第一篇:三角形的证明
全等三角形的证法
1:(SSS或“边边边”)证明三条边相等的两个三角形全等
在两个三角形中,若三条边相等,则这两个三角形全等。
几何语言:在三角形中因为ab=AB, ac=AC, bc=BC所以三角形abc全等于三角形ABC
2.(SAS或“边角边”)证明有两条边及其夹角对应相等的两个三角形全等
在两个三角形中,若有两条边及其夹角对应相等,则这两个三角形全等。
几何语言:在三角形中因为ab=AB,bc=BC, ∠b=∠B,则三角形abc全等于三角形ABC
3.(ASA或“角边角”)证明有两角及其夹边对应相等的两个三角形全等
在两个三角形中,若有两角及其夹边对应相等的两个三角形全等.几何语言:在三角形中∠a=∠A,∠b=∠B,ab=AB, 则三角形abc全等于三角形ABC
4.(AAS或“角角边”)证明有两角及一角的对边对应相等的两个三角形全等
在两个三角形中,若两角及一角的对边对应相等的两个三角形全等
几何语言:在三角形中∠a=∠A,∠b=∠Bac=AC则三角形abc全等于三角形ABC
5.(HL或“斜边,直角边”)证明斜边及一直角边对应相等的两个直角三角形全等 在两个直角三角形中,若斜边及一直角边对应相等的两个直角三角形全等
几何语言:在三角形中因为ab=AB 直角c=直角C 则三角形abc全等于三角形ABC
所以,SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。
注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形.提醒:在证明的 图中 可能出现,两直线平行,内错角相等
两直线平行,同旁内角相等
两直线平行,对顶角相等
通常在混合题,混合图,等等
第二篇:全等三角形证明
全等三角形证明
1、已知CD∥AB,DF∥EB,DF=EB,问AF=CE吗?说明理由。
CA2、已知∠E=∠F,∠1=∠2,AB=CD,问AE=DF吗?说明理由。
F3、已知,点C是AB的中点,CD∥BE,且CD=BE,问∠D=∠E吗?说明理由。
4、已知AB=CD,BE=DF,AE=CF,问AB∥CD吗?
A B
C
第三篇:全等三角形证明
全等三角形的证明
1.翻折
如图(1),BOC≌EOD,BOC可以看成是由EOD沿直线AO翻折180得到的;
旋转
如图(2),COD≌BOA,COD可以看成是由BOA绕着点O旋转180得到的;
平移
如图(3),DEF≌ACB,DEF可以看成是由ACB沿CB方向平行移动而得到的。
2.判定三角形全等的方法:
(1)边角边公理、角边角公理、边边边公理、斜边直角边(直角三角形中)公理
(2)推论:角角边定理
3.注意问题:
(1)在判定两个三角形全等时,至少有一边对应相等;
(2)不能证明两个三角形全等的是,a: 三个角对应相等,即AAA;b :有两边和其中一角对应相等,即SSA。
一、全等三角形知识的应用
(1)证明线段(或角)相等
例1:如图,已知AD=AE,AB=AC.求证:BF=FC
(2)证明线段平行
例2:已知:如图,DE⊥AC,BF⊥AC,垂足分别为E、F,DE=BF,AE=CF.求证:AB∥CD
(3)证明线段的倍半关系,可利用加倍法或折半法将问题转化为证明两条线段相等
例3:如图,在△ ABC中,AB=AC,延长AB到D,使BD=AB,取AB的中点E,连接CD和CE.求证:CD=2CE
例4 如图,△ABC中,∠C=2∠B,∠1=∠2。求证:AB=AC+CD.
.
例5:已知:如图,A、D、B三点在同一条直线上,CD⊥AB,ΔADC、ΔBDO为等腰Rt三角形,AO、BC的大小关系和位置关系分别如何?证明你的结论。
例6.如图,已知C为线段AB上的一点,ACM和CBN都是等边三角形,AN和CM相交于F点,BM和CN交于E点。求证:CEF是等边三角形。
N
M
FE
C
A B
第四篇:全等三角形练习题(证明)
全等三角形练习题(8)
一、认认真真选,沉着应战!
1.下列命题中正确的是()
A.全等三角形的高相等B.全等三角形的中线相等
C.全等三角形的角平分线相等D.全等三角形对应角的平分线相等 2. 下列各条件中,不能做出惟一三角形的是()
A.已知两边和夹角B.已知两角和夹边
C.已知两边和其中一边的对角D.已知三边
4.下列各组条件中,能判定△ABC≌△DEF的是()
A.AB=DE,BC=EF,∠A=∠D
B.∠A=∠D,∠C=∠F,AC=EF
C.AB=DE,BC=EF,△ABC的周长= △DEF的周长
D.∠A=∠D,∠B=∠E,∠C=∠F
5.如图,在△ABC中,∠A:∠B:∠C=3:5:10,又△MNC≌△ABC,则∠BCM:∠BCN等于()
A.1:2B.1:3C.2:3D.1:
46.如图,∠AOB和一条定长线段A,在∠AOB内找一点P,使P到OA、OB的距离都等于A,做法如下:(1)作OB的垂线NH,使NH=A,H为垂足.(2)过N作NM∥OB.(3)作∠AOB的平分线OP,与NM交于P.(4)点P即为所求.
其中(3)的依据是()
A.平行线之间的距离处处相等
B.到角的两边距离相等的点在角的平分线上
C.角的平分线上的点到角的两边的距离相等
D.到线段的两个端点距离相等的点在线段的垂直平分线上
7. 如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条 角平分线将△ABC分为三个三角形,则S△ABO︰S△BCO︰S△CAO等于()
A.1︰1︰1B.1︰2︰3C.2︰3︰4D.3︰4︰
58.如图,从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CB=∠B′CB,④AB=A′B′中,任取三个为条件,ANCA
C F 余下的一个为结论,则最多可以构成正确的结论的个数是()
A.1个B.2个C.3个D.4个
9.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上 取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在同 一条直线上,如图,可以得到EDCABC,所以ED=AB,因
E
此测得ED的长就是AB的长,判定EDCABC的理由是()A.SASB.ASAC.SSSD.HL
10.如图所示,△ABE和△ADC是△ABC分别沿着AB,AC边 翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为()
A.80°B.100°C.60°D.45°.
二、仔仔细细填,记录自信!
11.如图,在△ABC中,AD=DE,AB=BE,∠A=80°,则∠CED=_____.
12.已知△DEF≌△ABC,AB=AC,且△ABC的周长为23cm,BC=4 cm,则△DEF的边中必有一条边等于______.
13. 在△ABC中,∠C=90°,BC=4CM,∠BAC的平分线交BC于D,且BD︰DC=5︰3,则D到AB的距离为_____________.
14. 如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出_____个.
BE
BCDE
分别是锐角三角形ABC和锐角三角形ABC中BC,BC边上的高,且15. 如图,AD,ADB,ABAAD
D若使△ABC≌△ABC,请你补充条件___________.(填写一个你认为适A.
当的条件即可)
C
'
'
B D D
17. 如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关
'
C
'
系是__________.
19. 如右图,已知在ABC中,A90,ABAC,CD平
分ACB,DEBC于E,若BC15cm,则△DEB 的周长为cm.
E
C
20.在数学活动课上,小明提出这样一个问题:∠B=∠C=900,E是
BC的中点,DE平分∠ADC,∠CED=350,如图,则∠EAB是多少 度?大家一起热烈地讨论交流,小英第一个得出正确答案,是______.
三、平心静气做,展示智慧!
21.如图,公园有一条“Z”字形道路ABCD,其中
AB∥CD,在E,M,F处各有一个小石凳,且BECF,M为BC的中点,请问三个小石凳是否在一条直线上?说出你推断的理由.
22.如图,给出五个等量关系:①ADBC ②ACBD ③CEDE ④DC⑤DABCBA.请你以其中两个为条件,另三个中的一个为结论,推出一个正确 的结论(只需写出一种情况),并加以证明.
已知:
求证:
证明:
23.如图,在∠AOB的两边OA,OB上分别取OM=ON,OD=OE,DN和EM相交于点C. 求证:点C在∠AOB的平分线上.
A
B
B
如图,已知△ABC和△DEC都是等边三角形,∠ACB=∠DCE=60°,B、C、E在同一直线上,连结BD和AE.求证:BD=AE.2.已知:如图点C是AB的中点,CD∥BE,且CD=BE.求证:∠D=∠E.3.已知:E、F是AB上的两点,AE=BF,又AC∥DB,且AC=DB.求证:CF=DE。
4.如图,D、E、F、B在一条直线上,AB=CD,∠B=∠D,BF=DE。求证:⑴AE=CF;⑵AE∥CF;⑶∠AFE=∠CEF。
1、已知:如图,∠1=∠2,∠B=∠D。求证:△AFC≌△DEB4、已知:AD为△ABC中BC边上的中线,CE∥AB交AD的延长线于E。
求证:(1)AB=CE; 5、已知:AB=AC,BD=CD
求证:(1)∠B=∠C
(2)DE=DF
6.已知:AD为△ABC中BC边上的中线,CE∥AB交AD的延长线于E。7.已知:如图,AB=CD,DA⊥CA,AC⊥BC。
求证:△ADC≌△CBA
求证:(1)AB=CE;
参考答案
一、1—5:DCDCD6—10:BCBBA
二、11.100° 12.4cm或9.5cm 13.1.5cm 14.4 15.略
16.1AD5 17. 互补或相等 18. 180 19.15 20.350
三、21.在一条直线上.连结EM并延长交CD于F' 证CFCF'. 22.情况一:已知:ADBC,ACBD
求证:CEDE(或DC或DABCBA)
证明:在△ABD和△BAC中 ∵ADBC,ACBD
ABBA
∴△ABD≌△BAC
∴CABDBA∴AEBE
∴ACAEBDBE
即CEED
情况二:已知:DC,DABCBA
求证:ADBC(或ACBD或CEDE)证明:在△ABD和△BAC中DC,DABCBA∵ABA B
∴△ABD≌△BAC
∴ADB C
23.提示:OM=ON,OE=OD,∠MOE=∠NOD,∴△MOE≌△NOD,∴∠OME=∠OND,又DM=EN,∠DCM=∠ECN,∴△MDC≌△NEC,∴MC=NC,易得△OMC≌△ONC(SSS)∴∠MOC=∠NOC,∴点C在∠AOB的平分线上.
四、24.(1)解:△ABC与△AEG面积相等
过点C作CM⊥AB于M,过点G作GN⊥EA交EA延长线于N,则
AMCANG90
四边形ABDE和四边形ACFG都是正方形
BAECAG90,ABAE,ACAGBACEAG180
EAGGAN180BACGAN△ACM≌△AGN
D
CMGNS△ABC
ABCM,S△AEG
12AEGN
S△ABCS△AEG
(2)解:由(1)知外圈的所有三角形的面积之和等于内圈的所有三角形的面积之和
这条小路的面积为(a2b)平方米.
第五篇:初一数学三角形证明
已知:CE是三角形ABC外角ACD的角平分线,CE交BA于E,求证:角BAC大于角B
1.已知在三角形ABC中,BE,CF分别是角平分线,D是EF中点,若D到三角形三边BC,AB,AC的距离分别为x,y,z,求证:x=y+z
证明;过E点分别作AB,BC上的高交AB,BC于M,N点.过F点分别作AC,BC上的高交于P,Q点.根据角平分线上的点到角的2边距离相等可以知道FQ=FP,EM=EN.过D点做BC上的高交BC于O点.过D点作AB上的高交AB于H点,过D点作AB上的高交AC于J点.则X=DO,Y=HY,Z=DJ.因为D 是中点,角ANE=角AHD=90度.所以HD平行ME,ME=2HD同理可证FP=2DJ。
又因为FQ=FP,EM=EN.FQ=2DJ,EN=2HD。
又因为角FQC,DOC,ENC都是90度,所以四边形FQNE是直角梯形,而D是中点,所以2DO=FQ+EN
又因为
FQ=2DJ,EN=2HD。所以DO=HD+JD。
因为X=DO,Y=HY,Z=DJ.所以x=y+z。
2.在正五边形ABCDE中,M、N分别是DE、EA上的点,BM与CN相交于点O,若∠BON=108°,请问结论BM=CN是否成立?若成立,请给予证明;若不成立,请说明理由。
当∠BON=108°时。BM=CN还成立
证明;如图5连结BD、CE.在△BCI)和△CDE中
∵BC=CD, ∠BCD=∠CDE=108°,CD=DE
∴ΔBCD≌ ΔCDE
∴BD=CE , ∠BDC=∠CED, ∠DBC=∠CEN
∵∠CDE=∠DEC=108°, ∴∠BDM=∠CEN
∵∠OBC+∠ECD=108°, ∠OCB+∠OCD=108°
∴∠MBC=∠NCD
又∵∠DBC=∠ECD=36°, ∴∠DBM=∠ECN
∴ΔBDM≌ ΔCNE∴BM=CN
3.三角形ABC中,AB=AC,角A=58°,AB的垂直平分线交AC与N,则角NBC=()
3°
因为AB=AC,∠A=58°,所以∠B=61°,∠C=61°。
因为AB的垂直平分线交AC于N,设交AB于点D,一个角相等,两个边相等。所以,Rt△ADN全等于Rt△BDN
所以 ∠NBD=58°,所以∠NBC=61°-58°=3°
4.在正方形ABCD中,P,Q分别为BC,CD边上的点。且角PAQ=45°,求证:PQ=PB+DQ
延长CB到M,使BM=DQ,连接MA
∵MB=DQ AB=AD ∠ABM=∠D=RT∠
∴三角形AMB≌三角形AQD
∴AM=AQ∠MAB=∠DAQ
∴∠MAP=∠MAB+∠PAB=45度=∠PAQ
∵∠MAP=∠PAQ
AM=AQAP为公共边
∴三角形AMP≌三角形AQP
∴MP=PQ
∴MB+PB=PQ
∴PQ=PB+DQ
5.正方形ABCD中,点M,N分别在AB,BC上,且BM=BN,BP⊥MC于点P,求证DP⊥NP
∵直角△BMP∽△CBP
∴PB/PC=MB/BC
∵MB=BN
正方形BC=DC
∴PB/PC=BN/CD
∵∠PBC=∠PCD
∴△PBN∽△PCD
∴∠BPN=∠CPD
∵BP⊥MC
∴∠BPN+∠NPC=90°
∴∠CPD+∠NPC=90°∴DP⊥NP
例1:(基础题)如图,AC//DF , GH是截线.∠CBF=40°, ∠BHF=80°.求∠HBF, ∠BFP, ∠BED.∠BEF
例2:(基础题)
①在△ABC中,已知∠B = 40°,∠C = 80°,则∠A =(度)
②:、。如图,△ABC中,∠A = 60°,∠C = 50°,则外角∠CBD =。③已知,在△ABC中,∠A + ∠B = ∠C,那么△ABC的形状为()
A、直角三角形B、钝角三角形C、锐角三角形D、以上都不对
④下列长度的三条线段能组成三角形的是()
A.3cm,4cm,8cmB.5cm,6cm,11cmC.5cm,6cm,10cm
D.3cm,8cm,12cm
⑤如果一个三角形的三边长分别为x,2,3,那么x的取值范围是。⑥小华要从长度分别为5cm、6cm、11cm、16cm的四根小木棒中选出三根摆成一个三角形,那么他选的三根木棒的长度分别是
_.______.⑦已知等腰三角形的一边长为6,另一边长为10,则它的周长为
⑧在△ABC中,AB = AC,BC=10cm,∠A = 80°,则∠B =,∠C =。BD=______,CD=________
⑨如图,AB = AC,BC ⊥ AD,若BC = 6,则BD =。
⑩画一画如图,在△ABC中:
(1).画出∠C的平分线CD
(2).画出BC边上的中线AE
(3).画出△ABC的边AC上的高BF
例3:(提高)
①△ABC中,∠C=90°,∠B-2∠A=30°,则∠A=,∠B=
③在等腰三角形中,一个角是另一个角的2倍,求三个角?
_______________________
④:在等腰三角形中,周长为40cm,一个边另一个边2倍,求三个边?
_________________
例4 如图,D是△ABC的∠C的外角平分线与BA的延长线的交点,求证:∠BAC>∠B
例5:(15,)
例6.ABC为等边三角形,D是AC中点,E是BC延长线上一点,且CE =BC 求证: BD = DE
一、选择题:
1.等腰三角形中,一个角为50°,则这个等腰三角形的顶角的度数为()
A.150°B.80°C.50°或80°D.70°
2. 在△ABC中,∠A=50°,∠B,∠C的角平分线相交于点O,则∠BOC的度数是()
A.65°B.115°C.130°D.100°
3.如图,如果∠1=∠2=∠3,则AM为△的角平分线,AN为△的角平分线。
二、填空题:
1.。
2.3.4.已知△ABC中,则∠A + ∠B + ∠C =(度)
5.。若AD是△ABC的高,则∠ADB =(度)。
6.若AE是△ABC的中线,BC = 4,则BE ==
7.若AF是△ABC中∠A的平分线,∠A = 70°,则∠CAF = ∠=(度)。
8.△ABC中,BC = 12cm,BC边上的高AD = 6cm,则△ABC的面积
为。
9.直角三角形的一锐角为60°,则另一锐角为。
10.等腰三角形的一个角为45°,则顶角为。
11.在△ABC中,∠A:∠B:∠C = 1:2:3,∠C =。
12.如图,∠BAC=90°,AD⊥BC,则图中共有个直角三角形;
13.△ABC中,BO、CO分别平分∠ABC、∠ACB若∠A=70°,则∠BOC=;若∠BOC=120°,∠A=。
三、解答题:
14、如图4,∠1+∠2+∠3+∠4=度;
15、如图;ABCD是一个四边形木框,为了使它保持稳定的形状,需在AC或BD
上钉上一根木条,现量得AB=80㎝,BC=60㎝,CD=40㎝,AD=50㎝,试问所需的木条长度至少要多长?
16有一天小明对同学说:“我的步子大,一步能走三米(即两脚着地时的间距有三米”。有的同学将信将疑,而小颖说:“小明,你在吹牛”。你觉得小颖的话有道理吗?
17. 图1-4-27,已知在△ABC中,AB=AC,∠A=40°,∠ABC的平分线BD交AC于D.求:∠ADB和∠CDB的度数..18。已知等腰三角形的周长是25,一腰上的中线把三角形分成两个,两个三角形的周长的差是4。
求等腰三角形各边的长。
19.已知:如图,点D、E在△ABC的边BC上,AD=AE,BD=EC,求证:AB=AC
.20。.如图,已知在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD与CE相交于M点。求证:BM=CM。
21.、如图,P、Q是△ABC边上的两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数。
.22。如图,在△ABC中,AB=AC,点D、E分别
在AC、AB上,且BC=BD=DE=EA,求∠A的度数。
23.、如图,BE、CD相交于点A,CF为∠BCD的平分线,EF为∠BED的平分线。试探求∠F与∠B、∠D之间的关系,并说明理由。
例
1、填空:。
(6)正二十边形的每个内角都等于。
(7)一个多边形的内角和为1800°,则它的边数为。
(8)n多边形的每一个外角是36°,则n是。
(9)多边形的每一个内角都等于150°,则从此多边形一个顶点出发引出的对角线有条。
(10)如果把一个多边形截去一个三角形,剩下的多边形的内角和是2160°,那么原来的多边形的边数是。
(11)一多边形除一内角外,其余各内角之和为2570°,则这个内角等于。
例
5、给定△ABC的三个顶点和它内部的七个点,已知这十个点中的任意三点都不在一条直线上,把原三角形分成以这些点为顶点的小三角形,并且每个小三角形的内部都不包含这十个点中的任一点,求证:这些小三角形的个数是15。
1.如图,△ABC为等边三角形,D、F分别是BC、AB上的点,且CD=BF,以AD为边作等边△ADE。当D在线段BC上何处时,四边形CDEF为平行四边形,且∠DEF=30°?证明你的结论。
解:
当B在BC的中点时四边形CDEF为平行四边形,且∠DEF=30°证明;在△ADC和△BFC中BF=DC,BC=AC,∠B=∠ACD∴△ADC△≌BFC∴AD=FC,∠DAC=∠BCF=30°∵△AED是等边三角形∴ED=FC,∵∠EAB=∠ BAD=60°∴AD垂直平分ED∴∠BDE=∠DCF=30°
∴ED‖FC∴CDEF是平行四边形且∠DEF=30°