首页 > 精品范文库 > 12号文库
纳米材料导论论文
编辑:紫竹清香 识别码:21-612175 12号文库 发布时间: 2023-08-02 03:54:13 来源:网络

第一篇:纳米材料导论论文

北京石油化工学院

纳米材料论文

课程名称: 有序介孔三氧化二铝的催化活性 分析及应用前景

实验学期 2013 至 2014 学年 第 二 学期 学生所在系部 化学工程学院 年级 12级 专业班级 化121 学生姓名 郭锴华 学号 5120120005 任课教师 郝保红

北京石油化工学院化学工程学院

2014年4月25日 有序介孔三氧化二铝的催化活性分析及应用前景

郭锴华

(北京石油化工学院 化学工程与工艺专业 北京 102617)

摘要

随着现代科技水平的高速发展,科学家们正在不断地努力研究一系列有助于材料合成方面的物质,而氧化铝,特别是纳米级别的氧化铝在对物质的催化作用有着显著的作用,在本文中就简单地介绍了一些有关于纳米级别的氧化铝的制备方法以及它在实践生产中的应用情况。

词: 纳米;氧化铝;制备;应用前景;催化活性 中图分类号: TQ174

文献标识码: A

Ordered mesoporous three two aluminum oxide analysis and application prospect of catalytic activity

Guo Kaihua(Beijing institute of petrochemical technology)Abstract :With the rapid development of modern science and technology level,cientists are constantly working on a series of help to materials synthesis material, alumina, especially nano level alumina has a significant role in the catalytic effect on the material, in this paper simply introduces something about nanoscale alumina preparation method and the application in practical production.Keywords: Nanometer;Alumina;Preparation;Application prospect;Catalytic activity

1、引言

纳米(符号为nm)是长度单位,原称毫微米,就是10米(10亿分之一米),即10毫米(100万分之一毫米)。如同厘米、分米和米一样,是长度的度量单位。相当于4倍原子大小,比单个细菌的长度还要小。纳米材料一般是指在一维尺度小于100nm,并且具有常规材料和常规微细粉末材料所不具有的多种反常特性的一类材料。当然,纳米材料Al2O3拥有小尺寸效应、表面界面效应、量子尺寸效应和宏观量子隧道效应等一切纳米材料的特殊性质,所以具备特殊的光电特性、高磁阻现象、非线性电阻现象、在高温下仍具有的高强度、高韧、稳定性好等特性,使Al2O3备受关注研究并且在催化、滤光、光吸收、医药、磁介质及新材料等领域有广阔的应用前景。

近年来从用途大体可以把氧化铝分为两类:第一类是用作电解铝生产的冶金氧化铝,随着氧化铝材料的广泛应用该类氧化铝占产量的大多数;第二类为非冶金氧化铝,主要包括非冶金用的氢氧化铝和氧化铝,也是通常所说的特种氧化铝,因其作用不同而与冶金氧化铝有较大的区别,主要表现在纯度、化学成分、形貌、形态等方面。介孔和超大孔硅铝分子筛比表面已超过1000m2/g、孔径在2~50nm,孔道有序,此类介孔分子筛的制备、生成机理、表面表征方法及催化应用研究已很成功,并推动了其他介孔材料的开发探索。纳米氧化铝可用来制作人造宝石、分析试剂以及纳米级催化剂和载体,用于发光材料可较大的提高其发光强度,对陶瓷、橡胶增韧,要比普通氧化铝高出数倍,特别是提高陶瓷的致密性、光洁度、冷热疲劳等。纳米氧化铝已用于YGA激光器的主要部件和集成电路基板,并用在涂料中来提高耐磨性。由于三氧化二铝掺杂在光纤中具有优于二氧化锗的一些特点,被应用于不同的领域,如光纤激光器,光纤放大器和保偏光纤。随着人们对自身健康的关注和环保意识的增强,绿色化学理念正在材料制备与应用领域备受关注。

-6、纳米Al2O3的一般物理化学特性

纳米材料是纳米科学技术的一个重要的发展方向。纳米材料是指由极细晶粒组成,特征维度尺寸在纳米量级(1-100nm)的固态材料。由于极细的晶粒,大量处于晶界和晶粒内缺陷的中心原子以及其本身具有的量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应等,纳米材料与同组成的微米晶体(体相)材料相比,在催化、光学、磁性、力学等方面具有许多奇异的性能,因而成为材料科学和凝聚态物理领域中的研究热点。

Al2O3在地壳中含量非常丰富的一种氧化物。Al2O3有许多同质异晶体,根据研究报道的变种有10多种,主要有3种:α-Al2O3、β-Al2O3、γ-Al2O3其中α-Al2O3是最稳定的一种无色晶体粉末,具有比表面大、熔点高、热稳定性极好、硬度高、吸水率极好、电绝缘性能好和耐酸碱腐蚀等许多优点,所以此类粉体广泛应用于各种氧化铝陶瓷的制备;

γ-Al2O3是在400℃到800℃内由水合氧化铝脱水形成,不溶于水,能溶于酸或碱,强热至1273K,经一定保温时间能转变为α-Al2O3;热处理工艺参数对三氧化铝粒子颗粒特性的影响由强到弱:煅烧温度、水合氧化铝在300℃分解温度点的保温时间、在煅烧温度点的保温时间;通过控制其热处理工艺参数,可获得尺寸范围大小均匀、分散性好的球形γ-Al2O3;γ-Al2O3具有强的吸附能力和催化活性,所以其一般又叫活性氧化铝,它属于立方面心紧密堆积构型,四角晶系,与尖晶石结构十分相似。在许多化学反应中被用做吸附剂、催化剂和催化剂载体,如石油的氢化裂化、氢化脱硫及脱氢催化剂的载体等,因此γ-Al2O3在催化领域有着更广泛的应用。

纳米Al2O3的制备方法

纳米粉体由于晶粒尺寸小、表面积大,在磁性、催化性、光吸收、熔点等方面与常规材料比显示出奇特的性能;要使纳米粉体具有良好的性能,制备方法的选择和制备工艺的控制是关键。高纯度纳米氧化铝粉体的制备方法有很多一般大致将它分为固相法、气相法、液相法等。各种方法有其优点,但也存在一些不足因此一般根据实际产品要求来选择相应的制备方法。

3.1化学溶解法

化学溶解法主要包括碳酸铝铵热解法、喷雾热解法、铵明矾热解法三种;铵明矾热解法是通过用硫酸铝铵与硫酸铵反应制得明矾,再根据产品纯度要求再多次重结晶精制,最后将精制的铵明矾加热分解成Al2O3,其反应过程为:

2Al(OH)3+3H2SO4 → Al2(SO4)3 + 6H2O

Al2(SO4)3 +(NH4)2SO4 + 24H2O → 2NH4Al(SO4)2·12H2O

2NH4Al(SO4)2·12H2O → Al2O3 + 2NH3 + 4SO3 + 13H2O

煅烧过程收集的炉气可制成硫酸铵循环使用。该方法工艺简单,但由于生产周期长,难于应用于实际规模化生产。对铵明矾热解法改进后形成了碳酸铝铵热解法,通过前驱体NH4AlO(OH)HCO3的合成和热解得到高纯度超细氧化铝。有人应用分析纯硫酸铝铵和碳酸氢铵为原料,采用湿化学法制备单分散超细NH4Al2(OH)2CO3先驱沉淀物,在1100℃下灼烧得到平均粒径为20nm的α-Al2O3纳米粉体。该方法不产生腐蚀性气体,无热分解时的溶解现象,有利产品粒径的控制并且能简化操作,适合于工艺化生产。

喷雾热解法是将金属盐溶液以雾状喷入高温气氛中,从而使其中的水分蒸发,金属盐发生分解,析出固相,直接制备出纳米氧化铝陶瓷粉好方法。3.2固相法

固相法主要是将铝或铝盐研磨煅烧,发生固相反应后直接得到纳米氧化铝的方法。该法可分为:机械粉碎法、固相反应法;机械粉碎法是用各种超细粉碎机将原料直接粉碎成超细粉。常见的超细粉碎机有:球磨机、行星磨、塔式粉碎机和气流磨粉碎机等;应用较多的是球磨机,但该法很难使粒径达到100nm以下。固相法制备超细粉比较简单,但是生成的粉体容易产生团聚并且粉末粒度不易控制。固相反应法又可大致化学溶解法、非晶晶化法、燃烧法;

3.3气相法

气相法是指直接应用气体或者通过各种手段将物质变成气体,使之在气态下发生物理、化学反应,在冷却过程中形成超细粉的方法,该方法一般包括:固相加热挥发法、惰性气体凝聚加压法、AlCl3升华氧化法、激光蒸发CVD法等。该类方法由于其设备操作复杂、成本高,而且不能高产,所以不适合做大规模生产。

3.4溶胶—凝胶法

该类方法主要包括有机铝醇盐水解、无机铝盐水解;有机铝醇盐水解是将醇盐溶解于有机溶剂中,再通过加入蒸馏水形成溶胶,之后随着水的加入溶胶转变为凝胶。凝胶经过低温干燥得到疏松的干凝胶。干凝胶经高温锻烧处理即可得到氧化铝纳米粉体,一般过程为:Al(OR)3 → Al(OH)3 → AlOOH → γ-Al2O3 →δ-Al2O3→ θ-Al2O3 → α-Al2O

3式中RO-可采用异丙醇、2-丁醇、乙醇等。此类方法的优点有:能在很短的时间内获得分子水平的均匀性,容易均匀定量地掺入一些微量元素,实现分子水平上的均匀掺杂、与固相反应相比所需温度较低、选择合适的条件可以制备各种新型材料;不足在于目前所用的原料价格比较贵,并且有些原料对身体有害、通常生产周期长、凝胶干燥过程可能有气体或者有机物逸使得产生收缩。

3.5液相法

液相法合成纳米氧化铝粉体具有不需要苛刻的物理条件,能很好的实现分子原子水平上的混合、产物组分含量精确控制等特点,可用于制备粒度分布窄、形貌规整的粉体。其基本方法是选择一种或多种可溶性金属盐,按成份计量配成溶液,使各元素呈离子或分子态,再用一种沉淀剂,将所需物质均匀沉淀、结晶出来,经脱水或者加热等过程而制得纳米粉。

4、有序介孔Al2O3的催化作用

到目前为止,仅有少数几个反应涉及到改性的介孔氧化铝作为活性组分载体的应用,这可能主要因为介孔氧化铝的合成条件比较苛刻,合成的介孔材料还有缺陷,无法广泛应用。加氢脱硫反应是传统氧化铝作为Co-Mo和Ni-Mo催化剂载体应用的重要反应之一。文献[16]将介孔氧化铝应用于加氢脱硫反应,并与低廉的催化剂相比较。采用长链的羧酸作模板剂经阳离子合成路线制备介孔氧化铝分子筛;用传统的浸渍法改性,将氧化钼进行热分散。与低廉的Mo催化剂不同,介孔氧化铝具有非常大的比表面,在介孔氧化铝上能负载大约30%(质量分数)MoO3,与仅含有15%MoO3的传统催化剂相比具有很高的转化率。文献[17]采用烷氧基金属作铝源、钛源,TritonX-100作模板,室温下合成具有MSU-2结构的含Ti介孔氧化铝分子筛,比表面376m2/g,孔径3nm,引入Ti后,孔容和表面积均有增加,比表面376m2/g,孔径3nm,Ti在介孔氧化铝分子筛的分散性较好。

5、应用与进展

5.1陶瓷材料

氧化铝陶瓷是一种抗氧化、耐腐蚀、耐磨损的高温结构陶瓷材料,但韧性低、脆性大,限制了其应用领域。采用纳米粉末烧结可以大大提高Al2O3的烧结活性;同时在陶瓷基体中引入延性金属第二相,既可以改善陶瓷脆性和提高韧性,又可使陶瓷具有一定的导热性。同单相Al2O3相比,添加Al的摩尔数分数为10%的Al2O3/Al复合陶瓷的断裂韧性提高了86%,复合陶瓷韧性的提高归因于金属Al的引入,陶瓷断裂时金属铝的拔出导致裂纹偏转和裂纹桥联,以及残余应力增加和结构中出现的细小裂纹,裂纹桥联和微裂纹增韧机制协同作用致使复合材料的韧性显著提高。

5.2表面防护层材料

将纳米氧化铝粒子喷涂在金属、陶瓷、塑料、玻璃、漆料及硬质合金的表面上,可明显提高表面强度、耐磨性和耐腐蚀性,且具有防污、防尘、防水等功能,因此可用于机械、刀具、化工管道等表面防护。据说在AlSi3O4不锈钢表面涂氧化铝防护层,使得表面硬度由3.8GPa提高到10.8GPa,并且在受到同样的负载下,表面压痕深度减少了30℅左右。

5.3催化材料

γ 型氧化铝具有明显的吸附剂特征,并能活化许多键,如H-H键,C-H键等,因此在烃类裂化、醇类脱水制醚等反应中可直接作为活性催化剂加入反应体系中,如乙醇脱水产生乙烯。由于γ型氧化铝表面同时存在酸性中心和碱性中心,因此γ型氧化铝本身就是一种极好的催化剂。γ型氧化铝尺寸小,表面所占的体积分数大,表面原子配位不全等导致表面活性位置增加,而且随着粒径的减小,表面光滑程度变差,形成了凹凸不平的原子台阶,增加了化学反应的接触面,因而纳米氧化铝是理想的催化剂或催化剂载体。近年来研究发现有序介孔氧化铝材料具有较大的比表面积,较大且均已的孔道结构,可以处理较大的分子或基团,是良好的催化剂,催化活性较γ型氧化铝好。

5.4光学材料

纳米氧化铝可以吸收紫外光,并且在某些波长光的激发下可以产生出与粒子尺寸相关的波长的光波。由α-Al2O3可烧结成透明陶瓷,作为高压钠灯管的材料;可用作紧凑型荧光灯中荧光粉层的保护涂膜;还可和稀土荧光粉复合制成荧光灯管的发光材料,提高灯管寿命。此外,纳米Al2O3多孔膜有红外吸收性能,可制成隐身材料用于军事领域;利用其对80nm紫外光的吸收效果可作紫外屏蔽材料和化妆品添加剂。

6、结论

纳米Al2O3粉体与常规的相比,具有独特的物理和化学特性,是一种重要的陶瓷材料及催化剂载体,具有耐磨,耐腐蚀,耐高温等优异性能,纳米Al2O3粉体因其具有高强度、高硬度、绝缘性好等优异特性,是一种重要的功能材料。目前有序介孔氧化铝还在研究阶段,,不管从材料角度还是从催化应用前景来看,有序介孔氧化铝都是一种值得研究的介孔材料,但在研究中 还存在着各种问题。由于氧化铝的性质与硅铝分子筛有较大区别,合成介孔结构相对困难,合成工艺比较苛刻,合成的介孔尚未形成长程有序,并且孔结构稳定性差,对介孔氧化铝的合成机理尚无合理解释。关于介孔氧化铝分子筛研究应集中在以下几个方面:

①必须借鉴和改进合成介孔硅铝分子筛的方法,不断开发新的工艺合成路线,寻找简便、廉价、易于工业化的介孔氧化铝合成方法;探索新型的模板剂,合成具有规整孔道的介孔氧化铝。②比表面积大于300 m2 / g、孔径大于3nm且孔径分布窄的介孔氧化铝,尽管有序性较差,但催化应用价值高,应努力合成此类介孔材料,优化合成有序介孔氧化铝的工艺。③研究有序介孔氧化铝的生成机理。

④有序介孔氧化铝的催化性能仅在有限的反应中检验过,必须加速其在各种反应中的应用研究。相信随着这一领域的进一步研究,研究者会很快掌握这种有序介孔氧化铝的合成方法,真正发挥其独特优势,使其成为一种新型实用的优良催化材料。

参考文献

[1]赵东元,万颖,周午纵.有序介孔分子筛材料,2013,8-50 [2]于吉红,闫文付.纳米孔材料化学 催化及功能化,2013,124-155 [3]Luo H M.Wang C.Yan Y S.Synthesis of mesostructured titania with controlled crystalline framework[J].2013(20).[4]THisakado, TTsukizoe, HYoshikawa.LubricationMechanism of SolidLubricants in Oil(81-Lub-50).Journal of Lubrication Technology, 2007, 105: 245 [5]任俊,沈健,卢寿慈.颗粒分散科学与技术[M].第一版.北京:化学工业出版社, 2005: 111-118.[6]李凤生等.超细粉体技术[M],国防工业出版社,2009,2-8,275-280 [7]付信涛.超细粉体材料的应用[J].新材料产业,2009,2,46-49 [8] TARASOV S, KOLUBAEV A, BELYAEV S, et al.Study of friction reduction by nanocopper additives to motor oil[J].Wear, 2012, 252: 63-69.[9] QIU Sun-qing, DONG Jun-xiu, CHEN Guo-xu.Tribological properties of CeF3nanoparticles as additives in lubricating oils[J].Wear, 2011, 230: 35-38.[10]Zhao D Y.Feng J L.Huo Q S Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores 1998(5350).[11]王晓霞,叶红齐,苏周等.超细铜粉的制备与应用[J].材料导报,2006,18(3):140-142 [12]王九,陈波水,黄维九.纳米粒子添加剂在润滑剂中的应用与开发[J].江苏化工, 2008, 29(3): 13157.[17]李奚,杨春.[J ].南京师范大学学报(工程技术版),2002,2(4): 5-10.[18]赵尧敏,杨新丽.介孔碳负载纳米晶二氧化锡复合超电容材料的电化学性能[J].中原工学院学报,2008,19(2):20-23 [19]刘少友,唐文华,蒋天智,文正康铬锆掺杂磷酸铝介孔材料低热固相合成及表征[J].无机盐工业.2010,42(9):18-22.

第二篇:纳米科技导论

纳米技术的发展与应用

【摘 要】2l世纪人类进入了一个科技发展的新纪元,高新技术的发展引起的技术革命浪潮将对人类经济社会的发展产生巨大的影响。重视研究高新技术特别是纳米技术的发展对经济社会变革的影响,对于中国在新世纪制定正确的科技发展政策,促进科技和经济社会的全面进步有着非常重要的意义。

【关键词】纳米技术,科学,产业革命,发展应用,成果

一、什么是纳米技术

纳米技术是20世纪80年代末期刚刚诞生并正在迅速崛起的用原子和分子创制新物质的技术,是研究尺寸范围在1一100nm之间的物质的组成。这个极其微小的空间,正好是原子和分子的尺寸范围,也是它们相互作用的空间。在这样的一个尺度空间,由于量子效应、物质的局域性及巨大的表面和界面效应,使物质的很多性能发生质变。这些变化渗透到各个工业领域后,将引导一轮新的工业革命。纳米技术所追求的最终目标,正像Feynman当年预言的那样,就是要使人类能够按照自己的意愿任意地操纵单个原子和分子,并在对自然界物质的本质进行深入探讨和研究的基础之上,按照人们的期望,在原子和分子的水平上设计和制造全新的物质。

纳米技术是一门以许多现代先进科学技术为基础的科学技术,是现代科学(量子力学、分子生物学等)和现代技术(微电子学技术、计算机技术、高分辨显微技术、核分析技术等)结合的产物。纳米技术在不断渗透到现代科学技术的各个领域的同时,形成了许许多多的与纳米技术相关的新兴学科,如纳米医学、纳米机械学、纳米化学、纳米电子学、纳米材料学、纳米生物学等

纳米技术的内涵非常广泛,它包括纳米材料的制造技术,纳米材料向各个领域应用的技术(含高科技领域),在纳米空间构筑一个器件实现对原子、分子的翻切、操作以及在纳米微区内对物质传输和能量传输新规律的认识等等。但是,我们不要把纳米技术仅仅看作是纳米材料,也不能把纳米材料仅仅理解为是纳米粉体。纳米粉体仅仅是纳米材料的一个内涵,实际上纳米丝、纳米管、纳米线、纳米电缆、纳米薄膜、三维纳米块体、复合材料等等都是纳米材料,范围相当广。另外,纳米材料不单纯是固态的,也有液态,例如纳米水,用高频超声处理,使水分子结成小汽团。

二、纳米技术的战略地位

纳米技术是21世纪科技发展的制高点,是新工业革命的主导技术。原因是这种技术能对社会发展、经济振兴、国家安全乃至人民生活水平的提高等各个领域都能起到关键作用,而且这种技术影响面极广,向各个领域渗透能力相当强,可以带动很多行业的发展。21世纪前20年,是发展纳米技术的关键时期,纳米技术将成为第5次推动社会经济各领域快速发展的主导技术。目前,纳米技术已经成为全世界非常关注的技术,纳电子代替微电子,纳加工代替微加工,纳米材料代替微米材料,纳米生物技术代替微米尺度的生物技术,这已是不以人的意志为转移的客观规律。只有认识它、发展它,才有可能在未来经济竞争的格局中占据有利地位。从生物技术及其产业发展来看,在人类测定出基因组排序以后,我们对遗传疾病、疑难病症又有了新的认识,而且利用基因排序,可以进行医药、医疗方面的研究。目前,基因芯片研究已经进入实验室,生物芯片组装就是用纳米技术,而生物酶也是纳米尺度,这些研究对象是纳米生物学研究内涵之一,下一步生物技术的发展,就要和纳米技术相结合。譬如为什么病毒顽固,现在没有一种药物能治疗,就因为它非常小,用纳米结构组装一种寻找病毒的药物后,艾滋病、病毒性感冒等都可以治疗,2003年以后这将成为又一个研究热点。生物技术,包括生物制药等相关产业发展应用纳米技术已是刻不容缓。从下一次工业革命的特点来看,节约资源、节约能源、净化环境是下一次工业革命的必然趋势。在下一次工业革命中要想节约资源、能源,就要用纳米尺度的材料做成器件,它的特点是工具小、节省材料、能耗低。纳米技术在新的工业革命当中将发挥重要的作用。从纳米产业未来的市场发展来看,世界各国正在纷纷抢占纳米产业这个巨大的市场。

三、纳米技术的现有成果

(1)碳纳米管:碳纳米管是由石墨中一层或若干层碳原子而卷曲而成的笼状“纤维”,内部是空的,外部直径只有几到几十纳米。比重只有钢的六分之一,而强度却是钢的100倍。轻而柔软又非常结实的材料最好用途是制作防弹背心。如果用碳纳米管作出绳索,是从月球上挂到地球表面,而唯一不被自身重量所拉断的绳索。如果用它制造地球-月球乘人的电梯,人们在月球定居就成为一件很容易的事情了。纳米碳管的细尖极易发射电子。用于做电子枪,可做成几厘米厚的壁挂式电视屏,这是电视制造业的发展方向。

(2)纳米陶瓷:我们平常用的陶瓷材料具有硬而脆的特点,一摔就碎。现在,用纳米陶瓷粉制成的陶瓷更坚韧、更耐高温和耐腐蚀,它将会在汽车发动机上大显身手,汽车会跑的更快,飞机会飞的更高。添加了纳米陶瓷粉体的特种涂料涂在塑料或木材上,具有防火、防尘和耐磨的性能。

(3)纳米机械:近10多年来,科学家们成功地制出了纳米齿轮、纳米弹簧、纳米喷嘴、纳米轴承等微型零件,并且发明了纳米发动机,它的直径只有200微米,一滴油可以灌满四五十个这种发动机。而且,纳米级的传感器、纳米级执行器也相继制成。如果加上电路和出口,就能组成完整的纳米机电系统了。

四、中国科学家在这一领域所取得的主要成果:

“中国”,1993年,中国科学院北京真空物理实验室自如地操纵原子成功写出“中国”二字,标志着我国开始开始在国际纳米科技领域占有一席之地,并居于国际科技前沿。

一维纳米,1998年,清华大学范守善小组成功地制备出直径为3-50纳米、长度达微米量级的氮化镓半导体一维纳米棒,使我国在国际上首次把氮化镓制备成一维纳米晶体;

“稻草变黄金”,1998年,美国《科学》上刊登了我国科学家的论文。中国科技大学钱逸泰等用非水热合成法,制备出金刚石纳米粉,被国际刊物誉为“稻草变黄金-从四氯化碳制成金刚石。”

最长的碳纳米,1999年,中国科学院物理研究所解思深研究员率领的科研小组,不仅合成了世界上最长的“超级纤维”碳纳米管,创造了一项“3毫米的世界之最”,而且合成出世界上最细的碳纳米管。

最细的探,1999年,北京大学纳米技术研究取得重大突破,电子学系教授薛增泉领导的研究组在世界上首次将单壁碳纳米管组装竖立在金属表面,并组装出世界上最细且性能良好的扫描隧道显微镜用探针。

高质量的储氢碳纳米材,1999年,中科院金属研究所成会明博士合成出高质量的碳纳米材料,使我国新型储氢材料研究一举跃上世界先进水平。这种新材料能储存和凝聚大量的氢气,并可能做成燃料电池驱动汽车。

“能屈能伸、百折不挠”的纳米铜,2000年,中科院金属研究所卢柯博士率领的小组,在世界上首次直接发现纳米金属的“奇异”性能-超塑延展性,纳米铜在室温下竟可延伸50多倍而“不折不挠”,被誉为“本领域的一次突破,它第一次向人们展示了无空隙纳米材料是如何变形的”。

纳米电缆 2000年,我国成功合成出只有头发丝5万分之一细的纳米级同轴电缆,这项工作是国家重点基础研究规划纳米领域首席科学家张立德研究员率领的研究小组完成的。同轴纳米电缆的内芯是直径仅有10纳米左右的碳化物,外层包有氧化硅绝缘体。显微图片显示,放大几十万倍后,纳米电缆的直径仍只有普通电缆一般粗细。据悉,我国科学家有关同轴纳米电缆的论文在国际被引用次数已达18次。

“神奇”纳米布,人们一直希望自己的衣料能像荷花般出污泥而不染,现在这种梦想已由中国科学家实现。中科院化学所雷江教授等2000年宣布研制成功一种不粘油污、不粘水的新型纳米材料——超双疏性界面材料。使用这种材料的纺织品和建材,不用洗涤,也不染油污。它的诞生可使石油工人的衣服不再油渍斑斑,也使生产研制水陆两用服成为可能。如果将这一材料用于建筑物表面,还具有自清洁和防雾、防霜效果,可免除人工清洗。

纳米带,2001年3月8日的美国《科学》杂志刊登了三位留美中国科学家的研究成果-“纳米带”。这三位科学家是美国亚特兰大州佐治亚理工学院的王中林教授、潘正伟博士和戴祖荣博士,他们利用金属氧化物制造出10至15纳米厚、30至300纳米宽的新材料,这是世界上首次发现并合成出半导体氧化物的纳米级带状结构材料。这种材料有可能制造出价格便宜的超微感应器和元件。

五 纳米技术应用领域展望(1)日常生活

对普通百姓来说,纳米是一个远比网络、基因更为陌生的科技新名词,似乎既不可望更不可及。其实纳米离我们的生活并不遥远。的确,一纳米仅为十亿分之一米,是一个肉眼无法感知的微观世界,似乎比梦想更为遥远。但事实上,生活中的化妆品、涂料、食品„„都可能应用了纳米技术。我们就可以根据需要在各种产品中加入不同的纳米微粒,改变传统产品的性能、颜色等等。于细微处显神奇的纳米技术“润物细无声”,正悄然进入我们寻常百姓的生活中。让我们首先从自己身边的衣、食、住、行说起。

衣:在人们格外追求美的今天,工业化布料带给我们许多的烦恼,像衣服的静电现象,我们每个人在脱衣服时都曾有过被静电所扰的经历。而应用纳米技术,在化纤布料中加入少量的金属纳米微粒就可以使这一问题迎刃而解。随着纳米技术的突破和应用,未来的衣服还可以自己清洗和修补。衣服的特殊面料通过细微的物质运动,能自动将衣服表面上的污垢排挤掉,如同人类肺部的污垢自动从鼻孔和喉咙中排出一样。

纳米微粒添加的纤维具有红外吸收特性,还具有保暖作用,可用来制作隐身服或保暖服。

食:在食物中添加纳米微粒,可以除味杀菌。聪明的厂家利用这一技术生产出可以抗菌的冰箱,放在里面的食品延长了食用期,居民不用过于担心食品腐烂。在食品制造中采用纳米技术,可以帮助我们提高肠胃吸收能力。

住:把纳米技术运用到涂料中,使外墙涂料的耐洗刷性由原来的1000多次提高到了1万多次,老化时间也延长了两倍多。玻璃和瓷砖表面涂上纳米薄层,可以制成自洁玻璃和自洁瓷砖,任何粘在表面上的脏物,包括油污、细菌,在光的照射下,由于纳米的催化作用,可以变成气体或者容易被擦掉的物质。表面“涂”上透明的纳米颗粒的镜子,在充满水蒸气的浴室会依然光亮。

行:过去轮胎通常是“一统天下”的黑色,原因是生产橡胶制品过程中需要加入碳黑来提高强度、耐磨性和抗老化性。但运用纳米材料生产的轮胎不仅色彩鲜艳,性能上也大大提高,轮胎侧面胶的抗折性能将由10万次提高到50万次。不久的将来,我们周围的汽车、摩托车、自行车轮胎都是彩色的,我们的街道将汇成五彩缤纷的流动风景。

用:目前已有许多防晒油、化妆品因为加入了纳米微粒而具备了防紫外线的功能。纳米氧化铝粉体对250nm以下的紫外光有很强的吸收能力,这一特性可用于提高日光灯管使用寿命上。在塑料、油漆制品中加入纳米微粒,亦可防止老化。纳米微粒用于红外反射材料上主要制成薄膜和多层膜来使用。纳米微粒的膜材料在灯泡工业上有很好的应用前景。20世纪80年代以来,人们用纳米二氧化硅和纳米二氧化钛微粒制成了多层干涉膜,总厚度为微米级,衬在有灯丝的灯泡罩的内壁,结果不但透光率好,而且有很强的红外线反射能力。有人估计这种灯泡亮度与传统的卤素灯相同时,可节省约15%的电。

(2)生物医学

纳米技术不光改变着或即将改变着我们的生活,而且在生物医学方面,纳米技术更是潜力巨大。人类控制基因的实现必须以纳米技术作为支撑和依赖,纳米技术可以重新排列遗传密码。人类可以利用基因芯片迅速查出自己基因密码中的错误,并迅速利用纳米技术进行修正,使人类可以消灭各种遗传缺陷。

分子马达,分子马达是由生物大分子构成,利用化学能进行机械做功的纳米系统。旋转式分子马达工作时,类似于定子和转子之间的旋转运动,比较典型的旋转式发动机有F1-ATP酶。美国康纳尔大学的科学家利用ATP酶作为分子马达,研制出了一种可以进入人体细胞的纳米机电设备-“纳米直升机”。该设备共包括三个组件,两个金属推进器和一个附属于与金属推进器相连的金属杆的生物分子组件,其中的生物分子组件将人体的生物“燃料”ATP转化为机械能量。据美国《科学》杂志报道,研究人员把金属镍制成的螺旋桨嫁接到ATP酶分子中轴上,制造了400个分子马达。当它们被浸于ATP溶液后,其中395个保持不动,但另5个则转动了起来,转速达到每秒钟8转。据介绍,这种马达只有在显微镜下才能被观察到,其镍螺旋桨相对来说较长,达到750纳米。根据拍摄到的画面,研究人员可以看到一个尘埃粒子先被旋转的螺旋桨吸入、再被甩出的情景。研究人员说,分子马达潜在的应用价值非常巨大。如果在分子上嫁接其它东西,可以制造出其它纳米机器,譬如可探测有害化学物质的纳米传感器。当被有害物质激活后,这种传感器内的马达就打开阀门释放出可见的物质告警。这种技术仍处于研制初期,它的控制和如何应用仍是未知数。将来有可能完成在人体细胞内发放药物等医疗任务。(右图为“纳米直升机”示意图)。

纳米探针,一种探测单个活细胞的纳米传感器,探头尺寸仅为纳米量级,当它插入活细胞时,可探知会导致肿瘤的早期DNA损伤。此传感器还可以探测基因表达和靶细胞的蛋白生成,用于筛选微量药物,以确定哪种药物能够最有效地阻止细胞内,致病蛋白的活动。随着纳米技术的进步,最终实现评定单个细胞的健康状况。

捕获病毒的纳米陷阱,美国密西根大学用树形聚合物发展了能够捕获病毒的纳米陷阱。体外实验表明纳米陷阱能够在流感病毒感染细胞之前就捕获它们,同样的方法期望用于捕获类似爱滋病病毒等更复杂的病毒。此纳米陷阱使用的是超小分子,此分子能够在病毒进入细胞致病前即与病毒结合,使病毒丧失致病的能力。

美容美发护理剂,纳米氧化锌粉末无毒、无味、对皮肤无刺激性、不易分解、不变质、热稳定性好,本身为白色,可以简单地加以着色。更重要的是,它具有很强的吸收紫外线的功能,对UVA(长波320-400nm)和UVB(中波280-320nm)均有屏蔽作用。此外还具有渗透、修复功能。因此适用于作美容美发护理剂中的活性因子,不仅能大幅度提高护理效果,还可避免紫外线辐射对皮肤的伤害。

疾病检测指示剂 纳米粒子微细结构使其对环境中的化学或物理指标的变化极为敏感,因此可对人体内的病原体作出早预测,例如:当肿瘤只有几个细胞大小时就可以将其检测出来,加以根除。

抗菌剂,纳米氧化锌粉末在阳光下,尤其在紫外线的照射下,在水和空气中能自行分解出自由移动的带负电的电子,同时留下带正电的空穴。这种空穴可以激活空气中的氧变为活性氧,有极强的化学活性,能与多种有机物发生氧化反应(包括细菌内的有机物),从而把大多数病菌和病毒杀死。有关的定量试验表明:在5分钟内纳米氧化锌的浓度为1%时,金黄色葡萄球菌的杀菌率为98.86%,大肠杆菌的杀菌率为99.93%。

纳米矿物中药,研究表明,矿物中药制成纳米粉末后,药效大幅度提高,并具 有高吸收率、剂量小的特点;还可利用纳米粉末的强渗透性将矿物中药制成贴剂或含服剂,避开胃肠吸收时体液环境与药物反应引起不良反应或造成吸收不稳定;也可将难溶矿物中药制成针剂,提高吸收率。

纳米导向剂 将以纳米磁性颗粒为载体的药物注入人体后,药物在外磁场的作用下会聚集于体内的局部,从而可在对人体的整体副作用很小的情况下对病理位置进行高浓度的药物治疗。这对于癌症、结核等有固定病灶的疾病十分适合。

(3)航天航空

纳米技术在航天航空领域的应用很广,与其它领域相比,相对重要的应用可能有:低能耗、抗辐射的高性能计算机;用于小型太空船的纳米仪器;通过使用纳米结构传感器和纳米电子器件,进一步发展航空电子器件,从而进一步发展航空电子学;阻热和耐用的纳米结构涂层。

纳米器件在航空航天领域的应用,不仅可增加有效载荷,更重要的是使耗能指标成指数倍的降低。纳米制造技术将使我们能设计和制造可用于飞机、火箭、空间站、行星/太阳探测平台的轻质、高强度、热稳定的材料;低引力、高真空空间环境也可以帮助我们开发在地球上不能制造的纳米结构和纳米系统。此外,纳米粉体还可作为高效助燃剂。由于纳米粉末具有极强的储能特性,将其作为添加剂加入燃料中可大大提高燃烧率。将一些纳米粉末添加到火箭的固体燃料推进剂中,可大幅度提高燃料的燃烧热、燃烧效率,改善燃稳定性。有研究表明,向火箭固体燃料中加入0.5%纳米铝粉或镍粉,可使燃烧效率提高10%-25%,燃烧速度加快数十倍。

(4)环保领域

治理废气,大气污染一直是各国政府需要解决的难题,空气中超标的二氧化硫、一氧化碳和氮氧化物是影响人类健康的有害气体。纳米材料和纳米技术的应用,可从污染源上最终解决这一难题。

工业生产中使用的汽油、柴油以及作为汽车燃料的汽油、柴油等,由于含有硫的化合物在燃烧时会产生二氧化硫气体,这是二氧化硫的最大污染源。所以石油提炼工业中有一道脱硫工艺以降低硫含量。纳米钛酸钴就是一种非常好的石油脱硫催化剂。经该催化剂催化的石油,硫含量小于0.01%,达到国际标准。工业生产中使用的煤燃烧也会产生二氧化硫气体,如果在燃烧的同时加入一种纳米级助烧催化剂,不仅可以使煤充分燃烧,提高能源利用率,而且会使硫转化成固体的硫化物,而不产生二氧化硫气体,从而杜绝有害气体的产生。复合稀土化物的纳米级粉体有极强的氧化还原性能,这是其它任何汽车尾气净化催化剂所不能比拟的。它的应用可以彻底解决汽车尾气中一氧化碳和氮氧化物的污染问题。新一代的纳米催化剂,将在汽车发动机汽缸里发挥催化作用,使汽油在燃烧时就不产生一氧化碳和氮氧化物,无需进行尾气净化处理。

治理污水,污水中通常含有害物质、悬浮物、泥沙、铁锈、异味污染物、细菌病毒等。污水治理就是将这些物质从水中去除。由于传统的水处理方法效率低、成本高、存在二次污染等问题,污水治理一直得不到很好解决。纳米技术的发展和应用很可能彻底解决这一难题。污水中的贵金属是对人体极其有害的物质。它从污水中流失,也是资源的浪费。新的一种纳米技术可以将污水中的贵金属如金、钌、钯、铂等完全提炼出来,变害为宝。纳米净水剂的吸附和絮凝能力是普通净水剂三氯化铝的10-20倍,因此可先用它将污水中悬浮物完全吸附并沉淀下来;然后采用纳米磁性物质、纤维和活性炭的净化装置,除去水中的铁锈、泥沙以及异味等污染物。经前二道净化工序后,水体清澈、没有异味、口感也较好。再经过带有纳米膜和陶瓷小球组装的处理装置后,水中的细菌、病毒100%可以去除,得到高质量的纯净水,完全可以饮用。这是因为细菌、病毒的直径比纳米大,在通过纳米孔径的膜和陶瓷小球时,就会被过滤掉,水分子及水分子直径以下的矿物质元素则保留下来。该技术在医学领域血透中已开始应用,有“体外肾脏”之称。肝、肾功能衰竭者饮用这种水后,会大大减轻肝、肾脏的负担。

(5)军事应用

读过《西游记》的人都会记得孙悟空钻进铁扇公主肚子里的故事。孙悟空保唐僧去西天取经,路过火焰山,想借铁扇公主的扇子扇灭火焰山的烈火。不料铁扇公主不肯借扇。孙悟空便变成一只小虫子钻进铁扇公主的肚子里,大闹五脏六腑,迫使铁扇公主就范。如今随着纳米武器的出现,这种神话正成为现实。

“麻雀”卫星 美国于1995年提出了纳米卫星的概念,这种卫星比麻雀略大,重量不足10公斤,各种部件全部用纳米材料制造。一枚小型火箭就可以发射数百颗纳米卫星。若在太阳同步轨道上等间隔地布置648颗功能不同的纳米卫星,就可以保证在任何时刻对地球上任何一点进行连续监视,即使少数卫星失灵,整个卫星网络的工作也不会受影响。

“蚊子”导弹 纳米器件比半导体器件工作速度快得多,可以制造出全新原理的智能化微型导航系统,使制导武器的隐蔽性、机动性和生存能力发生质的变化,利用纳米技术制造的形如蚊子的纳米型导弹,可以起到神奇的战斗效能,纳米导弹直接受电波遥控,可以神不知鬼不觉的潜入目标内部,其威力足以炸毁敌方火炮、坦克、飞机、指挥部和弹药库。

“针尖”炸弹 美国密歇根大学生物纳米技术中心的一群科学家到犹他州的美国陆军达格维试验场去了一趟。他们此行的目的是展示“纳米炸弹”的威力。事实上,这种炸弹不会“轰”地一声爆炸。它们是一些分子大小的小液滴,其大小只有针尖的5千分之一,作用是炸毁危害人类的各种微小“敌人”,其中包括含有致命生化武器炭疽的孢子。在测试中,这些纳米炸弹获得了100%的成功率。据说,密歇根大学的这个研究小组正在制造更聪明的新型纳米炸弹,这些针对性极强的炸弹能够在大肠杆菌、沙门氏菌或者李氏杆菌进入肠道之前攻击它们。

“苍蝇”飞机 这是一种如同苍蝇般大小的袖珍飞行器,可携带各种探测设备,具有信息处理、导航和通讯能力。其主要功能是秘密部署到敌方信息系统和武器系统的内部或附近,监视地方情况。这些纳米飞机可以旋停、低飞、高飞,敌方雷达根本发现不了它们。据说它还适应全天候作战,可以从数百公里外,将其获得的信息传回己方导弹发射基地,直接引导导弹攻击目标。

“蚂蚁”士兵 这是一种通过声波控制的纳米型机器人,这些机器人比蚂蚁还要小,但具有惊人的破坏力,它们可以通过各种途径钻进敌方武器装备中,长期潜伏下来。一旦启用,这些纳米士兵就会各显神通:有的专门破坏地方电子设备,使其短路毁坏,有的充当爆破手,用特种炸药引爆目标,有的施放各种化学制剂使敌方金属变脆、油料凝结、或使敌方人员神经麻痹,失去战斗力。此外,还有被人称为“间谍草”或“沙粒坐探”的形形色色的微型战场传感器等纳米武器装备。所有这些纳米武器组配起来,就建成了一支独具一格的微型军。据美国国防部专家透露,美国第一批微型军将在五年内服役,十年内可大规模部署

【总结】:2l世纪里,信息、生物和新材料代表了高新技术发展方向。在信息产业如火如荼的今天,新材料领域有一项技术引起了世界各国政府和科技界的高度关注,这就是纳米技术。有人预言,处于2l世纪高技术前沿和核心地位的纳米技术所引起的世界性技术革命和产业革命对社会经济、政治、国防等所产生的冲击,将比以往的技术革命时代带来的影响更为巨大。纳米技术将会掀起新一轮的技术浪潮,领导下一场工业革命,人类也将进入一个新的时代——纳米技术时代。

【参考文献】:

1、《施普林格纳米技术手册》,巴拉特·布尚,科学出版社

2、《纳米材料与技术应用进展》,李玲,冶金工业出版社

3、《科技与经济》,顾宁,胡一东,东南大学出版社

4、《纳米科技导论》,徐国才,高等教育出版社

5、《中国科学》,中国科学杂志社,中国科学出版社

第三篇:纳米材料导论综合作业(精选)

纳米材料导论综合作业

教 学 院 化工与材料工程学院 专 业 化学工程与工艺 班 级 化工0000班 学生姓名 一二三 学生学号 12345678 指导教师 四五六

2013年6月1日

目录

第一部分 所学内容概述...................................................2

第一章 绪论..........................................................2

1.1纳米的定义....................................................2 1.2纳米材料的定义................................................2 1.3纳米科技......................................................3 第二章 纳米材料的基本概念............................................6

2.1分类..........................................................6 2.2 纳米材料发展史...............................................6 第三章 纳米材料的结构特性与表征......................................7

3.1结构特性......................................................7 3.2纳米结构的检测与表征..........................................8 第四章 纳米材料的制备技术...........................................10

4.1物理合成法...................................................10 4.2化学合成法...................................................10 第五章 纳米固体材料的结构和性能(略)..............................11

5.1结构特点.....................................................11 5.2性能与应用...................................................12 第六章 纳米材料的应用及前景........................................12

6.1应用领域.....................................................12 6.2发展前景.....................................................13

第二部分 总结与学习心得................................................14 第三部分 参考文献......................................................15 第一部分 所学内容概述

第一章 绪论 1.1纳米的定义

纳米是一个长度单位,一纳米是一米的十亿分之一,相当于人类头发直径的万分之一。若是做成一个纳米的小球,将其放在一个乒乓球表明的话,从比例上看,就像是把一个乒乓球放在地球表面。因此,纳米科技是在和微观世界“打交道”。相当于4倍原子大小,比单个细菌的长度还要小。1,000,000,000纳米(nm)= 1米(m)1,000,000纳米(nm)= 1毫米(mm)1,000纳米(nm)= 1微米(μm)1纳米(nm)= 10埃米(ANG)1.2纳米材料的定义

纳米材料是指晶粒尺寸为纳米级(10-9米)的超细材料,它的微粒尺寸大于原子簇,小于通常的微粒,一般为100一102nm。它包括体积分数近似相等的两个部分:一是直径为几个或几十个纳米的粒子;二是粒子间的界面。前者具有长程序的晶状结构,后者是既没有长程序也没有短程序的无序结构。

在纳米材料中,纳米晶粒和由此而产生的高浓度晶界是它的两个重要特征。纳米晶粒中的原子排列已不能处理成无限长程有序,通常大晶体的连续能带分裂成接近分子轨道的能级,高浓度晶界及晶界原子的特殊结构导致材料的力学性能、磁性、介电性、超导性、光学乃至热力学性能的改变。纳米相材料和其他固体材料都是由同样的原子组成,只不过这些原子排列成了纳米级的原子团,成为组成这些新材料的结构粒子或结构单元。其常规纳米材料中的基本颗粒直径不到l00nm,包含的原子不到几万个。一个直径为3nm的原子团包含大约900个原子,几乎是英文里一个句点的百万分之一,这个比例相当于一条300多米长的帆船跟整个地球的比例。1.3纳米科技

1.3.1纳米科技的研究范围 纳米技术(nanotechnology),也称毫微技术,是研究结构尺寸在1纳米至100纳米范围内材料的性质和应用的一种技术,是用单个原子、分子制造物质的科学技术,研究结构尺寸在0.1至100纳米范围内材料的性质和应用。1981年扫描隧道显微镜发明后,诞生了一门以0.1到100纳米长度为研究分子世界,它的最终目标是直接以原子或分子来构造具有特定功能的产品。因此,纳米技术其实就是一种用单个原子、分子射程物质的技术。

纳米科学技术是以许多现代先进科学技术为基础的科学技术,它是现代科学(混沌物理、量子力学、介观物理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)结合的产物,纳米科学技术又将引发一系列新的科学技术,例如:纳米物理学、纳米生物学、纳米化学、纳米电子学、纳米加工技术和纳米计量学等。

1.3.2纳米科技的分类(1)第一种,是1986年美国科学家德雷克斯勒博士在《创造的机器》一书中提出的分子纳米技术。根据这一概念,可以使组合分子的机器实用化,从而可以任意组合所有种类的分子,可以制造出任何种类的分子结构。这种概念的纳米技术还未取得重大进展。

(2)第二种概念把纳米技术定位为微加工技术的极限。也就是通过纳米精度的“加工”来人工形成纳米大小的结构的技术。这种纳米级的加工技术,也使半导体微型化即将达到极限。现有技术即使发展下去,从理论上讲终将会达到限度,这是因为,如果把电路的线幅逐渐变小,将使构成电路的绝缘膜变得极薄,这样将破坏绝缘效果。此外,还有发热和晃动等问题。为了解决这些问题,研究人员正在研究新型的纳米技术。(3)第三种概念是从生物的角度出发而提出的。本来,生物在细胞和生物膜内就存在纳米级的结构。DNA分子计算机、细胞生物计算机的开发,成为纳米生物技术的重要内容。

1.3.3 纳米材料的发展史 70年代,科学家开始从不同角度提出有关纳米科技的构想,1974年,科学家谷口纪男(Norio Taniguchi)最早使用纳米技术一词描述精密机械加工;1982年,科学家发明研究纳米的重要工具——扫描隧道显微镜,为我们揭示一个可见的原子、分子世界,对纳米科技发展产生了积极促进作用;1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着纳米科学技术的正式诞生;1991年,碳纳米管被人类发现,它的质量是相同体积钢的六分之一,强度却是钢的10倍,成为纳米技术研究的热点,诺贝尔化学奖得主斯莫利教授认为,纳米碳管将是未来最佳纤维的首选材料,也将被广泛用于超微导线、超微开关以及纳米级电子线路等;1993年,继1989年美国斯坦福大学搬走原子团“写”下斯坦福大学英文、1990年美国国际商用机器公司在镍表面用36个氙原子排出“IBM”之后,中国科学院北京真空物理实验室自如地操纵原子成功写出“ 中国”二字,标志着中国开始在国际纳米科技领域占有一席之地;1997年,美国科学家首次成功地用单电子移动单电子,利用这种技术可望在2017年后研制成功速度和存贮容量比现在提高成千上万倍的量子计算机;1999年,巴西和美国科学家在进行纳米碳管实验时发明了世界上最小的“秤”,它能够称量十亿分之一克的物体,即相当于一个病毒的重量;此后不久,德国科学家研制出能称量单个原子重量的秤,打破了美国和巴西科学家联合创造的纪录;到1999年,纳米技术逐步走向市场,全年基于纳米产品的营业额达到500亿美元;2001年,一些国家纷纷制定相关战略或者计划,投入巨资抢占纳米技术战略高地。日本设立纳米材料研究中心,把纳米技术列入新5年科技基本计划的研发重点;德国专门建立纳米技术研究网;美国将纳米计划视为下一次工业革命的核心,美国政府部门将纳米科技基础研究方面的投资从1997年的1.16亿美元增加到2001年的4.97亿美元。中国也将纳米科技列为中国的“973计划”,其间涌出了像“安然纳米”等一系列以纳米科技为代表的高科技企业。1.3.4 纳米科技的研究领域(1)纳米材料

当物质到纳米尺度以后,大约是在0.1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料,即为纳米材料。(2)纳米动力学

主要是微机械和微电机,或总称为微型电动机械系统(MEMS),用于有传动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等.用的是一种类似于集成电器设计和制造的新工艺。特点是部件很小,刻蚀的深度往往要求数十至数百微米,而宽度误差很小。这种工艺还可用于制作三相电动机,用于超快速离心机或陀螺仪等。在研究方面还要相应地检测准原子尺度的微变形和微摩擦等。虽然它们目前尚未真正进入纳米尺度,但有很大的潜在科学价值和经济价值。理论上讲:可以使微电机和检测技术达到纳米数量级。(3)纳米生物学和纳米药物学

如在云母表面用纳米微粒度的胶体金固定DNA的粒子,在二氧化硅表面的叉指形电极做生物分子间互作用的试验,磷脂和脂肪酸双层平面生物膜,DNA的精细结构等。有了纳米技术,还可用自组装方法在细胞内放入零件或组件使构成新的材料。新的药物,即使是微米粒子的细粉,也大约有半数不溶于水;但如粒子为纳米尺度(即超微粒子),则可溶于水。纳米生物学发展到一定技术时,可以用纳米材料制成具有识别能力的纳米生物细胞,并可以吸收癌细胞的生物医药,注入人体内,可以用于定向杀癌细胞。(4)纳米电子学

包括基于量子效应的纳米电子器件、纳米结构的光/电性质、纳米电子材料的表征,以及原子操纵和原子组装等。当前电子技术的趋势要求器件和系统更小、更快、更冷,更小,是指响应速度要快。更冷是指单个器件的功耗要小。但是更小并非没有限度。纳米技术是建设者的最后疆界,它的影响将是巨大的。第二章 纳米材料的基本概念 2.1分类

(1)按维数,纳米材料的基本单元可以分为:

零维:纳米颗粒(nanoparticle)、原子团簇(atom cluster)一维:纳米线(nanowire)、纳米棒(nanorod)、纳米管(nanotube); 二维:超薄膜(thin film)、纳米片、超晶格(superlattice)(2)按化学组成:纳米金属、纳米陶瓷、纳米高分子、纳米复合材料等。(3)按物性:纳米半导体、纳米磁性材料、纳米光学材、纳米铁电材料等等。2.2 纳米材料发展史

1861年,随着胶体化学的建立,科学家们开始了对直径为1~100nm的粒子体系的研究工作。

1959年12月29日理查德•费曼(Richard Feynman)在美国物理学会会议上做了题为“在底部有很多空间”的演讲。虽然没有使用“纳米”这个词,但他实际上介绍了纳米技术的基本概念。

到了20世纪60年代人们开始对分立的纳米粒子进行研究。1963年,Uyeda用气体蒸发冷凝法制的了金属纳米微粒,并对其进行了电镜和电子衍射研究。1984年德国萨尔兰大学(Saarland University)的Gleiter以及美国阿贡实验室的Siegal相继成功地制得了纯物质的纳米细粉。Gleiter在高真空的条件下将粒子直径为6nm的铁粒子原位加压成形,烧结得到了纳米微晶体块,从而使得纳米材料的研究进入了一个新阶段。

1974年日本教授谷口纪男(Norio Taniguchi)在一篇题为:“论纳米技术的基本概念“的科技论文中给出了新的名词——纳米(Nano)。1990年7月在美国召开了第一届国际纳米科技技术会议(International Conference on Nanoscience&Technology),正式宣布纳米材料科学为材料科学的一个新分支。

第三章 纳米材料的结构特性与表征 3.1结构特性

一般在宏观领域中,某种物质固体的理化特性与该固体的尺度大小无关。当物质颗粒小于100 nm时,物质本身的许多固有特性均发生质的变化。这种现象称为“纳米效应”。纳米材料具有三大效应:表面效应、小尺寸效应和宏观量子隧道效应。

3.1.1表面效应 纳米材料的表面效应是指纳米粒子的表面原子数与总原子数之比随粒径的变小而急剧增大后所引起的性质上的变化。随着粒径变小,表面原子所占百分数将会显著增加。当粒径降到1 nm时,表面原子数比例达到约90%以上,原子几乎全部集中到纳米粒子表面。由于纳米粒子表面原子数增多,表面原子配位数不足和高的表面能,使这些原子易与其它原子相结合而稳定下来,故具有很高的化学活性。

3.1.2小尺寸效应 由于颗粒尺寸变小所引起的宏观物理性质的变化称为小尺寸效应。对超微颗粒而言,尺寸变小,比表面积增加,从而产生一系列新奇的性质:

1)特殊的光学性质:纳米金属的光吸收性显著增强。粒度越小,光反射率越低。所有的金属在超微颗粒状态都呈现为黑色。尺寸越小,颜色愈黑。金属超微颗粒对光的反射率通常可低于l%,约几微米的厚度就能完全消光。相反,一些非金属材料在接近纳米尺度时,出现反光现象。纳米TiO2、纳米SiO2、纳米Al2O3等对大气中紫外光很强的吸收性。2)热学性质的改变:固态物质超细微化后其熔点显著降低。当颗粒小于10 nm量级时尤为显著。例如,金的常规熔点为1064C℃,当颗粒尺寸减小到2 nm尺寸时的熔点仅为327℃左右;银的常规熔点为670℃,而超微银颗粒的熔点可低于100℃。

3)特殊的磁学性质:小尺寸的超微颗粒磁性与大块材料显著的不同,大块的纯铁矫顽力约为80A/m,而当颗粒尺寸减小到20 nm以下时,其矫顽力可增加1千倍,当颗粒尺寸约小于6 nm时,其矫顽力反而降低到零,呈现出超顺磁性。利用磁性超微颗粒具有高矫顽力的特性,已做成高贮存密度的磁记录磁粉,大量应用于磁带、磁盘、磁卡等。利用超顺磁性,人们已将磁性超微颗粒制成用途广泛的磁性液体。

4)特殊的力学性质:纳米材料的强度、硬度和韧性明显提高。纳米铜的强度比常态提高5倍;纳米金属比常态金属硬3~5倍。纳米陶瓷材料具有良好的韧性,因为纳米材料具有大的界面,界面的原子排列相当混乱,原子在外力变形的条件下很容易迁移,因此表现出甚佳的韧性与一定的延展性。氟化钙纳米材料在室温下可以大幅度弯曲而不断裂。

3.1.3宏观量子隧道效应 对超微颗粒而言,大块材料中连续的能带将分裂为分立的能级;能级间的间距随颗粒尺寸减小而增大。当热能、电场能或者磁场能比平均的能级间距还小时,就会呈现一系列与宏观物体截然不同的反常特性,称之为量子尺寸效应。例如,导电的金属在超微颗粒时可以变成绝缘体,比热亦会反常变化,光谱线会产生向短波长方向的移动,这就是量子尺寸效应的宏观表现。一些宏观物理量,如微颗粒的磁化强度、量子相干器件中的磁通量等亦显示出隧道效应,它们可以穿越宏观系统的势垒而产生变化,称之为宏观量子隧道效应。这一效应与量子尺寸效应,确立了现存微电子器件进一步微型化的极限,当微电子器件进一步微型化时必须要考虑上述的量子效应。3.2纳米结构的检测与表征 扫描隧道显微镜 scanning tunneling microscope 缩写为STM。它作为一种扫描探针显微术工具,扫描隧道显微镜可以让科学家观察和定位单个原子,它具有比它的同类原子力显微镜更加高的分辨率。此外,扫描隧道显微镜在低温下(4K)可以利用探针尖端精确操纵原子,因此它在纳米科技既是重要的测量工具又是加工工具。

STM使人类第一次能够实时地观察单个原子在物质表面的排列状态和与表面电子行为有关的物化性质,在表面科学、材料科学、生命科学等领域的研究中有着重大的意义和广泛的应用前景,被国际科学界公认为20世纪80年代世界十大科技成就之一。(1)优越性

①具有原子级高分辨率,STM 在平行于样品表面方向上的分辨率分别可达0.1埃,即可以分辨出单个原子。

②可实时得到实空间中样品表面的三维图像,可用于具有周期性或不具备周期性的表面结构的研究,这种可实时观察的性能可用于表面扩散等动态过程的研究。

③可以观察单个原子层的局部表面结构,而不是对体相或整个表面的平均性质,因而可直接观察到表面缺陷。表面重构、表面吸附体的形态和位置,以及由吸附体引起的表面重构等。

④可在真空、大气、常温等不同环境下工作,样品甚至可浸在水和其他溶液中 不需要特别的制样技术并且探测过程对样品无损伤.这些特点特别适用于研究生物样品和在不同实验条件下对样品表面的评价,例如对于多相催化机理、超一身地创、电化学反应过程中电极表面变化的监测等。

⑤ 配合扫描隧道谱(STS)可以得到有关表面电子结构的信息,例如表面不同层次的态密度。表面电子阱、电荷密度波、表面势垒的变化和能隙结构等。⑥利用STM针尖,可实现对原子和分子的移动和操纵,这为纳米科技的全面发展奠定了基础。(2)局限性

尽管STM有着EM、FIM等仪器所不能比拟的诸多优点,但由于仪器本身的工作方式所造成的局限性也是显而易见的。这主要表现在以下两个方面

①STM的恒电流工作模式下,有时它对样品表面微粒之间的某些沟槽不能够准确探测,与此相关的分辨率较差。在恒高度工作方式下,从原理上这种局限性会有所改善。但只有采用非常尖锐的探针,其针尖半径应远小于粒子之间的距离,才能避免这种缺陷。在观测超细金属微粒扩散时,这一点显得尤为重要。②STM所观察的样品必须具有一定程度的导电性,对于半导体,观测的效果就差于导体;对于绝缘体则根本无法直接观察。如果在样品表面覆盖导电层,则由于导电层的粒度和均匀性等问题又限制了图像对真实表面的分辨率。宾尼等人1986年研制成功的AFM可以弥补STM这方面的不足[10]。

此外,在目前常用的(包括商品)STM仪器中,一般都没有配备FIM,因而针尖形状的不确定性往往会对仪器的分辨率和图像的认证与解释带来许多不确定因素。

第四章 纳米材料的制备技术 4.1物理合成法

1)喷雾法 喷雾法是将溶液通过各种物理手段雾化,再经物理、化学途径而转变为超细微粒子。

2)喷雾干燥法 将金属盐溶液送入雾化器,由喷嘴高速喷入干燥室获得金属盐的微粒,收集后焙烧成超微粒子,如铁氧体的超微粒子可采用此种方法制备。3)喷雾热解法 金属盐溶液经压缩空气由贲嘴喷出而雾化,喷雾后生成的液滴大小随着喷嘴而改变,液滴受热分解生成超微粒子。例如,将Mg(NO3)2-Al(NO3)3的水溶液与甲醇混合喷雾热解(T=800°C)合成镁铝尖晶石,产物粒径为几十纳米。等离子喷雾热解工艺是将相应溶液喷成雾状送入等离子体尾焰中,热解生成超细粉末。等离子体喷雾热解法制得的二氧化锆超细粉末分为两级:平均尺寸为20~50 nm的颗粒及平均尺寸为1 mm的球状颗粒。4.2化学合成法

1)等离子体制备纳米粉末技术 等离子体作为物质存在的一种基本形态,由于在地球上很难自然存在,通常条件下,人们使电流通过气体,这样就可以使气体这个良好的绝缘体携带充分的电荷,从而形成“电击穿”,产生等离子体。带电的气体可以是氧化性气体、还原性气体和中性气体等。热等离子体作为高温气体具有高电导率、热导率,高粘度和高温度梯度,材料处于等离子体中,将迅速分解成自由原子、离子和电子,这种处于高激发态的物质通过“淬冷”导致具有独特性质的超细粉体和晶体的核化与生长。天然气加空气的燃烧产物与空气电弧加热器在不同的工作温度条件下加热效率的比较,电弧加热器的加热效率可几倍于用天然气的加热效率,这样就可以弥补电能与一次能源的差价。

2)化学气相沉淀法 一种或数种反应气体通过热、激光、等离子体等而发生化学反应析出超微粉的方法,叫做化学气相沉积法。由于气相中的粒子成核及生长的空间增大,制得的产物粒子细,形貌均一,交具有良好的单分散度,而制备常常在封闭容器中进行,保证了粒子具有更高的纯度。CVD技术更多的应用于陶瓷超微粉的制备,如AlN,SiN,SiC,其中源材料为气体或易于气化,沸点低的金属化合物。

3)共沉淀法 在含有多种阳离子的溶液中加入沉淀剂,使金属离子完全沉淀的方法称为共沉淀法。共沉淀法可制备BaTiO3、PbTiO3等PZT系电子陶瓷及ZrO2等粉体。以CrO2为晶种的草酸沉淀法,制备了La、Ca、Co、Cr掺杂氧化物及掺杂BaT-iO3等。以Ni(NO3)2·6H2O溶液为原料、乙二胺为络合剂,NaOH为沉淀剂,制得Ni(OH)2超微粉,经热处理后得到NiO超微粉。

4)均匀沉淀法 在溶液中加入某种能缓慢生成沉淀剂的物质,使溶液中的沉淀均匀出现,称为均匀沉淀法。本法克服了由外部向溶液中直接加入沉淀剂而造成沉淀剂的局部不均匀性。

5)溶剂热合成法 用有机溶剂代替水作介质,采用类似水热合成的原理制备纳米微粉。非水溶剂代替水,不仅扩大了水热技术的应用范围,而且能够实现通常条件下无法实现的反应,包括制备具有亚稳态结构的材料。

6)溶胶-凝胶法 溶胶-凝胶法广泛应用于金属氧化物纳米粒子的制备。前驱物用金属醇盐或非醇盐均可。方法实质是前驱物在一定条件下水解成溶胶,再制成凝胶,经干燥纳米材料热处理后制得所需纳米粒子。第五章 纳米固体材料的结构和性能(略)5.1结构特点

结构特点:小晶粒+大界面 界面特点:(1)量大(对于5—10nm的固体结构,组成晶界的原子高达15—50%);(2)原子排列具有变化性、多样性;(3)低能组态:晶界原子在压制时具有足够的移动性调整自己处于低能状态。5.2性能与应用

(1)力学性能与应用:强度和硬度(Hall-Petch公式);超塑性;(2)光学性能与应用:红外吸收;

第六章 纳米材料的应用及前景 6.1应用领域

6.1.1军事国防领域:纳米卫星以及相关的纳米传感器可以灵敏地“感觉”水流、水温、水压等极细微的环境变化, 并及时反馈给中央控制系统, 最低限度地降低噪声、节约能源,其高科技成分的体现还在于它能根据水波的变化提前“察觉”来袭的敌方鱼雷, 使潜艇及时做规避机动;能用较低的辐射功率完成“智能武器”的敌我识别, 以免误伤自己。这其中有些优势恐怕是当今世界其他的侦查设备所望尘莫及的。

6.1.2环境保护领域:在燃煤中加入纳米级助燃催化剂, 可帮助煤充分燃烧, 提高能源利用率, 防止有害气体产生。研究表明, 纳米钛酸钴还可在发动机汽缸内发挥催化作用, 使汽油燃烧时不再产生及排放一氧化硫和氮氧化物, 使汽车尾气无需处理。此技术对我国船舶发动机有很好的应用前景。同时,纳米的净水装置也将为我们的生活提供非常大的便利,新型的纳米级净水剂具有很强的吸附能力, 是普通净水剂的10~ 20 倍。通过纳米孔径的过滤装置, 还能除去水中的细菌,使水分子、矿物质以及微量元素被保留下来, 处理后即可以饮用。

6.1.3医学生物领域:遗传学领域中,通过纳米技术先将DNA 染色体全部分解为单个基因,然后根据需要进行组装, 转基因整合成功率几乎可达100%。而在医疗过程中,纳米级别的诊断和治疗器件能够最大程度减少医疗器械堆对人体组织的损害,再比如纳米传感器能够哦探测早期癌细胞并传递药物,种种事实表明,纳米技术运用于医学遗传领域将有助于化解许多目前的问题,从而为人类做出巨大的贡献。

6.1.4纳米技术的运用——纳米材料。不仅是纳米技术有用处,更重要的是纳米技术能够被转化成实实在在的产品出现在我们每个人的身边,纳米材料就是很好的例子。许多科技新领域的突破迫切需要纳米材料和纳米科技支撑,传统产业的技术提升也急需纳米材料和技术的支持,可以肯定纳米材料和技术对许多领域都将产生极大的冲击和影响。如纳米粒子可以被用于创造新的光学薄膜和创造具有光、磁特性的新功能材料。磁性纳米粒子和量子点将可用于生产10倍于目前芯片存储容量、数百千兆赫速度的超小光盘驱动器。在纳米材料与加工方面,科学家将通过控制纳米晶体、纳米薄膜、纳米粒子和碳纳米管等创造新的功能结构材料,开发超轻、超强结构材料,开发长寿命材料、支撑能量转换的材料和具有新功能的电子材料。另外一个纳米材料的发展方向便是成为化学和能源转化工艺方面具有高度选择性和有效性的催化剂。这不仅对能源和化学生产非常重要,而且从能源转换和环境保护角度上看极具经济价值。

6.1.5其他方面:包括纳米电子学、纳米光电子学、纳米磁学,纳米科技都具有很大的应用价值。6.2发展前景

纳米微粒防菌保洁涂层材料、纳米微粒陶瓷、纳米磁性材料、纳米光学材料、纳米电子材料、纳米敏感材料、纳米生物医学材料、纳米储能材料、纳米隐身材料等等。近年来具有奇异优越性能的纳米材料纷纷出现,为纳米技术进入各行各业、千家万户开辟了广阔前景。目前,全世界以纳米材料为主体的纳米技术产业正方兴未艾,蓬勃兴起。欧盟委员会在1995年进行的一项研究中,预计l0年内纳米技术的开发将成为仅次于芯片制造的世界第二大制造业。

人们普遍认为,纳米技术将是21世纪新产品诞生的源泉,纳米技术会引起新一轮的产业革命,必将推动生产力的发展。人类的劳动力方式将彻底发生巨大变革。人类生活环境将得到空前的改善。由于作为生命基础的细胞中的核酸、蛋白质组织结构的作用基本上是发生在纳米尺度上,所以纳米技术实际上也正在或将要揭示生命自组织过程的秘密,从而开辟了人工干预控制生命自组织过程和使人工自然物质结构具备生命自组织的道路。

美国国家癌症研究所的负责人理查德·克劳斯内指出,纳米科学的发展使未来医疗技术取得革命性的突破,例如可以通过移植微型的传感器来监控发出癌变信号的分子,医生可以应用尺寸比人体红细胞还小的纳米机器人直接打通脑血栓,清洁心脏动脉脂肪沉积物,也可以通过把多种功能的纳米微型机器人注入血管内,许多疑难病症将得到解决。例如还可以制造“生物导弹”在包敷蛋白的磁性三氧化二铁纳米微粒表面携带药物注射进入人体血管,通过磁场导航输运到病变部位释放药物,可减少肝、脾、肾等由于药物产生的副作用。由于纳米技术能使常规材料呈现出非常规物理特性,显示出巨大的市场应用和开发价值,一些发达国家都投人大量的资金进行研究工作。

通过纳米技术改造传统产品的性能并不见得非常昂贵,往往价格略有上升,但性能却要好得多,这意味着这样的产品更具有市场竞争力。钱学森曾预言“纳米左右和纳米以下的结构将是下阶段科技发展的重点,会是一次技术革命。从而将引起2l世纪又一次产业革命。”

第二部分 总结与学习心得

通过对该课程的学习,我获得了很多,不仅是在学识方面,而且在学习方法及人际交流方面也有感触。

首先,通过老师系统地详细地介绍,我们学习了有关纳米材料的相关知识。了解了纳米、纳米材料以及纳米科技的定义和分类;学习了纳米材料的结构特征和其表征方法,尤其详细介绍了STM的原理、应用和优缺点;还了解了纳米材料的丰富多样的制备方法。通过对纳米材料的了解,认识到它的重要性,我不禁憧憬起它进一步发展后的世界的新面貌。曾经的世界已经被日益发展的科学技术所改变,生活变的更加便利,生产变的更加高效。随着我们初步踏入纳米时代,身边的一切继续发生着翻天覆地的变化:很多电子器械越来越小,越来越精细;很多的新型纳米材料应运而生,改变了所制成产品的诸多性能,等等。那么,如果纳米科技能够再一次取得突破性的进展,必定将再次掀起新的工业革命,我们的生活质量也将再一次得到大幅度的提升。但是,目前的现状距离理想化的未来还有很长的一段路要走,很多技术还不成熟,很多应用都具有风险,这需要我们共同的努力,去创造一个更加美好的未来。

再者,这门课程不仅教会了我们知识,而且老师还为我们提供了很多相互学习交流的机会,和展开自己想象力,发挥创造力的平台。这使我再次意识到,在学习的同时,要善于利用发散性的思维,去挖掘更多有价值的信息,这将有利于我改善自己目前的学习方法。在轻松愉快的氛围中,我获得了知识,同时和老师以及同学们取得了相互的沟通和交流,这是一段美好的经历。

最后,感谢老师的授课和教导,感谢陪伴的同学们一同完成了纳米材料的学习历程。

第三部分 参考文献

[1].张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2002 [2].张万忠,李万雄.纳米材料研究综述[J].湖北农学院学报,2003 [3].Ledenstoy N N,Crystalline growth characteristics,Mater Prog,1998, [4].王林等.纳米材料在一些领域的应用及其前景[J].纳米科技,2005 [5].王结良,梁国正.纳米制备新技术研究进展[J].河南化工,2003 [6].姚斌,丁炳哲.纳米材料制备研究[J].科学通报,1994

[7].张登松,施利毅.纳米材料制备的若干新进展[J].化学工业与工程技术,2003 [8].肖建中.材料科学导论[M].北京:中国电力出版社,2001 [9].吴天诚,杜仲良,高绪珊.纳米纤维[M].北京:化学工业出版社,2003

第四篇:纳米材料 论文

TiO2纳米制备及其改性和应用研究进展

于琳枫(12化学1班)

摘 要: 二氧化钛纳米管由于新奇的物理化学性质引起了广泛的关注,本文就近年来在制备方法﹑反应机理﹑二级结构及掺杂和应用方面予以综述,并讨论了今后可能的研究发展方向。

关键词: 二氧化钛, 纳米管, 制备, 反应机理, 二级结构

0 引言

TiO2俗称钛白粉,无毒、无味、无刺激性、热稳定性好,且原料来源广泛易得.它有三种晶型:板钛矿、锐钛矿和金红石型。TiO2最早用来做涂料。

自从1991年Iijima发现碳纳米管以来,已经用碳纳米管模板合成出各种不同的氧化物纳米管,如SiO2,V2O5,Al2O3,MoO3等,二氧化钛由于其化学惰性,良好的生物兼容性,较强的氧化能力,以及抗化学腐蚀和光腐蚀的能力,价格低廉,在能量转换﹑废水处理﹑环境净化﹑传感器﹑涂料﹑化妆品﹑催化剂﹑填充剂等诸多领域引起了人们极大的关注。研究结果表明:TiO2的晶粒大小,形状,相组成或表面修饰以及其它成分的掺杂对其性质﹑功能有显著的影响,纳米管的比表面积大,因而具有较高的吸附能力,有良好的选择性,可望具有新奇的光电磁性质,具有很好的应用前景。本文对二氧化钛纳米管的制备,形成机理的最新进展进行综述,并对今后的发展方向予以展望。TiO2纳米材料的制备

1.1 气相法

TiO2纳米材料的气相合成主要是在化学技术和物理技术上发展起来的。由于反应温度高。气相法具有成核速度快、产品结晶度高、纯度高、生成粒子团聚少、粒径易控制等优点。气相法可以合成各种形貌的TiO2薄膜或粉体:纳米棒、纳米管、纳米带等。最常使用的气相法是高温溅射沉积法(SPD).Ahonen等用钛醇盐做前驱体。采用SPD法合成了TiO2纳米粉体和薄膜。其他的气相制备技术 1

包括:直流电溅射法、高频无线电溅射法、分子束取向生长法和等离子体法等。

1.2 液相法

目前制备TiO2纳米材料应用最广泛的方法是各种前驱体的液相合成法。这种方法的优点是:原料来源广泛、成本较低、设备简单、便于大规模生产。但是产品粒子的均匀性差,在干燥和煅烧过程中易发生团聚.应用最普遍的液相制备方法包括液相沉积法和微乳液法等。

1.2.1 液相沉积法

液相沉积法是以无机钛盐作原料,通过直接沉积来制备功能TiO2粉体和薄膜的液相法。Deki等用(NH4)2TiF6和H3BO3的水溶液为起始溶液,制备了TiO2薄膜.Imai等用添加了尿素的TiF4和Ti(SO4)2的水溶液制备了不同形貌的TiO2纳米材料。液相沉积法具有以下优点:对仪器要求比较低,温度要求低(30~50℃),基片选择比较广等。

1.2.2 微乳液法

微乳液法制备纳米TiO2是近年来才发展起来的一种方法。微乳液是指热力学稳定分散的互不相溶的液体组成的宏观上均一而微观上不均匀的液体混合物。该法的制备原理是在表面活性剂作用下使两种互不相溶的溶剂形成一个均匀的乳液。利用这两种微乳液间的反应可得到无定型的TiO2,经煅烧、晶化得到TiO2纳米晶体。贺进明等以TiCl4为原料、在十六烷基三甲基溴化铵、正己醇、水组成的微乳液体系中,在较低温度下,制备了球形、花状、捆绑丝和星形的金红石型TiO2纳米颗粒。微乳液法得到的粒子纯度高、粒度小而且分布均匀,但稳定微乳液的制备较困难。因此,此法的关键在于制备稳定的微乳液。TiO2纳米材料的反应机理

2.1氧化钛纳米管形成的反应机理

目前,对二氧化钛纳米管的形成机理和组成尚存在分歧。一般认为,锐钛矿或者金红石相以及无定形二氧化钛在碱性条件下转换为纳米管都要经过单层的纳米片的卷曲,类似于多层碳纳米管形成的机理,即从1D到2D,再到 3D的组合过程。Sugimoto等研究证实了层状的质子化的二氧化钛纳米片的存在,Sun和Masaki各自报道了钛酸钾或者钛酸钠形成的纳米带。在碱性条件下,各种钛酸盐可以形成层状的结构,再通过折叠或卷曲形成纳米管,但折叠或卷曲的顺序

尚不确定。理论上钛纳米带折叠或卷曲形成纳米管时,可形成下列3种形状:(a)蛇形的,即单层纳米管的卷曲;(b)洋葱式的,即几个有弱相互作用的纳米片的卷曲;(c)同心式的,通过卷曲或者折叠成多层的纳米管。但实际上,(c)种形状在合成时很难出现。Yao和Ma通过TEM研究分别证实了(a)和(b)构型钛纳米管的存在。

梁建等则认为钛纳米管的生长机理符合3-2-1D的生长模型,在水热合成的过程中,在高压高温和强碱作用下,二氧化钛块体沿着(110)晶面被剥落成碎片,在片的两面有不饱和悬挂键,随着反应的进行,不饱和悬挂键增多,使薄片的表面活性增强,开始卷曲成管状,以减少体系的能量,这一点从反应中间产物中观察到大量的片状及卷曲态得的到证明。Dimitry V.Bavykin[19]等系统地研究了合成温度以及TiO2/NaOH mol 比对制备二氧化钛纳米管形貌的影响.认为 图3-b 符合氧化钛纳米管的形成机理,并给出了形成机理的原始驱动力的解释。Dimitry V.Bavykin等进行了氧化钛纳米管形成的热力学和动力学研究。该模型见图4 能够很好的解释实验中增加TiO2/NaOH的摩尔比,氧化钛纳米管的平均管径也增大。同时也可以解释反应温度增加有利于纳米管的平均管径增大。

2.2 纳米管的热稳定性及氧化钛纳米管的晶型

由于二氧化钛纳米管为无定形结构,在热力学上,属于介稳态。因此研究温度对其热稳定性的影响颇有必要。王保玉等以TiO2为原料制备成TiO2纳米管,通过不同温度焙烧得到不同的样品,用TEM,XRD,FT-IR,BET等手段详细的研究了温度对晶型,比表面积的影响。研究表明,在300 ℃和400 ℃焙烧存在着两次比表面积的突降,用化学法合成的纳米管在400 ℃时,比表面积降到很小,管的结构严重被破坏。用化学法合成的纳米管是无定形的,而模板法制备的纳米管为锐钛矿型的。这可能是因为化学法制备的纳米管为多层,层与层之间不能形成三维空间的点阵结构。而王芹等研究则发现钛纳米管经过400 ℃热处理后能保持其纳米管的形貌,600 ℃有纳米管间烧结的现象,800 ℃时管的形状完全被破坏。可见合成方法的不同,氧化钛纳米管的热稳定性也有很大的差异。

Graham Armstrong等用水热法合成的氧化钛纳米管晶型为TiO2-B,具有竹子状的二氧化钛,是以TiO6八面体为基础通过共用边和共顶点形成的多晶,不同于锐钛矿相,金红石相和板钛矿相,密度比上述三种晶型都稍低。但XRD的 3

结果表明,TiO2-B的结构中仍还有痕量的锐钛矿相。梁建等用水热法合成,控制温度130 ℃,晶化时间2~3天,成功制备了多层的锐钛矿和金红石混晶的TiO2纳米管。王保玉等研究发现,氧化钛纳米管为多层管,每个单层相当于 一个氧化钛分子的厚度,层与层之间不在以化学键存在,Ti在纳米管中的配位和八面体结构未达到饱和,拉曼光谱表明,TiO2纳米管以无定型的形态存在。Tomoko Kasuga等用10 M NaOH溶液水热条件下110 ℃处理20小时,得到具有针状结构的纳米管,晶型为锐钛矿型。可见纳米管的晶型,随着水热处理的温度和时间变化而有所不同。TiO2纳米材料的的二级结构

在水热处理的过程中,除了生成纳米管本身的一级结构外,还存在纳米管之间的聚集,因而产生了氧化钛纳米管的二级结构。Dimitry V.Bavykin等研究发现,纳米管的二级结构取决于前驱体二氧化钛的量和所用NaOH的体积,其比例越小,生成的氧化钛纳米管越倾向聚集成球状。这可能是由于在水热条件下生成纳米管的过程是一个比较缓慢的过程,影响因素较复杂造成的。TiO2纳米材料的改性

TiO2纳米材料的很多应用都是和其光学性质紧密相连的。但是,TiO2的带隙在一定程度上限制了TiO2纳米材料的效率。金红石型TiO2的带隙是3.0eV,锐钛矿型是3.2eV,只能吸收紫外光,而紫外光在太阳光中只占很小的一部分(<10%)。因而,改善TiO2纳米材料性能的一个目的就是将其光响应范围从紫外光区拓展到可见光区,从而增加光活性。目前经常采用的改性方法包括贵金属沉积、离子掺杂、染料敏化和半导体复合等方法。

5.1 贵金属沉积

半导体表面贵金属(包括Pt、Au、Pd、Rh、Ni、Cu和Ag)沉积可以通过浸渍还原、表面溅射等方法使贵金属形成原子簇沉积附着在TiO2表面.由于贵金属的费米能级比TiO2的更低,光激发电子能够从导带转移到沉积在TiO2表面的贵金属颗粒上,而光生价带空穴仍然在TiO2上.这些行为大大降低了电子和空穴再结合的可能性,从而改善其光活性.Anpo和Takeuchi制备了Pt沉积TiO2用于光催化分解水制氢实验,发现产氢效率得到了明显提高.Sakthivel等研究了用Pt、Au和Pt沉积TiO2做光催化剂时对酸性绿16的光致氧化作用,发现与未沉积贵金属的TiO2相比,光催化效率得到了不同程度的提高.5.2 离子掺杂

TiO2半导体离子掺杂技术是用高温焙烧或辅助沉积等手段,通过反应将金属离子转入TiO2晶格结构之中。离子的掺杂可能在半导体晶格中引入缺陷位置和改变结晶度等。影响了电子和空穴的复合或改变了半导体的激发波长,从而改变TiO2的光活性。但是,只有一些特定的金属离子有利于提高光量子效率,其他金属离子的掺杂反而是有害的。Choi等系统地研究了21种金属离子掺杂对

TiO2光催化活性的影响,发现Fe、Mo、Ru、Os、Re、V和Rh离子掺杂可以把TiO2的光响应拓宽到可见光范围,其中Fe离子掺杂效果最好,而掺杂Co和Al会降低其光催化活性。Wu等定性分析了过渡金属(Cr、Mn、Fe、Co、Ni和Cu)离子掺杂对TiO2的光催化活性的影响。Xu等比较了不同稀有金属(La、Ce、Er、Pr、Gd、Nd和Sm)离子掺杂对TiO2光催化活性的影响。

阴离子掺杂可以改善TiO2在可见光下的光催化活性、光化学活性和光电化学活性。在TiO2晶体中掺杂阴离子(N、F、C、S等)可以将光响应移动到可见光范围。不像金属阳离子,阴离子不大可能成为电子和空穴的再结合中心,因而能够更有效地加强光催化剂的催化活性。Asahi等测定了取代锐钛矿TiO2中O的C、N、F、P和S的掺杂比例。发现p态N和2p态O的混合能使价带边缘向上移动从而使得TiO2带隙变窄。尽管S掺杂同样能使TiO2带隙变窄,但是由于S离子半径太大很难进入TiO2晶格。研究表明C和P掺杂由于掺杂太深不利于光生电荷载体传递到催化剂表面,所以对光催化活性的影响不是很有效。Ihara等将硫酸钛和氨水的水解产物在400℃的干燥空气中煅烧,得到了可见光激发的N掺杂TiO2光催化剂。

5.3 染料敏化

有机染料被广泛地用作TiO2的光敏化剂来改善其光学性质。有机染料通常是具有低激发态的过渡金属化合物,像吡啶化合物、苯二甲蓝和金属卟啉等。Yang等用联吡啶、Carp等用苯二甲蓝染料作为感光剂敏化TiO2,发现这些染料可以改善光生电子空穴对的电荷分离,从而改善了催化剂的可见光吸收。

5.4 半导体复合

半导体复合是提高TiO2光效率的有效手段。通过半导体的复合可以提高系统的电荷分离效率,扩展其光谱响应范围.从本质上说,半导体复合可以看成是一种颗粒对另一种颗粒的修饰。Sukharev等将禁带宽度与TiO2相近的半导体ZnO与TiO2复合,因复合半导体的能带重叠使光谱响应得到发展。通过对ZnO/TiO2、TiO2/CdSe、TiO2/PbS、TiO2/WO3等体系的研究表明,复合半导体比单个半导体具有更高的光活性。GurunathanK等将CdS(带隙2.4eV)和SnO2(带隙3.5eV)复合在可见光下制氢得到了更高的产氢率。总结与展望

针对TiO2纳米材料的性质、合成、改性和应用,人们已经做了广泛的研究。随着TiO2纳米材料的合成和改性方面的突破,其性能得到不断地改善,新应用也不断的被发现。但从目前的研究成果看,可见光催化或分解水效率还普遍很低。因此如何通过对纳米TiO2的改性,有效地利用太阳光中的可见光部分,降低TiO2光生电子空穴对的复合机率,提高其量子效率是今后的研究重点。

参考文献

[1] 梁建,马淑芳,韩培德等, 二氧化钛纳米管的合成及其表征,稀有金属材料与工程, 34(2): 287-290, 2005.[2] 王保玉, 郭新勇, 张治军等, 热处理对TiO2纳米管结构相变的影响高等学校化学学报, 24: 1838-1841,2003.[3] 王芹, 陶杰, 翁履谦等, 氧化钛纳米管的合成机理与表征, 材料开发与应用, 19: 9-12, 2004.[4] 张青红, 高濂, 郑珊等, 制备均一形貌的长二氧化钛纳米管, 化学学报, 60(8): 1439-1444, 2002.[4] 赖跃坤, 孙岚, 左娟等, 氧化钛纳米管阵列制备及形成机理, 物理化学学报, 20(9): 1063-1066, 2004.[5] 王芹, 陶杰, 翁履谦等, 氧化钛纳米管的水热法合成机理研究, 南京航空航天大学学报, 37(1): 130-134, 2005.[6] 韩文涛, 马建华, 郝彦忠, 二氧化钛纳米管的研究进展,河北科技大学学报, 26(3): 199-202,2005.[7]洪樟连.唐培松.周时凤.樊先平.王智宇.钱国栋.王民权 水热法制备纳米TiO2的可见光波段光催化活性的溶剂效应[期刊论文]-稀有金属材料与工程 2004(z1)[8]张景臣 纳米二氧化钛光催化剂[期刊论文]-合成技术及应用 2003(3)[9]蔡登科.张博.孟凡 纳米TiO2在有机废水处理方面的研究进展[期刊论文]-电力环境保护 2003(3)60.陈琦丽.唐超群.肖循.丁时锋 二氧化钛纳米晶的制备及光催化活性研究[期刊论文]-材料科学与工程学报 2003(4)[10]江红.戴春爱 纳米TiO2光催化降解技术在污水处理方面的研究进展[期刊论文]-北方交通大学学报2003(6)

[11]余灯华.廖世军 TiO2结构对光催化性能的影响及其提高的途径[期刊论文]-环境污染治理技术与设备2003(2)[12]张青红.高濂.孙静 氧化硅对二氧化钛纳米晶相变和晶粒生长的抑制作用[期刊论文]-无机材料学报2002(3)[13]梅燕.贾振斌.曹江林.韩梅娟.张艳峰.魏雨 纳米TiO2粉体的固定及其对甲醇的光电复合氧化[期刊论文]-太阳能学报 2002(2)[14]孙晓君.井立强.蔡伟民.周德瑞.徐朝鹏.李晓倩 用于可见光下Pt(Ⅳ)/TiO2光催化剂的制备和表征[期刊论文]-硅酸盐学报 2002(6)[15]李汝雄.孙海影 超细TiO2的合成及其光催化分解水中有机物的研究[期刊论文]-北京石油化工学院学报 2002(2)[16]邓晓燕.崔作林.杜芳林.彭春 纳米二氧化钛的热分析表征[期刊论文]-无机材料学报 2001(6)73.余润兰.邝代治.邓戊有.王建伟 纳米催化研究进展[期刊论文]-衡阳师范学院学报 2001(6)[17]井立强.孙晓君.郑大方.徐跃.李万程.蔡伟民 ZnO超微粒子的量子尺寸效应和光催化性能[期刊论文]-哈尔滨工业大学学报 2001(3)8

第五篇:纳米论文

纳米复合材料论文

——纳米陶瓷复合材料

摘要:本论文主要介绍了纳米复合材料的的设计(包括结构设计和功能设计),讨论了纳米陶瓷复合材料的制备方法以及对所制备的金属基纳米复合材料的性能进行了分析,最后对纳米陶瓷纳米复合材料的发展进行了展望。关键词:纳米陶瓷材料

纳米复合材料

制备

性能

展望

致远化学班

F1324005 陈昊 5132409039

目 录

前 言 „„„„„„„„„„„„„„„„„„„„„„„„„1 第1章纳米陶瓷材料概述 „„„„„„„„„„„„„„„„„2 第2章纳米陶瓷材料的生产工艺………………………………………4 第3章纳米陶瓷材料应用……………………………………………5 结束语…………………………………………………………………7 参考文献 „„„„„„„„„„„„„„„„„„„„„„„„7

前言

陶瓷材料在日常生活、工业生产及国防领域中起着举足轻重的作用。但是,由于传统陶瓷材料质地较脆,韧性、强度较差,因而使其应用受到了很大限制。随着纳米技术的广泛应用,纳米陶瓷随之产生,希望以此来克服传统陶瓷的脆性,使其具有像金属一样的柔韧性和可加工性。与传统陶瓷相比。纳米陶瓷的原子在外力变形条件下自己容易迁移,因此表现出较好的韧性与一定的延展性,因而从根本上解决了陶瓷材料的脆性问题。英国著名材料科学家卡恩在Nature杂志上撰文道:“纳米陶瓷是解决陶瓷脆性的战略途径。”

所谓纳米陶瓷,是指陶瓷材料的显微结构中,晶粒尺寸、晶界宽度、第二相分布、气孔尺寸、缺陷尺寸都限于100nm以下,是上世纪80年代中期发展起来的新型陶瓷材料。由于纳米陶瓷晶粒的细化,品界数量大幅度增加,可使材料的韧性和塑性大为提高并对材料的电学、热学、磁学、光学等性能产生重要的影响,从而呈现出与传统陶瓷不同的独特性能,成为当今材料科学研究的热点。

一、纳米陶瓷材料的性能

纳米陶瓷材料的结构与常规材料相比发生了很大变化,颗粒组元细小到纳米数量级,界面组元大幅度增加,可使材料的强度、韧性和超塑性等力学性能大为提高,并对材料的热学、光学、磁学、电学等性能产生重要的影响。1.力学性能

硬度和断裂韧度:对纳米晶TiO2进行研究,发现在室温压缩时,纳米颗粒已有很好的结合,高于500℃很快致密化,而晶粒大小只有稍许的增加,所得的硬度和断裂韧度值与单晶TiO2或粗颗粒压缩体的相应值比,性能相当或更好。纳米晶TiO2其硬度和断裂韧度随烧结温度的增加(即空隙度的降低)而增加,在800~900℃温度范围烧结,与经优化烧结的块状陶瓷相比,两者的硬度和断裂韧度值相符。低温烧结后,纳米晶TiO2就能获得好的力学性能。通常硬化处理材料变脆,造成断裂韧度的降低,而就纳米晶而言,硬化和韧化由空隙的消除来形成,这样就增加了材料的整体强度。纳米晶TiO2经800℃烧结后,维氏硬度H=630,断裂韧度Kic(Mpam1/2)为2.8,空隙度为10%;而1000℃烧结后,H=925,Kic=2.8,空隙度为5%。2.热学性能

(1)比热,纳米材料的界面结构中原子分布比较混乱,与常规材料相比,界面体积分数较大,因而纳米材料熵对比热的贡献比常规材料大得多。如对应粒径为80nmAl2O3的比热,比常规粗晶Al2O3高8%。

(2)热膨胀,纳米非晶氮化硅热膨胀系数比常规晶态Si3N4高1~26倍。其原因是纳米非晶氮化硅的结构与常规晶态Si3N4有很大差别,前者是由短程有序的非晶态小颗粒构成的,它们之间的界面占很大比例,界面原子的排列较之非晶颗粒内部更为混乱。在相同条件下,原子和键的非线性热振动比常规晶态显著得多,因此对热膨胀的贡献也必然很大。

(3)导热或超绝热,绝热材料目前在我国尚处于实验研究与工业实验的中间阶段。由于气孔尺寸小到纳米级,主要产生如下纳米效应:当轻质材料中的气孔尺寸小于50nm时,气孔中的空气分子就失去了自由流动的能力,因此相当于抽了真空,称为“零对流效应”。由于材料的体积密度较小,气孔尺寸很小,这时气孔壁的数目趋于“无穷多”。对于每一个气孔壁来说都具有遮热板的作用,因而产生近于“无穷多遮热板”的效应,从而使辐射传热下降到最小的极限。由于近于无穷多纳米孔的存在.热流在固体中传递时就只能沿着气孔壁传递,近于无穷多的气孔壁构成了近于“无穷多路径”效应,使固体热传导的能力下降到接近最低极限。

将硅酸钙复合纳米孔超级绝热材料用于钢结构防火可使防火时间从目前一般厚质防火涂料的2h左右延长到15h,给灭火赢得充足的时间。将该材料用于太阳能热水器,可使其集热效率提高一倍以上,而散热损失下降到现在的30%。3.光学性能

材料的光学性能与其内部的微观结构,特别是电子态、缺陷态和能级态结构有关。纳米材料在结构上与常规材料有很大差别,突出表现在小尺寸颗粒和庞大体积分数的界面,界面原子排列和键的组态的无规则性较大,使纳米材料的光学性能出现一些与常规材料不同的新现象。

(1)红外吸收:对纳米材料红外吸收的研究表明,红外吸收谱中出现蓝移和宽化。纳米相Al2O3,红外吸收谱在400~1000cm-1波数范围内有一个宽广的吸收带,与A12O3单晶相比,红外吸收峰有明显的宽化,其中对应单晶的637cm-1和442cm-1的吸收峰,在纳米相中蓝移到639.7cm-1和442.5cm-1。(2)荧光现象:用紫外光激发掺Cr和Fe的纳米相A12O3时,在可见光范围观察到新的荧光现象。

(3)光致发光:退火温度低于673K时,纳米非晶氮化硅块体在紫外光到可见光范围的发光现象与常规非晶氮化硅不同,出现6个分立的发光带,而常规非晶氮化硅在紫外光到可见光很宽的波长范围的发光呈现一个很宽的发光带。4.电磁学性能

纳米材料与常规材料在结构上,特别是在磁结构上有很大差别,因此在磁性方面会有其独特的性能。除磁结构和磁化特点不同外,纳米晶材料颗粒组元小到纳米级,具有高的矫顽力,低的居里温度,颗粒尺寸小于某一临界值时,具有超顺磁性等。同时,纳米材料的界面组元与粗晶材料有很大差别,使界面组元本身磁性具有独特性能。例如界面的磁各向异性小于晶内,居里温度低于常规材料等。

由于纳米材料中存在庞大体积分数的界面,使平移周期在一定范围内遭到严重破坏,颗粒愈小,电子平均自由程愈短,偏离理想周期场愈严重。因此,纳米材料的电学性能(如电导、介电性、压电性等)与常规材料存在明显的差别。

(1)电阻和电导,晶界原子排列愈混乱,晶界厚度愈大,对电子散射能力就愈强。界面这种高能垒是使电阻升高的主要原因。当晶粒尺寸小于电子平均自由程时,晶界组元对电子的散射起主导作用,这时电阻与温度的关系以及电阻温度系数的变化都明显偏离粗晶情况,甚至出现反常现象。纳米非晶氮化硅(粒径大约15nm)的电导比常规非晶氮化硅高。

(2)介电特性。纳米材料在结构上与常规材料存在很大差别,其特点主要表现在介电常数和介电损耗对颗粒尺寸有很强的依赖关系,电场频率对介电行为有极强的影响。纳米材料的介电常数随电场频率的降低而升高,并显示出比常规粗晶材料高的介电性。纳米材料随着电场频率的下降,介质的多种极化都能跟上外加电场的变化,介电常数增大。(3)压电效应,经研究表明,未经退火和烧结的纳米非晶氮化硅块体具有强的压电效应,而常规非晶氮化硅不具有压电效应。

二、纳米陶瓷材料制备工艺与方法 蒸发凝聚法(PVD法)蒸发凝聚法是制备纳米粉体的一种早期的物理方法,蒸发法所得产品颗粒粒度一般在5~100纳米之间。蒸发法是将金属或化合物颗粒的原料加热、蒸发,使之成为原子或分子,再使许多原子或分子凝聚,生成极微细的纳米粉体。目前已发展出多种蒸发凝聚技术手段制备纳米陶瓷粉体,这些方法大体上可分为:真空蒸发法、气体蒸发法等。而按原料加热蒸发技术手段不同,又可将蒸发法分为:太阳炉加热蒸发法、电子束加热蒸发法、等离子体加热蒸发法及激光束加热蒸法等。

蒸发冷凝法也是一种蒸发凝聚法,在真空蒸发室内充人低压惰性气体,加热金属或化合物蒸发源,蒸气将凝聚成纳米尺寸的团簇,并在液氮冷却棒上聚集得到纳米粉体。蒸发冷凝法的优点是可在体系中加置原位压实装置直接得到纳米陶瓷材料。

蒸发凝聚法的缺点是装备庞大,设备投资昂贵,且不能制备高熔点的氧化物和碳化物粉体,所得粉体一般粒径分布范围较宽。2化学气相反应法(CVD法)化学气相沉积(Chemical Vapor DePosition CVD)法是在高热卞反应产物蒸气形成很高的过饱和蒸气压而使其自动凝聚形成大量的晶核。这些晶核在加热区不断长大、聚集成颗粒,且随着气流进人低温区使颗粒生长、聚集和晶化过程停止,最终在收集室内收集得到纳米陶瓷粉体。CVD法可通过选择适当的反应物浓度、流速、温度和组成配比等工艺条件,实现对粉体组成、形貌、尺寸、晶相等控制。3激光诱导化学气相法(LICVD法)激光诱导化学气相沉积(Laser Indueed Chemical Vapor DePosition LICVD)法是利用反应气体分子对特定波长激光束的吸收而产生热解或化学反应,经成核生长形成超细粉末。UCVD法通常采用高能CO2激光器。4等离子体气相合成法(PCVD法)等离子化学气相沉积伊(Plasma Chemical Vapor Deposition PCVD)法是纳米陶瓷粉体制备的常用方法之一,它具有反应温度高、升温和冷却速率快等特点。等离子体是物质存在的第四种状态,由电离的导电气体组成,其中包括:电子、正离子、负离子、激发态的原子和分子、基态原子和分子及光子。采用等离子气相化学法制备陶瓷纳米粉体材料具有许多优点:a、等离子体中具有较高的电离度,可以得到多种活性组分,有利于各类反应的进行;b、等离子体反应空间大,可以使相应物质化学反应完全;c、与激光诱导气相沉积法相比,等离子气相化学法更容易工业化。5溶胶-凝胶(SOL-GEL)法

溶胶-凝胶法是指在水溶液中加入有机配体与金属离子形成配合物,通过控制pH值、反应温度等条件让其水解、聚合,经溶胶)凝胶途径形成一种空间骨架结构,然后脱水焙烧得到目的产物的一种方法。此法在制备复合氧化物纳米陶瓷材料时具有很大的优越性。

三、纳米陶瓷材料的应用领域

1、硬性防护和软性保护材料

普通陶瓷在用作防护材料时,由于其韧性差,受到弹丸撞击后容易在撞击区出现显微破坏、跨晶、界面破坏、裂纹扩展等一系列破坏过程,从而降低了陶瓷材料的抗弹性能。纳米陶瓷具有高韧性的性能,提高了陶瓷材料的抗冲击性能,可有效提高主战坦克复合装甲的抗弹能力,增强速射武器陶瓷衬管的抗腐蚀性和抗冲击性;由防弹陶瓷外层和碳纳米管复合材料作衬底,可制成坚硬如钢的防弹背心。在未来的战争中,若能把纳米陶瓷用于车辆装甲防护,会具有更好的抗弹、抗爆震、抗击穿能力,提供更为有力的保护。纳米Y2O3和ZrO2在较低温度烧结的陶瓷具有很高的韧性和强度,被用于轴承和刀具等耐磨器件。

另一方面起着软性保护的纳米涂料也在防护领域起着重要的作用,目前纳米陶瓷用于腐蚀条件恶劣环境中的防腐纳米陶瓷涂料,能有效保护航标灯座、船舶、石油化工设施和各类贮罐、桥梁、桥墩、铁路涵洞、钻井设备、海上油田等设施以及强酸、强碱等生产设备的外表面,在较长时间内防止强酸碱、盐雾、冻融、霉菌等的浸渍。

另外以纳米陶瓷粉体为基体,利用其致密速度快、烧结温度低和良好的界面延展性,在烧结过程中控制颗粒尺寸在200—500nm的的最佳范围,可以获得具有良好超塑性的纳米陶瓷材料。如纳米陶瓷电极板灯就是基于这样的基础,灯的电极使用了纳米级的陶瓷粉烧接,起到了保护灯管的作用。

2、耐高温材料

纳米陶瓷粉末涂料在高温环境下具有优异的隔热保温效果,不脱落、不燃烧,耐水、防潮,无毒、对环境无污染,对提高航空发动机的涡轮前温度,进而提高发动机的推重比和降低燃料消耗具有重要作用,适用于冶金、化工工业、电厂的热力锅炉及焦化煤气等热力设备和热力管网等高温设备的防腐、炉外降温,并有望成为舰艇、军用涡轮发动机高温部件的理想材料,以提高发动机效率,可靠性与工作寿命。在汽车工业也有着广阔前景,如用纳米陶瓷作为气缸内衬材料,因耐高温可提高燃料燃烧温度,使燃料的热效率提高;涂覆于汽车玻璃表面可起到防污和防雾、隔热作用。

3、生物材料、临床应用材料

随着纳米材料研究的深入,纳米生物陶瓷材料的优势将逐步显现,其强度、韧性、硬度以及生物相容性都有显著提高。例如当羟基磷灰石粉末中添加10%~70%的ZrO2粉末时,材料经1300~1350℃热压烧结,其强度和韧性随烧结温度的提高而增加。纳米SiCn增强羟基磷灰石复合材料比纯羟

基磷灰石陶瓷的抗弯强度提高1.6倍、断裂韧性提高2倍、抗压强度提高1.4倍,与生物硬组织的性能相当。从表1可看出纳米陶瓷材料的力学性能。

Erbe等用纳米技术制备出纳米磷酸钙,它不仅可以作为骨髓细胞的细胞骨架,还可以加速细胞的形成。生物功能陶瓷能够模仿人体某些特殊生理行为,可以用来构成牙齿和骨骼等某些人体部位,甚至可望部分或整体地修复或替换人体的某种组织器官。传统的陶瓷材料晶粒,气孔较大,因此其脆性及弹性模量也较大,给人工牙齿的质量带来影响。Hlateng等正在研究一种纳米陶瓷材料,该材料不仅强度、柔韧、可塑性好。而且弹性模量接近天然骨,极大地改善了材料的力学相容性和生物相容性,为临床制作人工关节、人工牙齿及牙种植体开辟了新途径。利用纳米微粒可在体内方便传输的特点,科学家开发出放射疗法用的羟基磷灰石复合陶瓷微粒。把可放射β射线的化学元素掺入纳米微粒内,制成β射线源材料,把它植入人体肿瘤附近,就可直接照射癌细胞又不损伤周围正常组织。目前,一种生物陶瓷材料硅酸铝钇(YAS)就可以满足这些要求。初步临床表明,采用这种材料治疗可以大大延长病人的寿命。

4、以陶瓷粉末为吸收剂的吸收材料

传统的汽车尾气净化催化材料是在陶瓷载体表面涂一层Al2O3粉体材料作为分散层,再在分散层表面涂一层催化剂材料作为活性层。将分散层和活性层的材料制备技术开发成纳米表面材料技术,可明显改善汽车尾气催化剂的性能,提高了汽车尾气净化器的寿命。

5、压电材料

压电陶瓷广泛用于电子技术、激光技术、通汛、生物、医学、导航、自动控制、精密加工、传感技术、计量检测、超声和水声、引燃引爆等军用、商用及民用领域。纳米陶瓷晶体结构上没有对称中心,具有压电效应。通过精选材料组成体系和添加物改性,可以获得高能和低温烧结兼备的压电纳米陶瓷材料。通过控制纳米晶粒的生长可获得量子限域效应,以及性能奇异的铁电体,以提高压电热解材料机电转换和热释性能。即卡金说的压电材料就具有这样的变化特征。研究发现当它们的厚度介于20~23nm时,其压电效率提高了100%。近年迅速发展的各类压电变压器、压电驱动器、大功率超声焊接技术、压电式振动给料器、超声CVD新工艺和核电站相配套的大功率超声工程都是纳米陶瓷在压电方面的应用。

6、信息材料

电子陶瓷的应用范围日趋广泛,包括基板、传感器。这些之所以广泛地采用电子陶瓷来制作。原因在于随着追求降低半导体元件的工作电压和增加多层陶瓷电容单位体积效率,多层陶瓷电容器内层厚度降低,总层数增加。当陶瓷中的晶粒尺寸减小一个数量级,晶粒的表面积及晶界的体积亦以相应的倍数增加。纳米功能陶瓷除了可降低产品的成本,满足电子元件小型化的需要外,还可减少连接的距离,将会提高对环境的稳定性,减少噪音并降低产品对噪音的敏感性瑚,大大提高产品的质量。

7、清洁材料

“纳米易洁陶瓷”系采用特殊的涂覆技术。将纳米液态聚合硅均布于陶瓷表面,经高温处理后得到具有纳米量级膜层的陶瓷。聚合硅成膜后能大大降低陶瓷的表面张力,使液体在陶瓷表面呈半球状,不易挂沾,易于清洁。纳米陶瓷具有明显的易洁特性,在使用中便于清洗节水,也会减少因使用化学清洁剂而造成的环境污染。同时纳米陶瓷材料还具有一定的抗菌性。所以其在墙地砖及卫生洁具的应用有着十分广阔的前景和重要的环保意义。

结束语

纳米陶瓷作为一种新型的高性能陶瓷,将越来越受到世界各国科学家的关注。纳米陶瓷材料的发展是现代物理和先进技术结合的产物, 是近年来发展起来的一门全新的科学技术,它将成为新世纪最重要的高新技术之一。纳米陶瓷的研究与发展,必将引起陶瓷工业的发展与变革,引起陶瓷学理论上的发展乃至新的理论体系的建立,以适应纳米尺度的研究需要,从而使纳米陶瓷材料具有更佳的性能,使其在工程领域乃至日常生活中得到更广泛的应用。未来纳米陶瓷发展的方向主要有以下几个方面:(1)纳米陶瓷粉体新的制备方法和工艺条件的研究与开发;开发高效率、低成本的制备技术;(2)纳米粉体形成纳米陶瓷的反应机理研究;(3)智能化敏感陶瓷元件计算机用光纤陶瓷材料、计算机硬盘和高稳定性陶瓷电容器;(4)研究纳米粉体对环境的污染机理,做好应用过程中的环境保护;(5)加速纳米粉体的工业化生产和应用进程。在21世纪,纳米陶瓷粉体将飞速发展,在各领域的应用将全面展开,并将产生一批新技术、新产品;在电子、通信等高技术领域的广泛应用,将成为经济发展的新的增长点。

参考文献

[l] 张中太,林元华,唐子龙,等.纳米材料及其技术的应用前景[J].材料工程,2000,3:42

[2] 陈煌,林新华,曾毅,等.热喷涂纳米陶瓷涂层研究进展[J].硅酸盐学报,2002,30(2):235 [3] 朱教群,梅炳初,陈艳林.纳米陶瓷材料的制备和力学性能[J].佛山陶瓷,2002,58(1):l [4] 施锦行.纳米陶瓷的制备及其特性.中国陶瓷,1997,33(3):36~38 [5] 王世敏.纳米材料制备技术.化学工业出版社,2002 [6] 江炎兰,梁小蕊.纳米陶瓷材料的性能及其应用.兵器材料科学与工程,2008.31(5):91~94 [7] 赵雪.我国新纳米陶瓷涂料又创新品种.科技日报.2007-01-12 [8] 田明原,施尔畏,郭竟坤.纳米陶瓷与纳米陶瓷粉末[J].无机材料学报,1998,13(2):129 [9] Fujishima,et al.Electrochemical photocatalysis of wat at a semiconductor electrode.Nature.1972,37(1):238~242 [10] Veitch LCetal An assessment of the DARPA ffoordable Polymer matrix composite program.In 29th niernational SAMPE Technical Conference,1997 :220

纳米材料导论论文
TOP