第一篇:普通混凝土配合比设计、试配与确定试验检测继续教育试题及答案
第1题
已知水胶比为0.40,查表得到单位用水量为190kg,采用减水率为20%的减水剂,试计算每方混凝土中胶凝材料用量 kg A.425 B.340 C.380 D.450 答案:C
您的答案:C 题目分数:3 此题得分:3.0 批注:
第2题
普通混凝土的容重一般为 _____ kg/m3 A.2200~2400 B.2300~2500 C.2400~2500 D.2350~2450 答案:D
您的答案:D 题目分数:3 此题得分:3.0 批注:
第3题
已知水胶比为0.35,单位用水量为175kg,砂率为40%,假定每立方米混凝土质量为2400kg,试计算每方混凝土中砂子用量 kg A.438 B.690 C.779 D.1035 答案:B
您的答案:B 题目分数:3 此题得分:3.0 批注:
第4题
某材料试验室有一张混凝土用量配方,数字清晰为
1:0.61:2.50:4.45,而文字模糊,下列哪种经验描述是正确的。A.水:水泥:砂:石 B.水泥:水:砂:石 C.砂:水泥:水:石 D.水泥:砂:水:石 答案:B
您的答案:B 题目分数:3 此题得分:3.0 批注:
第5题
预设计 C30 普通混凝土,其试配强度为()MPa A.38.2 B.43.2 C.30 D.40 答案:A
您的答案:A 题目分数:3 此题得分:3.0 批注:
第6题
关于水灰比对混凝土拌合物特性的影响,说法不正确的是()A.水灰比越大,粘聚性越差 B.水灰比越小,保水性越好 C.水灰比过大会产生离析现象 D.水灰比越大,坍落度越小 答案:D
您的答案:D 题目分数:3 此题得分:3.0 批注:
第7题
要从控制原材料的的质量上来确保混凝土的强度,以下说法不正确的是()。
A.尽量使用新出厂的水泥
B.选用含泥量少、级配良好的骨料 C.对水质没有要求 D.合理选择、使用减水剂 答案:C
您的答案:C 题目分数:3 此题得分:3.0 批注:
第8题
配制C30混凝土,假定配制强度为38MPa,胶凝材料28d胶砂抗压强度为45MPa,则按标准计算水胶比为,采用碎石。A.0.56 B.0.54 C.0.5 D.0.48 答案:A
您的答案:A 题目分数:3 此题得分:3.0 批注:
第9题
当混凝土拌合物表观密度与计算值之差的绝对值不超过计算值的 不进行校正系数调整。A.0.005 B.1% C.0.02 D.5% 答案:C
您的答案:A 题目分数:3 此题得分:0.0 批注:
第10题
关于合理砂率对混凝土拌合物特性的影响,说法不正确的是()。A.流动性最小 B.粘聚性良好 C.保水性良好 D.水泥用量最小 答案:A
您的答案:A 题目分数:3 此题得分:3.0 批注:
第11题
用于清水混凝土的砂,应符合以下哪些要求
A.配制混凝土所用水泥的品种,应根据工程性质、部位、工程所处环境等,参考各水泥品种特性进行合理选择
B.水泥强度等级的选择应与混凝土的设计强度等级相适应 C.水泥强度选用过高,不但成本较高,还会新拌混凝土施工操作性能不良
D.可用强度较低的水泥来配置较高强度的混凝土 答案:A,B,C
您的答案:A,B,C 题目分数:5 此题得分:5.0 批注:
第12题
下列关于混凝土和易性的说法正确的有
A.混凝土的和易性就是指混凝土的稠度,稠度满足要求,混凝土和易性就满足要求;
B.混凝土的和易性包括混凝土的稠度,粘聚性和保水性; C.坍落度筒提起后无稀浆或仅有少量稀浆自底部析出,则表示混凝土的粘聚性良好;
D.影响混凝土和易性的因素很多,不能单一的断定造成和易性不好的原因,应通过试验确定; 答案:B,C,D
您的答案:B,D 题目分数:5 此题得分:0.0 批注:
第13题
下列关于混凝土配合比设计的说法正确的有。A.粗骨料的最大粒径用于选择单位体积用水量和砂率; B.当采用体积法进行混凝土配合比设计时,在不使用引气剂和引气型减水剂时,混凝土含气量可取0;
C.在计算配合比的基础上应进行试拌,计算水胶比宜保持不变,通过调整其他参数使混凝土拌合物性能符合设计和施工要求,然后修正计算配合比,并提出试拌配合比;
D.在试拌配合比的基础上进行强度试验,采用三个不同水胶比的配合比进行试验,另外两个配合比的水胶比较试拌配合比分别增加和减少0.05,用水量与试拌配合比相同。答案:A,C,D
您的答案:A,B,C,D 题目分数:5 此题得分:0.0 批注:
第14题
混凝土拌合物的工作性选择可依据()。A.工程结构物的断面尺寸 B.钢筋配置的疏密程度 C.捣实的机械类型 D.施工方法 答案:A,B,C,D
您的答案:A,B,C,D 题目分数:5 此题得分:5.0 批注:
第15题
在混凝土配合比设计时,水灰比应满足()A.和易性要求 B.强度要求 C.耐久性要求 D.经济性要求 答案:A,B,C
您的答案:A,B,C 题目分数:5 此题得分:5.0 批注:
第16题
用于清水混凝土的砂,因符合以下哪些要求
A.配制混凝土所用水泥的品种,应根据工程性质、部位、工程所处环境等,参考各水泥品种特性进行合理选择
B.水泥强度等级的选择应与混凝土的设计强度等级相适应 C.水泥强度选用过高,不但成本较高,还会新拌混凝土施工操作性能不良
D.可用强度较低的水泥来配置较高强度的混凝土 答案:A,B,C
您的答案:A,B,C 题目分数:5 此题得分:5.0 批注:
第17题
水泥混凝土配合比设计步骤包括()。A.计算初步配合比 B.提出基准配合比 C.确定试验室配合比 D.换算施工配合比 答案:A,B,C,D
您的答案:A,B,C,D 题目分数:5 此题得分:5.0 批注:
第18题
下列有关配制混凝土的说法正确的是()。
A.用较粗的砂拌制混凝土比用较细的砂所需的水泥浆少,故应优选粗砂
B.配制混凝土时优选Ⅱ区砂
C.当采用Ⅰ区砂时,应适当降低砂率,以保证混凝土强度 D.混凝土用砂应遵循就地取材的原则 答案:B,D
您的答案:A,B,C,D 题目分数:5 此题得分:0.0 批注:
第19题
石子的最大粒径是指石子公称粒径的上一粒级。答案:正确
您的答案:正确 题目分数:3 此题得分:3.0 批注:
第20题
掺合料与外加剂主要不同之外在于外加剂参与了水泥的水化过程。答案:错误 您的答案:错误 题目分数:3 此题得分:3.0 批注:
第21题
通常情况下,混凝土的水灰比越大,其强度越大。答案:错误
您的答案:错误 题目分数:3 此题得分:3.0 批注:
第22题
混凝土配合比设计中,选用合理砂率的主要目的是提高混凝土的强度。答案:错误
您的答案:错误 题目分数:3 此题得分:3.0 批注:
第23题
设计混凝土配合比时,选择水灰比的原则是混凝土强度的要求与最大水灰比的规定。答案:正确
您的答案:正确 题目分数:3 此题得分:3.0 批注:
第24题
在设计混凝土配合比时,配制强度要比设计要求的强度等级高些,是为了保证工程中混凝土具有设计所要求的 95%的强度保证率。答案:正确
您的答案:正确 题目分数:3 此题得分:3.0 批注:
第25题
在试拌混凝土时,发现混凝土拌合物的流动性偏大,应采取直接加水泥。答案:错误
您的答案:错误 题目分数:3 此题得分:3.0 批注:
第26题
混凝土配比设计时,最佳砂率是依据水灰比、石子种类和最大粒径确定的。答案:正确
您的答案:正确 题目分数:3 此题得分:3.0 批注:
第27题
当混凝土拌合物流动性偏小时,应采取调整砂率的办法来调整。答案:错误
您的答案:错误 题目分数:3 此题得分:3.0 批注:
第28题
清水混凝土表面出现花纹斑或粗骨料透明层原因为混凝土含砂量过低、石子形状不好、模板不光滑或有挠曲、振捣过度或外部振捣 答案:正确
您的答案:正确 题目分数:3 此题得分:3.0 批注:
试卷总得分:82.0 试卷总批注:
第二篇:C30普通混凝土配合比设计报告
C30普通混凝土配合比设计报告
试验完成时间:202_年09月25日
设计编号:GHS1-0017
一、概述:
C30普通混凝土配合比主要用于广东怀集至广西贺州高速公路灵峰(桂粤界)至八步段公路桥梁工程。使用部位为桥梁墩柱、台身、盖梁、护栏、涵洞盖板、搭板等。设计所用原材料均取自工地料场。
二、设计依据:
1、JGJ55—202_《混凝土配合比设计规程》;
2、JTG E30—202_《公路工程水泥及水泥混凝土试验规程》;
3、JTJ041—202_《公路桥涵施工技术规范》。
4、广贺高速公路灵峰(桂粤界)至八步段设计文件。
三、工程要求:
1、强度等级:C30普通混凝土;
2、混凝土入模坍落度:140~160mm;
3、水灰比:0.40~0.55;最大水泥用量≤500 kg/m3;
4、砂率:30%~40%;
5、碎石针片状含量≤15%,最大粒径<37.5mm,含泥量≤1%;
6、砂含泥量≤3%;
四、设计步骤:
1、原材料的质量检测与选定
a、水泥:海螺水泥有限公司生产的海螺牌P·O42.5水泥,各项指标均符合要求。(试验报告附后)
b、砂:南丰砂场中砂,细度模数MX=2.78,含泥量1.6%(试验报告附后);
c、石子:采用西莨石场碎石, 5~31.5mm连续级配,最大粒径31.5mm,含泥量0.8%。(试验报告附后)d、水:河水。(试验报告附后)e、外加剂:采用山西远大化工建材有限公司生产的YD—1型缓凝减水剂(水剂,浓度为30%),最佳掺量经试验确定为水泥重量的2.0%,实际减水率18%。2、配合比设计:
a、基准配合比设计(001-1)
①试配强度:
fcu.0= fcu.k+1.645σ=30+1.645×5=38.2(MPa)②计算水灰比: W/C=aa·fce/(fcu0+aa·ab·fce)=0.46×42.5/(38.2+0.46×0.07×42.5)=0.49 即取
W/C=0.49;
③计算用水量: mw0按经验选取225kg/m3,掺缓凝减水剂2.0%,减水率18%,则 mw0=225×(1-18%)=184(kg/m3);
④计算水泥用量: mc= mw0÷W/C=184÷0.49=376(kg/m3)该水泥用量满足规范要求。
⑤计算砂率:βs0按经验选取38%;
⑥计算减水剂用量:mj=376×2.0%=7.52(kg/m3)⑦砂石重量,设混凝土密度为2420kg/m3。
376+ms0+mg0+184+7.52=2420
38%=ms0/(ms0+mg0)×100% 解之得:ms0=704(kg/m3)
mg0=1148(kg/m3)⑧初步配合比:
水泥:砂:碎石:水:减水剂
376 : 704 : 1148 : 184
:
7.52
: 1.87 : 3.05 : 0.49 :
0.020 试拌15L,则各档材料用量为: 材料名称
试拌用量(kg)
校正用量(kg)
水泥
5.64 无
砂
10.56 无
碎石
17.22 无
水
2.681 无
减水剂
0.1128 无
注:实际用水量从外加剂用量中折减70%的溶液水。
实测拌和物性能良好,出机坍落度165mm;30min后实测坍落度150mm;实测混凝土密度为:2430 kg/m3;计算密度=376+704+1148+184+7.52=2420 kg/m3; 则:∣2430-2420∣/2420=0.4%<2%; 根据JGJ55—202_《混凝土配合比设计规程》,当混凝土表观密度实测值与计算值之差的绝对值与计算值的比值不超过2%时,该配合比可不做调整。则基准配合比确定为(编号为001-1): 水泥:砂:碎石:水:减水剂
376 : 704 : 1148 : 184
:
7.52 1
: 1.87 : 3.05 : 0.49 :
0.020 水灰比W/C=0.49,砂率βs0=38%;
b、调整配合比(001-2)水灰比减少0.05,砂率减少1%,则 ①水灰比:W1/C1=W/C-0.05=0.49-0.05=0.44 ②砂率:βs1=38%-1%=37% ③用水量: mw0=184(kg/m3)
④计算水泥用量: mc= mw0÷W/C=184÷0.44=418(kg/m3)该水泥用量满足规范要求;
⑤计算减水剂用量:mj=418×2.0%=8.36(kg/m3)⑥计算砂石重量,设混凝土密度为2420kg/m3。
418+ms0+mg0+184+8.36=2420
37%=ms0/(ms0+mg0)×100% 解之得:ms0=670(kg/m3)
mg0=1140(kg/m3)⑦初步配合比:
水泥:砂:碎石:水:减水剂
418 : 670 : 1140 : 184
:
8.36
: 1.60 : 2.73 : 0.44 :
0.020
c、调整配合比(001-3)水灰比增加0.05,砂率增加1%,则 ①水灰比:W2/C2=W/C+0.05=0.49+0.05=0.54 ②砂率:βs2=38%+1%=39% ③用水量: mw2=184(kg/m3)④计算水泥用量: mc1= mw2÷W2/C2=184÷0.54=341(kg/m3)该水泥用量满足规范要求。
⑤计算减水剂用量:mj=341×2.0%=6.82(kg/m3)⑥计算砂石重量,设混凝土密度为2420kg/m3。
341+ms0+mg0+184+6.82=2420
39%=ms0/(ms0+mg0)×100% 解之得:ms0=736(kg/m3)
mg0=1152(kg/m3)⑦初步配合比: 水泥:砂:碎石:水:减水剂
341 : 736 : 1152 : 184
: 6.82
: 2.16 : 3.38 : 0.54 :
0.020 d、试拌校正(均按25L试拌,并已扣除外加剂中70%的溶液水)设计编号 材料名称
001—1
001—2
001—3
称量
实际用量
称量
实际用量
称量
实际用量
水泥(kg)
9.40 9.40
10.45
10.45 8.53 8.53
砂(kg)
17.60
17.60
16.75
16.75
18.40
18.40
碎石(kg)
28.70
28.70
28.75
28.75
28.80
28.80
水(kg)(kg)
4.468
4.468
4.454
4.454
4.481
4.481 减水剂(kg)
0.188
0.188
0.209
0.209
0.1705
0.1705
实测坍落度(mm)
165 150 170
实测混凝土密度(kg/m3)
2430
2415
2430
设计混凝土密度(kg/m3)
2420
2420
2420
根据JGJ55—202_《混凝土配合比设计规程》,当混凝土表观密度实测值与计算值之差的绝对值与计算值的比值不超过2%时,该配合比可不做调整。
六、确定理论配合比: 设计 编号
试配 强度(MPa)
水 灰 比
水泥 用量
(kg/m3)
坍 落 度
(mm)
配合比
7d 抗压 强度(MPa)
28d 抗压
强度(MPa)
001—1 38.2 0.49 376 165
376:704:1148:184:7.52 34.0 39.2
001—2 38.2 0.49 418 150
418:670:1140:184:8.36 38.4 43.6
001—3 38.2 0.49 341 170
341:736:1152:184:6.82 28.8 36.1
微膨胀混凝土配合比:(强度:C30)强度C30每立方混凝土材料用量: 水泥:砂:碎石:水:UEA膨胀剂
376 : 704 : 1148 : 184
:37.8~40kg
配合比: 1
: 1.87 : 3.05 : 0.49 :
0.1 水灰比W/C=0.49,砂率βs0=38%; 微膨胀混凝土配合比:(强度:C40)强度C40每立方混凝土材料用量:
水泥:水:砂:碎石: UEA膨胀剂 432 :168 :558 :1242
kg/m3 10 : 3.9 : 12.9 : 28.8:
37.6~39kg 1 : 0.39 :1.29 : 2.88 : 0.1 水灰比W/C=0.49,砂率βs0=38%;
注:灌缝前必须先扩深相邻附近处原切割缝 严格控制水灰比
材料要求:生活用水;中粗砂(含泥量不超3%);42.5普通硅酸盐水泥;有效外加剂。二〇一四年六月一日星期日
第三篇:普通混凝土配合比设计规程《JGJ 55-202_》
普通混凝土配合比设计规程
《JGJ 55-202_》 基本规定
3.0.1 混凝土配合比设计应满足混凝土配制强度、拌合物性能、力学性能和耐久性能的设计要求。混凝土拌合物性能、力学性能和耐久性能的试验方法应分别符合现行国家标准《普通混凝土拌合物性能试验方法标准》GB/T50080、《普通混凝土力学性能试验方法标准》GB/T50081和《普通混凝土长期性能和耐久性能试验方法标准》GB/T50082的规定。
3.0.2 混凝土配合比设计应采用工程实际使用的原材料,并应满足国家现行标准的有关要求;配合比设计应以干燥状态骨料为基准,细骨料含水率应小于0.5%,粗骨料含水率应小于0.2%。3.0.3 混凝土的最大水胶比应符合《混凝土结构设计规范》GB50010的规定。
3.0.4 混凝土的最小胶凝材料用量应符合表3.0.4的规定,配制C15及其以下强度等级的混凝土,可不受表3.0.4的限制。
表3.0.4 混凝土的最小胶凝材料用量
最大水胶比
最小胶凝材料用量(kg/m3)
素混凝土
钢筋混凝土
预应力混凝土 0.60
250
280
300 0.55
280
300
300 0.50
320 ≤0.4
5330 3.0.5矿物掺合料在混凝土中的掺量应通过试验确定。钢筋混凝土中矿物掺合料最大掺量宜符合表3.0.5-1的规定;预应力钢筋混凝土中矿物掺合料最大掺量宜符合表3.0.5-2的规定。表3.0.5-1 钢筋混凝土中矿物掺合料最大掺量 矿物掺合料种类
水胶比
最大掺量(%)
硅酸盐水泥
普通硅酸盐水泥 粉煤灰
≤0.40
≤45
≤35
>0.40
≤40
≤30
粒化高炉矿渣粉
≤0.40
≤65
≤55
>0.40
≤55
≤45 钢渣粉
-
≤30
≤20 磷渣粉
-
≤30
≤20 硅灰
-
≤10
≤10
复合掺合料
≤0.40
≤60
≤50
>0.40
≤50
≤40
注:① 采用硅酸盐水泥和普通硅酸盐水泥之外的通用硅酸盐水泥时,混凝土中水泥混合材和矿物掺合料用量之和应不大于按普通硅酸盐水泥用量20%计算混合材和矿物掺合料用量之和;
② 对基础大体积混凝土,粉煤灰、粒化高炉矿渣粉和复合掺合料的最大掺量可增加5%;
③ 复合掺合料中各组分的掺量不宜超过任一组分单掺时的最大掺量。
表3.0.5-2 预应力钢筋混凝土中矿物掺合料最大掺量 矿物掺合料种类
水胶比
最大掺量(%)
硅酸盐水泥
普通硅酸盐水泥 粉煤灰
≤0.40
≤3
5≤30
>0.40
≤25
≤20
粒化高炉矿渣粉
≤0.40
≤55
≤45
>0.40
≤45
≤35 钢渣粉
-
≤20
≤10 磷渣粉
-
≤20
≤10 硅灰
-
≤10
≤10
复合掺合料
≤0.40
≤50
≤40
>0.40
≤40
≤30
注:①粉煤灰应为Ⅰ级或Ⅱ级F类粉煤灰;
②在复合掺合料中,各组分的掺量不宜超过单掺时的最大掺量。
3.0.6 混凝土拌合物中水溶性氯离子最大含量应符合表3.0.6的要求。混凝土拌合物中水溶性氯离子含量应按照现行行业标准《水运工程混凝土试验规程》JTJ 270中混凝土拌合物中氯离子含量的快速测定方法进行测定。
表3.0.6 混凝土拌合物中水溶性氯离子最大含量
环境条件
水溶性氯离子最大含量(%,水泥用量的质量百分比)
钢筋混凝土
预应力混凝土
素混凝土 干燥环境
0.3
0.06
1.0 潮湿但不含氯离子的环境
0.2
潮湿而含有氯离子的环境、盐渍土环境
0.1
除冰盐等侵蚀性物质的腐蚀环境
0.06
3.0.7 长期处于潮湿或水位变动的寒冷和严寒环境、以及盐冻环境的混凝土应掺用引气剂。引气剂掺量应根据混凝土含气量要求经试验确定;掺用引气剂的混凝土最小含气量应符合表3.0.7的规定,最大不宜超过7.0%。
表 3.0.7 掺用引气剂的混凝土最小含气量
粗骨料最大公称粒径(mm)
混凝土最小含气量(%)
潮湿或水位变动的寒冷和严寒环境
盐冻环境 40.0
4.5
5.0 25.0
5.0
5.5 20.0
5.5
6.0
注:含气量为气体占混凝土体积的百分比。
3.0.8 对于有预防混凝土碱骨料反应设计要求的工程,混凝土中最大碱含量不应大于3.0kg/m3,并宜掺用适量粉煤灰等矿物掺合料;对于矿物掺合料碱含量,粉煤灰碱含量可取实测值的1/6,粒化高炉矿渣粉碱含量可取实测值的1/2。混凝土配制强度的确定
4.0.1 混凝土配制强度应按下列规定确定:
1.当混凝土的设计强度等级小于C60时,配制强度应按下式计算:
(4.0.1-1)式中,fcu,o——混凝土配制强度(MPa);
fcu,k——混凝土立方体抗压强度标准值,这里取设计混凝土强度等级值(MPa);
σ——混凝土强度标准差(MPa)。
2.当设计强度等级大于或等于C60时,配制强度应按下式计算:
(4.0.1-2)4.0.2 混凝土强度标准差应按照下列规定确定:
1.当具有近1个月~3个月的同一品种、同一强度等级混凝土的强度资料时,其混凝土强度标准
差σ应按下式计算:
(4.0.2)
式中,fcu,i——第i组的试件强度(MPa);
mfcu——n组试件的强度平均值(MPa);
n——试件组数,n值应大于或者等于30。
对于强度等级不大于C30的混凝土:当σ计算值不小于3.0MPa时,应按照计算结果取值;当σ计算值小于3.0MPa时,σ应取3.0MPa。对于强度等级大于C30且不大于C60的混凝土:当σ计算值不小于4.0MPa时,应按照计算结果取值;当σ计算值小于4.0MPa时,σ应取4.0MPa。
2.当没有近期的同一品种、同一强度等级混凝土强度资料时,其强度标准差σ可按表4.0.2取值。表4.0.2 标准差σ值(MPa)
混凝土强度标准值
≤C20
C25~C45
C50~ C55 σ
4.0
5.0
6.0 混凝土配合比计算 5.1 水胶比
5.1.1 混凝土强度等级不大于C60等级时,混凝土水胶比宜按下式计算:
(5.1.1-1)
式中 a、b——回归系数,取值应符合本规程5.1.2的规定;
fb——胶凝材料(水泥与矿物掺合料按使用比例混合)28d胶砂强度(MPa),试验方法应按现行国家标准《水泥胶砂强度检验方法(ISO法)》GB/T 17671执行;当无实测值时,可按下列规定确定:
1.根据3d胶砂强度或快测强度推定28d胶砂强度关系式推定fb值;
2.当矿物掺合料为粉煤灰和粒化高炉矿渣粉时,可按下式推算fb值:
(5.1.1-2)
式中 f、s ——粉煤灰影响系数和粒化高炉矿渣粉影响系数,可按表5.1.1选用;
fce,g——水泥强度等级值(MPa)。
表5.1.1粉煤灰影响系数f和粒化高炉矿渣粉影响系数s
掺量(%)
种类
粉煤灰影响系数f
粒化高炉矿渣粉影响系数s 0
1.00
1.00 10
0.90~0.95
1.00 20
0.80~0.85
0.95~1.00 30
0.70~0.75
0.90~1.00 40
0.60~0.65
0.80~0.90 50
0.70~0.85
粒化高炉矿渣粉影响系数s
第四篇:普通混凝土通用配合比
要看混凝土的强度等级啊,强度等级不同,量也不同
混凝土按强度分成若干强度等级,混凝土的强度等级是按立方体抗压强度标准值fcu,k划分的。立方体抗压强度标准值是立方抗压强度总体分布中的一个值,强度低于该值得百分率不超过5%,即有95%的保证率。混凝土的强度分为C7.5、C10、C15、C20、C25、C30、C35、C40、C45、C50、C55、C60等十二个等级。
混凝土配合比是指混凝土中各组成材料(水泥、水、砂、石)之间的比例关系。有两种表示方法:一种是以1立方米混凝土中各种材料用量,如水泥300千克,水180千克,砂690千克,石子1260千克;另一种是用单位质量的水泥与各种材料用量的比值及混凝土的水灰比来表示,例如前例可写成:C:S:G=1:2.3:4.2,W/C=0.6。
常用等级
C20
水:175kg水泥:343kg 砂:621kg 石子:1261kg 配合比为:0.51:1:1.81:3.68 C25
水:175kg水泥:398kg 砂:566kg 石子:1261kg 配合比为:0.44:1:1.42:3.17
C30
水:175kg水泥:461kg 砂:512kg 石子:1252kg 配合比为:0.38:1:1.11:2.72.......普通混凝土配合比参考:
水泥
品种 混凝土等级 配比(单位)Kng 塌落度mm 抗压强度 N/mm2
水泥 砂 石 水 7天 28天
P.C32.5 C20 300 734 1236 195 35 21.0 29.0 1 2.45 4.12 0.65 C25 320 768 1153 208 45 19.6 32.1 1 2.40 3.60 0.65
C30 370 721 1127 207 45 29.5 35.2 1 1.95 3.05 0.56
C35 430 642 1094 172 44 32.8 44.1 1 1.49 2.54 0.40
C40 480 572 1111 202 50 34.6 50.7 1 1.19 2.31 0.42
P.O 32.5 C20 295 707 1203 195 30 20.2 29.1 1 2.40 4.08 0.66
C25 316 719 1173 192 50 22.1 32.4 1 2.28 3.71 0.61
C30 366 665 1182 187 50 27.9 37.6 1 1.82 3.23 0.51
C35 429 637 1184 200 60 30.***6.2 1 1.48 2.76 0.47
C40 478 *** 1128 210 60 29.4 51.0 1 1.33 2.36 0.44
P.O 32.5R C25 321 749 1173 193 50 26.6 39.1 1 2.33 3.65 0.60
C30 360 725 1134 198 60 29.4 44.3 1 2.01 3.15 0.55 C35 431 643 1096 190 50 39.0 51.3 1 1.49 2.54 0.44
C40 480 572 1111 202 40 39.3 51.0 1 1.19 2.31 0.42 P.O
42.5(R)C30 352 676 1202 190 55 29.***5.2 1 1.92 3.41 0.54
C35 386 643 1194 197 50 34.5 49.5 1 1.67 3.09 0.51
C40 398 649 1155 199 55 39.5 55.3 1 1.63 2.90 0.50
C50 496 606 1297 223 45 38.4 55.9 1 1.22 2.61 0.45
PII 42.5R C30 348 652 1212 188 50 31.***6.0 1 1.87 3.48 0.54
C35 380 639 1187 194 50 35.0 50.5 1 1.68 3.12 0.51
C40 398 649 1155 199 55 39.5 55.3 1 1.63 2.90 0.50
C45 462 618 1147 203 4***2.7 59.1 1 1.34 2.48 0.44
C50 480 633 1115 192 25 45.7 62.8 1 1.32 2.32 0.40
P.O 52.5R C40 392 645 1197 196 53 40.2 55.8 1 1.64 3.05 0.50
C45 456 622 1156 19***2 43.5 59.5 1 1.36 2.53 0.43
C50 468 626 1162 192 30 45.2 61.6 1 1.33 2.47 0.41
此试验数据为标准实验室获得,砂采用中砂,细度模数为2.94,碎石为5~31.5mm连续粒级。各等级混凝土配比也可以通过掺加外加剂来调整。
第五篇:耐久性混凝土配合比设计与检测方法研究论文
摘要:
为了进一步加强混凝土的耐久性,就需要从混凝土的配合比设计着手,通过一系列的检测方法以及计算手段,充分考虑混凝土耐久性的实际影响,从而得到最佳的设计效果。
关键词:
混凝土;设计:配合比;检测方法
原有的混凝土的基本配合比已经不能够满足工程的结构强化、混凝土抗风性、抗腐蚀性等性能提升的需要了,并且国家所颁布的相应条例中也强调了混凝土配合比设计中要提升耐久性的要求,所以在混凝土配合比设计中需要进一步综合相关设计因素,比如说环境以及材料质量、使用年限等,保证其耐久性,完善混凝土的相应结构。
1.目前混凝土配合比设计在耐久性方面的体现
混凝土作为丁程建筑之中最为重要的材料,优化混凝土配合比设计能够在较大程度上实现建筑结构的强化。目前很多建筑工程因为混凝土配合比设计不能够满足耐久性的要求,造成了混凝土迅速老化、钢筋出现腐蚀以及卅锈等现象,不能够保障工程建筑物的使用安全,一旦整个建筑结构因为耐久性程度较低而结构开裂,那么会对人们造成很大的安全隐患与威胁,所以需要加强对混凝土配合比的重视程度,才能够最大程度上提升其耐久性。
2.分析影响混凝土耐久性方面配合比设计的影响因素
混凝土在配合比设计过程之中主要需要考虑以下几种因素,首先就是不同的用途要求,需要实现不同的配合比设计,来满足不同的用途要求。其次影响混凝土耐久性的重要因素就是使用的材料,具有耐久性的混凝土材料通常都是一种人工符合材料,所以材料的质量也会直接影响配合比设计。还有配合比设计探究方式,检测方式都是目前混凝土耐久性方面配合比设计的影响因素,只有在明确影响因素的前提之下,才能够更加有针对性进行耐久性混凝土配合比设计的实际探究。
3.优化混凝土配合比设计提升耐久性的具体措施
3.1 提升材料的基本质量
混凝土在配合比设计之中的基础与关键是基本材料,只有从根本上提升材料的质量,才能够为优化混凝土的配合比奠定相应的基础。选用材料的基本原则除了需要适用于工程之外,最好能够最大程度上实现材料资源的合理化配置,实现就地取材的同时,也能够加强技术方面的配置,为增强整体混凝土配合比的优化,提升耐久性奠定基础。
3.2提升试验次数与试验质量
试验同时也是在优化混凝土配合比设计之中不可或缺的一环,所以在混凝土配合比设计过程之中需要遵照《普通混凝土拌合物性能试验方法》、《普通混凝土力学性能试验方法》以及相关标准等为依托进行实验,比如说在水灰比的实验过程之中,需要提升混凝土的和易性,所以需要测试W/C的自身数值,不同的数值变化可以现实处水灰比的基本性能,别说数值呈上升趋势时,水灰比比例往往较好,不仅仅能够在较大程度上提升吸水率与吸水程度,并且在一定程度上提升混凝土的基本抗压强度。所以提升试验次数与试验质量不仅仅能够为混凝土配合比设计的优化奠定相应的基础,同时也为其提供大量的设计数据,提供相应的指标,实现对于基本材料以及数值的相关计算。
以砂率的计算为例,砂浆在混凝土的配比中占有重要的位置,作为混凝土的拌合物中的重要成分,合适比例的砂浆不仅仅能够加强混凝土基本的润滑作用,同时也能够实现拌合物粘性,虽然从理论角度上进行研究发现,水量一定的同时,砂率越大而混凝土的流动程度以及润滑性能往往越高,但是在当砂率突破了一个范围或者一个值的时候,砂率增加其性能反而降低,并且出现了保水性降低等多种问题。所以实验的关键性也在于此,不仅仅需要通过试验找到砂率的最优值,同时也能够从科学理论的角度找出砂率的应用范围,从而能够明确砂率的应用特点,以此实现混凝土配比的优化设计。
另外从主体原料与试验方法角度上进行分析,也可以通过更换不同的主体材料,来测试混凝土的配合比上能否提升其相应的耐久性,比如说自由水灰比、这样能够通过实验水与水泥的比例,来加强其配合比的设计,测试不同骨料的吸收能力,还可以通过正交实验法等,实现优化设计,计算吸水率与吸水量,从而提升实验质量。所以在优化混凝土配合比的过程之中,其关键与核心还是试验进行的结果与所获取的数据,只有加强了实验与理论性的研究,才能够更好地进行混凝土配合比的良好设计。
3.3注重混凝土配合比设计参数的有效运用
事实上影响混凝土耐久性的因素不仅仅有环境因素、内部结构因素还有施工因素等综合作用,但是在配合比的设计过程之中仍然需要加强对于配比设计参数的分析与了解。所以整体能够加强混凝土耐久性的实际因素包括水胶比,掺合料的相应种类及数量,以及相关的用水量等,丰富实验设计方式,加强体积模型的相应建立,充分考虑混凝土配合比设计之中的多种因素,实现参数设计的联系性。
在研究混凝与的水胶比与强度还有氯离子的扩散系数关系时,也需要加强设计参数的有效运用,往往氯离子扩大系数大于一千的同时,饱盐混凝土电导率也会大于两千,基本渗透性评价较高,在这一混凝土中其水胶比的基本参数保持在零点六零及以上,其强度也能够保持在三十及以下。所以合理进行混凝土配合比设计参数的有效运用,能够实现对于相关材料扩散系数应用和试验结果应用的有效深化。
4.结语
在混凝土配合比设计上,耐久性一直是设计过程之中所追求的主要发展目标,除了要认识耐久性提升的重要意义之外也需要加强实验与理论方面的相应研究,比如说提升试验次数与试验数量、注重混凝土配合比设计参数的有效运用以及提升材料的基本质量等,才能够从根本上促进混凝土配合比的发
参考文献
[1]王龙志,路林海,崔鑫,郭伟,王桂玲.清水混凝土制备技术研究,混凝土与水泥制品,202_(12):27-31.