素碘-131。

二、模型假设

由于要用数学模型解决实际问题,一般都要对实际问题进行量化处理,并且还要建立合理的假设上,针对要解决的问题,记流体在真空中的流动速度为v0 ,空气对流速度(及风速)为v1。

1、在日本大地震发生后的一段时间内,全球空气对流速度保持v1 不变。

2、核辐射物质在大气中的传播的绝对速度(及v0)总是保持不变的

3、忽略大自然对核辐射物质的吸收,且核泄漏物质是均匀扩散的。

4、所有人对核辐射的抵抗能力都是相同的。

四、符号约定和名词解释

s-------------辐射物质传播的距离

t-------------核泄漏物质传播s距离的传播时间 V0-------------日本核泄漏的核辐射物质的总量 v-------------核放射性物质在海洋中传播速度

B-------------核泄漏物质在海洋中传播时单位距离被吸收的量 S-------------我国海域的面积

P-------------我国单位海域面积的放射性物质总量 V1-------------单位面积覆盖的辐射物质量

C------------核辐射源下风向任一点(x,y,z)的污染物浓度,mSv/s yz-----------y和z方向扩散系数,m U-----------污染源排放口的平均风速,m/s Q-----------辐射源核辐射泄漏物的强度, mSv /s He-----------辐射源核辐射物上升的有效高度,m Y-----------Y方向扩散参数*m。

Cy-----------地面横风向积分浓度,mSv /m3 KA-----------计算点A的地面浓度,mSv /m3 Q0-----------计算点所在源块的源 强,mSv /s*m2

Qr-----------其上风方向第i号源块的源强,mSv /s*m2 L-----------网络的边长,m u-----------平均风速,m/s b,q-----------分别为确定大气垂直扩散标准z的参数,他们随不同稳定度类别而取不同的值,并满足z=bxq的关系 h-----------面源的平均高度,m N-----------上风方网格数

Hs-----------和污染物在竖直方向的几何高度 h-----------和污染物抬升的高度m

五、问题的模型建立

模型一 假设全球大气处于不对流状态,则核污染物质会以恒定的速度v0 向四周扩散,已辐射源的核辐射量近似作为核辐射总量,据日本文部科学省3月21号发表的核辐射检测报告说,在距离福岛第一核电站南3公里的福岛县大熊町,检测到的最高浓度的放射量为每小时110微西弗。在做近似计算式,就以此浓度作为辐射源的核污染物浓度V0,在地理位置上,中国东南沿海距核泄漏中心(西南向)2000公里以上,东北地区在西北向相距1000公里以上,由于核泄漏放射性最强的核素是碘-131,极微量的碘与水蒸气中的少量钾钠结合,极容易溶解在水中,因此降雨和降尘影响地表水是主要的污染方式,同时也使大气中碘-131较快清除掉。3月20号以前,日本离福岛核电站100公里以外的地方几乎没有碘-131的异常。3月20号至23号的降雨使东京金町至日立方向地表水和饮用水碘-131急剧增加和波动(200-300Bq/kg);而东京横滨地区碘-131有少量增加()9-30Bq/kg)。25号水中碘-131量在日立-茨城-金町-东京新宿-横滨小雀一线的分布具有一定的相似性(见图一)。而根据这一回归计算可确定西南向的最大的影响范围为369公里。这远小于我国日核泄漏源在西南方向距离我国的最小距离2000公里。

图一 西南向I-131的检测值线性变化和回归计算

图二 西向地表饮用水I-131含量的线性变化和回归计算

图三 西向地表饮用水I-131含量的线性变化和回归计算 从图而可以看出,当距离核泄漏源200km的地方,核放射性物质基本上就降为0,而我国的东北地区距离日核泄漏源的而最近距离为1000km,也就是说,在此模型的假设下,我国东北地区基本上不会受到的日核泄漏的影响,而由图一可以看出,在日核泄漏源的西南方向辐射物质的传播的方程可以用线性函数 建立核污染物质运动的方程

V1=-0.2172s+80.079(1)

由方程(1)求解可知当s=368.69时,核辐射量就降为0,而在西南方向,我国东南沿海距离日和辐射源最近的距离为2000公里,也就是日核泄漏物不会大量的传到我国。由于分子的扩散和海洋环流,肯定会有少量的污染物的传到我国,但不会对我国构成大的危害。

模型二

对于日核泄漏物得传播,我们首先建立一般的高斯扩散模型:

对于高架连续点源,若把坐标原点取在排放点正下方的地面上,X轴的正方向指向平均风方向,Y轴在水平面上垂直于X轴,Z轴垂直向上延伸,则高斯模式的基本形式是:

(ZHc)(ZHc)Qy2C(x,y,z,Hc)[]exp[2]*[exp[]exp[]] 222Uyz2y2z2zHc2y2C(x,y,z,Hc)exp[22]

Uyz2z2zQ22高架点源的地面浓度是:

但由于在实际应用中,高斯模式的限制条件太过于苛刻,主要有:①下垫面平坦,开阔,性质均匀,平均流场平直,稳定,不考虑风场的切变;②扩散过程中,污染物本身是被动,保守的。及污染物和空气是无相对运动,且扩散过程中污染物无损失,无转化。污染物在地面被反射;③扩散在同一温度层结中发生,平均风速大于1.0m/s;④适用范围一般小于10~20km。由于这些限制条件过于苛刻,不利于模型在实际中的扩散,为了使建立的模型更具有推广性,下面将建立更具一般性的ADMS模型(该模型有PDF模式,小风对流尺度模式,Loft模式):

PDF模式:在不稳定条件下,对低浮力核污染物采用weil的PDF模式计算地面的浓度,即: CCy2Yexp{1YYF2[]} 2y式中的Y由下式决定:

(zx/u)/[10.5x/(uTxy)1/2(Fm0.1)]1/32/3Y1.6FmXmZi(Fm0.1,u/wm2)

1/32/30.8FmXmZi式中Cy由下是确定:

Cyuh22F1h122F2h22F1exp[]exp[] Q2x12x22x12x12x2

小风对流尺度模式:

在不稳定条件下,对高浮力核泄漏污染物采用briggs的小风对流尺度模式,即: 当:x<10F/W*3

1YYp2C0.021Qw*x(FZi)exp[()]

2y31/34/3y1.6F1/3X2/3Zi

当:x≥10F/w3

7F3/21YYp2C[Q/(wxh)exp[(3)]exp[()]]

zw2yy0.6XZi

Loft模式: 对近中性条件下的高浮力核泄漏物,采用Weil的Loft模式,即:

Q1YYp2C[1erf()]exp[()] y22Z1uy1.6F1/3X2/3u1(L0或LO3且u/w2)y1/32/3u10.8FX(L0且u/w<2)由于人体对核辐射有一定的抵抗能力,只有当地表的和辐射物质的浓度超过50毫西弗时才会对人体产生明显的影响;为了计算地表的核辐射物得浓度,以下基于一般高斯模型系统中的采用有面源高度的ADTL模型来计算由面源产生的污染物浓度。该模式的应用要根据具体情况,把他们分为多箱排列的面源,并假设源强的空间分布均匀,污染的扩散遵循一定的规律,计算某点的地面浓度为:

CQ1YYp2[1erf()]exp[()] y2y2Z1u1(i)LNL/212yx1h21h22KA[]{Q0exp[22dx]Qfexp[22dx]} qq0bx1bxu2bxq2bxqi1(i)L2由于日本核泄漏的具体情况,将高度大于100m的核泄漏物作为电源处理,100m以下的核泄漏物作为面源处理。

高斯模式中的y和z的选取则应该根据具体情况而定,根据我国各个监测点的监数据,统计得到中性层结是y和z的一般表达式如下: y=0.1984x0.9601 z=0.3743x0.8203

(本文主要针对中性层结进行数值描述)。由监测统计数据同时可以知道中性层结时

U的表达式为:

U=2.9[Z/10]0.29 式中He的选取HeHsh

利用上述两种模型计算了4月我国东北,华北,东南地区3个监测点的核辐射物质的日均浓度,表一给出了监测点计算得到的和辐射物质日均浓度和实测浓度值

表一

不同模式核辐射物质浓度计算值及实测日均值/(mSv/m3)高斯模式 ADMS模式

监测点 计算值 误差(/%)计算值 误差(/%)实测值 样本数 东北 5.68-131 7.12 8.9 6.54 10 华北 14.07-12.4 17.31 7.8 16.06 10 东南 8.7-14.7 9.19-11.3 10.36 10

由表一可知,用高斯模型计算时,地面浓度日均值均小于相应的监测值 用ADMS模型计算时,有两个点位的计算值大于监测日均值,另一个点位则相反,监测值大于日均值。而且实际监测的值和计算得到的值都表面,日核泄漏无不会对我国造成大的伤害。也就是说我国全境是安全的。

模型三 全球可以看成是一个大的生态系统,核泄漏物不仅可以通过空气的扩散传播,也可以通过海洋环流扩散,由于我国和日本是隔海相望的邻国,而日本在核泄漏事故后,也将大量的和污染物倾倒进海洋,而此部分核泄漏物是否会影响我国的沿海地区,主要取决于大气输送沉降和海洋自身环流输送两个方面。另外由于,核泄漏物质在海洋中的传播速度极慢,而且很容易被吸收,而且从海洋大气方面看,日本福岛核电站事故发生地处于西风带,盛行西向风,核辐射物质会向偏东方向扩散,而我国位于日本西侧,所以辐射物质只会离我们越来越远。从海洋洋流方向看,事故海域3月份平均洋流方向是向东北方向的,如果有放射性物质泄漏,也会被输运到日本以东的西北太平洋海域。实际上,通过实际监测结果叶表面,日本核泄漏未对我国海洋造成危害。例如:北海分局于3月13日派出“中国海监23”船,在位于日本福岛核电站约1600公里的黄海中部进行了海水取样,并于14日返回山东青岛。监测机构对采集的海水样本进行监测发现,海水样本中的总β含量处于我国近海海域天然放射性本底范围,日本福岛核电站事故未对黄海中部海域造成影响。

3月16日上午,“中国海监23”船和“中国海监15”船搭载国家海洋局北海环境监测中心8名技术人员,在距离日本福岛核电站1781公里的黄海相关海域再次进行海水取样和大气γ辐射剂量率监测。监测结果显示:海洋大气中的γ辐射剂量率处于正常本底水平,日本福岛核电站事故未对黄海中北部海洋大气造成影响。据3月17日7时大气监测结果显示,黄海中北部海域海洋大气中的γ辐射剂量率处于正常本底水平,未见异常,未受到日本核电站爆炸事故影响。

我们也可以通过数学模型对这一情况进行说明。

P=(s-vtB)/S 放射性物质在海洋中一次方程向四周扩散,根据气象部门的预测报告,放射性物质在海洋中的传播过程,大致如下图二所示:图3 给出了日本福岛事故发生后10, 20, 30 和50 d 的核泄漏物质随海流输运扩散的分布情况.图中箭头代表模拟的平均环流场分布, 流速小于0.2 m/s 的分布略去,红色实线表示泄漏源处核物质1/1000 浓度的等值线分布, 以其表征核泄漏物质的影响范围.可以看出,20 d 后, 核泄漏物质向北输运扩散到约38.5°N 位置向东转向;50 d 内, 核泄漏物质随海流沿日本东海岸向东北输运扩散, 远离中国海域.整体看来, 核泄漏物质在海表面输运速度比大气中慢得多, 且限制在一个窄带范围内.图2 假定福岛核泄漏物质源在不同高度(近地面(a)、5(b)和10 km(c)),模式预测的核泄漏物质影响范围。紫色、红色、绿色、蓝色、墨绿色和黑色实线分别代表预测的不同时刻(3, 5, 10, 15, 20, 30 d)全场最高浓度10%的浓度等值线, 以其代表核泄漏物质影响范围.在3 月14 日最靠近福岛的大气模式网格点3 层不同高度处分别放置浓度为1.0 的核泄漏物质,(a)中各时刻(3,5, 10, 15, 20, 30 d)边缘线浓度值分别为1×104, 5×105, 1×105, 3×106, 2×106, 1×106;(b)和(c)中各时刻(3, 5, 10, 15, 20 d)边缘线浓度值分别为1×104, 5×105, 2×105, 7×106, 5×106

图3 模式预测的海洋表层流场(矢量)分布和核泄漏物质在海洋表层的影响范围(红线内)红线表示泄漏源处核物质0.001 浓度的等值线分布, 靠近福岛海洋网格点浓度设置为1.0.a)~(d)分别代表核物质泄漏后10, 20, 30 和50 d 后的影响范围

若核泄漏物质进入海洋, 则会随海洋表层通道向东北缓慢输运, 50 d 后到达150°E 左右, 但影响范围仅限于一条窄带内。

六.模型结果的分析

通过问题一的线性模型可以直观的看出和辐射物质在传播过程中会被大气中的一些物质吸收,以使得距离核泄漏源越远的地方,核辐射强度就越弱,由模型一的计算可知,在距离日本核辐射源西北方向200km的地方,和辐射物质基本上就降弱为0,在西南方向距离核辐射源368.69km的地方,核辐射物质浓度也降为0,而日本核辐射源在西北方向距离我国最近的为1000km,西南方向距离我国最近的为2000km,可以看出,日本核辐射污染物不会大量的扩散到我国,而高斯模型和ADMS模型,通过计算,我国距离日本最近的几个监测点的放射性核物质浓度分别为东北7.12mSv/m3,华北17.31mSv/m3,东南9.19mSv/m3,这与实际监测值东北6.54mSv/m3,华北16.06 mSv/m3,东南10.36 mSv/m3的误差仅为8.9%,7.8%,-11.3%,而对我们人体安全的核放射性物质浓度为不高于50mSv都不会对人体产生明显的伤害,所以从理论计算上和实际监测都表明我国不会直接受到日本核泄漏污染物质的危害。

据日本防卫省透漏,3月25日是福岛第一核电站核泄漏扩散范围最大的时间。3月底至4月中旬,以WHO环保标准衡量核泄漏影响范围已不断趋于缩小。尽管福岛第一核电站核泄漏级别被提升至最高级别7级,在离福岛第一核电站西北方向40公里的饭馆村土壤中检测到铯-137达到163000 Bq/公斤,但广泛的面上监测数据表明4月下旬核泄漏影响范围趋于相对稳定。

DCG(derived concentration guideline)标准(饮用水与食品)和DAG标准(derived air guideline)(大气环境, 5.7Sv/小时)衡量, 超标范围被限定在离福岛第一核电站西北方向长45公里左右,宽小于15公里的狭长范围内,面积达600平方公里左右(图1)。这一范围对环境的严重影响将会持续到10年以上 以WHO环保标准衡量(饮用水碘-131和铯-137小于5Bq/升;大气环境放射性辐射剂量小于5.7Sv/小时×0.04%=0.23Sv/小时, 也相当于地表自然环境背景值的上限),不达标的范围在10000平方公里左右(图2)。离福岛第一核电站60-80公里的福岛市、群山市、白河市一线虽大气环境放射性辐射剂量在0.6-1.6Sv/小时左右,但饮用水水碘-131和铯-137已降至WHO环保标准以下。因此这一带在数月后也会达到WHO环保标准要求,以WHO环保标准衡量不达标的范围将会缩小到5000平方公里以内。与切尔诺贝利泄漏影响范围(6万平方公里)相比,福岛第一核电站核泄漏影响范围要小得多。从切尔诺贝利到福岛核泄漏事件,是人类和平利用核能的又一次经验和教训,应当说也是一次不小的进步。

其实一次达到7级的核泄漏(释放1018 Bq),相当的碘-131重量只有2.2克左右。其中95%会沉降在附近600平方公里范围内;99.5%会沉降在300公里半径范围内,有可能扩散到全球的量不过是几毫克。全球每平方米球面角能分到的量小于0.1Bq,而地表每立方米的岩石平均释放的放射性达1×106 Bq。核泄漏碘-131只占天然放射性的千万分之一。因此我国没有任何理由去紧张和恐慌

另外通过建立海洋环流的模型分析,也表面日核泄漏放射性物质不会通过海洋环流的形式直接危害到我国。由于太平洋的大气和海洋环流特点,日核泄漏物质主要会向太平洋西岸流动

七、模型的评价及推广

本文通过建立了三种不同的模型来计算日核污染是否会对我国构成危害,模型一的线性规划虽然过于理论,但对于我们研究问题也有一定的指导意义,在绝对理想的情形下,物质的运动确实具有一定的线性相关性,而且我们往往也是从简单模型入手,逐步将模型细化,实际化以得出更具有一般性和推广性的模型。在模型二中,用通过建立高斯模型和ADMS模型,既比较了两种模型对实际问题的处理能力,也进一步将问题一的模型推广到实际应中。但这两类模型仍然具有一定的限制性,主要表现在(1)扩散参数yz的计算在目前主要有廓线法和经验公式法.但是这2种方法所得扩散参数都有一定的局限性,建议在应用时,结合对当地长期气象观测与污染物扩散监测资料的分析.给出适合于当地的扩散参数计算方法(2)对f区域或更大的范围,一般来说高斯模式不太适用.这时候要采用其他的扩散模式.在选择所要采用的模式时,既要考虑到模式的优点,同时还要考虑到诸如模式对源资料的要求、模式的计算量、模式分辨率等因素.尽可能地做到优化模式,提高效率。(3)对于局地扩散,在地形不太复杂的条件下.可 采用高斯模式,这样不但计算速度快.同时计算精度也不会受太大影响:如果地形比较复杂 可以采用地形订正和考虑风切变影响的高斯模式。(4)在利用高斯扩散模式时.很多时候要考虑将面源简化为点源,这时候只要比较两者的计算结果(面源可以看作是点源的积分,如果差异不是很大(一般用最大浓度的相对偏差不超过某个百分数或下风向某个距离以后,相对浓度差异很小来判断-,则可以将面源简化为点源。(5)如果要获得理论上更合理的计算模式,若采用直接解扩散方程类的扩散模式,可以嵌套流场预报模式,这时候一定要注意2个模式接口程序的设计;若果用高斯模式,流场可以采用台站的风、温预报结果.计算结果是否能够令人满意,主要就看流场预报结果。但在实际中还有很多有毒气体的排放,像SO2,NH3等气体的排放及其扩散,我们通过建立高斯模型和ADMS模型,研究他们的扩散规律及危害。也有一定的指导意义。

模型三通过建立核泄漏物质通过海洋环流传播的方式污染,但由于太平洋的环流特点,可以看出,通过海洋环流并不会对我国造成直接的危害,海洋环流主要对美国和加拿大的太平洋西岸的国家产生影响。

参考文献:

【1】 姜启源 谢金星 叶俊 编.【数学模型】 高等教育出版社,2003 【2】 牛文胜 孙振海 大气扩散模式的简要回顾 气象科技 2000年

【3】孙大伟 新一代大气扩散模型(ADMS)应用研究 朝阳市环境科学研究所 【4】乔方利 王关锁 赵伟 赵杰臣 戴德君 宋亚娟 宋振亚 2011年3月日福岛核泄漏物质输运扩散路径的情景模拟和预测 科学通报 2011年

附录:

【1】 国际上有着两类不同的放射性物质安全标准。一类是DCG标准,根据在固定环境生活一年产生1mSv辐射剂量推算的特定放射性物质浓度。另一类为环保标准,以特定放射核素的区域平均自然放射性背景值加二倍标准差,或DGC标准的4%来确定。因此DGC标准常是环保标准的20-50倍。同时各个国家对这两类标准确定也有相当的差别。以以碘-131为例日本对自来水的DCG标准为300Bq/升,美国和世界卫生组织(WHO)的DCG标准为110 Bq/升。自来水的环保标准,加拿大为6 Bq/升,WHO为5 Bq/升,而美国为1.5 Bq/升日本没有具体规定,按计算应是12 Bq/升。对空气也有相应的不同标准。日本的环境标准是比其它发达国家宽的。机构发布的信息和传媒的报导,常常是什么不超标,或超标多少倍等等。如果是没有说是用什么标准,这些信息将是很模糊的。如报导说:“日本福岛地区自来水、牛奶碘-131超3-5倍”和“香港从日本进口的菠菜碘-131含量超标10倍”,那个高?由于用了不同的标准,导致了错误的理解,实际上前者高了30倍。“日本13个都县检测出自来水含有放射性物质”的报导说法也是不妥的。实际上是自来水碘-131已超过了WHO环卫标准。能检测出自来水含有人工放射性物质远不止这些地区。如东京新宿地区自来水碘-131在3月18日为1.47 Bq/升,属自然背景值,19-20日为2.85-2.93 Bq/升, 已检测出有污染加入的放射性物质;21日达到5.25 Bq/升, 已超标;22日升至18.7 Bq/升, 超标了3倍

第五篇:日本福岛核泄漏事故经过以及对中国的影响

日本福岛核泄漏事故经过以及对中国的影响

2011年3月11日13时46分,日本近海发生9.0级地震,随之导致的海啸和核泄漏危机使这个国家陷入了前所未有的灾难之中。地震海啸纯属天灾无法避免,然而核泄漏危机却可以说是真正的人祸。

福岛第一核电站位于福岛工业区,同在该工业区内的有福岛第二核电站。两个核电站统称为福岛核电站。第一核电站共有6个反应堆,第二核电站拥有4个反应堆。经受地震及海啸袭击后,第一核电站6个反应堆均出现程度不等的异常情况。

核泄漏原因之一:技术缺陷、设备老化、选址不科学等因素是此次日本核泄漏事故不断发酵的原因。

福岛第一核电厂1号反应炉1971年开始运转,运行时间将近40年,严重老化。据悉,日本很多核电设备不少已是“超期服役”,使用寿命接近或超过25至30年的最长年限。据日本媒体报道,今年2月7日,东京电力公司完成了对于福岛第一核电站1号机组的分析报告,报告称机组已经服役40年,出现了一系列老化迹象,包括反应堆压力容器的中性子脆化、热交换区气体废弃物处理系统出现腐蚀等。抗震标准老化也为事故埋下了隐患。日本早期核电站设计抗震标准为里氏6.5级。2006年日本修改了核电站抗震标准,将这一标准提高到抗震能力最大为里氏7.0级。但目前日本国内55座核电站中,只有静冈县的滨冈核电站达到了最新抗震标准。据东京电力公司文件显示,对第一和第二核电站的地震测试假设,最高只有7.9级,换言之,该核电站的安全设计水平,远未达到抵御9级地震的标准。

11日下午,日本东北部海域发生9级强震,并引发强烈海啸,当天日本电力公司宣布,其在日本北部女川町工厂的三座核反应堆自动关闭。然而,几天后相继传来核电站爆炸和反应堆受损的消息。部分专家通过媒体上描绘的各个节点的场景为记者勾勒出福岛核电站核泄漏的大致过程:

由于核裂变的链式反应在地震之初就已自动停止,所以在核反应堆内的燃料棒不会发生像原子弹那样的核爆炸。所谓堆芯熔化,是指核反应堆温度上升过高,造成燃料棒熔化并发生破损事故。失去冷却水后,堆芯水位下降,燃料棒露出水面,燃料中的放射性物质产生的热量无法去除,随后温度持续上升会导致这种情况。

据日本媒体报道,操作人员尝试打开阀门,释放反应堆容器内的蒸气以让反应堆内的压力下降,爆炸声响起,厂房轰然倒塌。有专家分析,反应堆堆芯附近蒸汽外泄后产生的氢气和周围空气中的氧气发生反应引发爆炸,这场爆炸有可能导致护罩安全壳局部受损,从而导致铀燃料能够对外放射。无法有效对堆芯降温正是这次事故的关键所在。由于发电机在地震中遭到损毁,冷却水循环制冷系统无法正常工作,导致水温升高,接近沸点,这加大了堆芯暴露的风险。“向堆芯注水使之冷却的堆芯紧急冷却装置在最后关头的接连失效,是事态迅速恶化的重要因素。”一位退休前在水利电力部担任高级技术官员的专家告诉本报记者。“控制棒、反应堆压力容器、厂房等多重防线都能防止放射性物质泄漏,但前提是堆芯不能熔化,这就需要紧急冷却装置起作用,但遗憾的是备用电源完全没有发挥作用。”该专家表示“核电站通常安排柴油发电机和干电池做备用电源,柴油发电机可能在地震中被摧毁,干电池不可能维持很久。对于多震的日本来说,没有设计到这一点不得不说是个大破绽。”无法自发循环用冷却水冷却堆芯,日本人开始决定用灌海水的方法强行冷却,“这对日方是个艰难的抉择,因为灌注海水意味着该反应堆无法再次运转。”

核泄漏原因之二:一味坚持核计划,害人害己。

日本福岛核电站发生核泄漏以后,日本政府隐瞒了很多相关方面的信息,比如泄露的时间,地点,程度等。自日本核泄漏事件发生以后,日本政府一直拒绝外国甚至美国相关安全专家介入核泄漏问题,这是有原因的。首先,日本的核反应堆的结构相较国际通用的反应堆有很大的不同,比如控制棒的插入是自下而上的,当出现问题的时候想插入控制棒控制住反应堆非人力不可,而且各种资料显示,日本这种堆结构是可以生产武器级的高浓度核燃料,显然其背后隐藏的就是日本不可告人的核计划,这就是日本政府不愿透漏任何具体信息的根本原因了。

对于日本的核泄露事件,中美俄等世界大国都有相应的评估方式,通过卫星对反应的堆温度的探测可以推理各堆的实际控制情况,通过高空采样和地面采样等凡是评估出实际污染情况,并已经做出了相应的应对动作。美军在事件一发生后,就将相当数量的液氦运送到位,让日本注入反应堆,这相当于让反应堆来了一回安乐死,但是日本政府并没有采取世界核强国的相关安全措施,固执己见,终于酿成惨祸。

日本福岛核泄漏事故不仅仅是一次天灾,同时也是一场人祸,对日本本土造成了相当坏的影响,同时也给世界各国带来了很大的影响。

从目前的情况来看,日本核泄漏对我国没有产生影响。我国位于日本国西面,中间有日本海、朝鲜半岛、黄海、东海相隔。所以从扩散途径看,日本核泄漏产生的放射性污染沉降物扩散区域距离我国较远,而且会随着风向进一步远离我国。洋流方面,根据洋流气候特征,福岛外海为偏东至东北流向;根据风浪预报,福岛外海以偏北至西北的浪向为主,间或有短时的西到西南的浪向。综合分析,核扩散物将随洋流及风浪向东至东北方向移动,在近期不会对我国沿海造成大的影响。相关专家同时指出:核泄露传播一般有两个途径,一个是呈粉尘状飘散,另一个是通过食物、水等传播,其中粉尘通过呼吸道进入人体或者直接黏附在人的皮肤上,对人体伤害较大,日本福岛核电站里的放射性元素主要是通过水作为介质流出来,就算风向改变,向中国近海方向吹来,单位面积的浓度也将呈递减之势,不必过分恐慌。

目前,我国已经全面启动全国辐射环境监测网络,自3月12日起,环境保护部已全面启动全国辐射环境监测网络,对这一事故进行密切跟踪,监测结果在环境保护部网站上公布。同时,相关部门将24小时连续密切监视核危险区域的发展状况,启动核应急预报系统,分析扩散趋势,为决策部门和社会公众提供最及时、最精确的核应急预报产品。一旦发现异常,将第一时间向社会公众公布。关于核污染食品问题,日本相关部门已全面开启监督制度,中国海关也对于从日本运来的产品进行严格的监测,这就杜绝了核污染通过食品渠道向中国扩散的可能。

总的来说,日本核泄漏事件是人类的又一次大灾难,可以与切尔诺贝利事故相比了,但目前为止核污染的范围仅仅控制在福岛附近海域,并未对我国产生较大影响,并不会影响人们的日常工作生活。

为掌握日本福岛核泄漏对西太平洋及我国海洋环境的影响
TOP