小学数学趣题巧算百题百讲百练--计算部分
本篇为计算部分。
要想提高计算能力,首先要学好各种运算的法则、运算定律及性质,这是计算的基础。
其次是要多做练习。这里说的“多”是高质量的“多”,不单是数量上的“多”。多做题,多见题才能见多识广、熟能生巧,坚持不懈就能提高计算能力。
再次是养成速算、巧算的习惯。能速算、巧算是一个学生能综合运用计算知识、计算能力强的突出表现。比如计算855÷45。你见到这个题就应该想到:900÷45=20,而
855比
900少45,那么855÷45的商应比900÷45的商小1,应是19。
要想提高计算能力,还要掌握一些简算、巧算的方法,这要有老师的指导。看看下面的例题,是一定会得到启发的。
分析与解在进行四则运算时,应该注意运用加法、乘法的运算定律,减法、除法的运算性质,以便使某些运算简便。本题就是运用乘法分配律及减法性质使运算简便的。
例2
计算
9999×2222+3333×3334
分析与解
利用乘法的结合律和分配律可以使运算简便。
9999×2222+3333×3334
=3333×(3×2222)+3333×3334
=3333×6666+3333×3334
=3333×(6666+3334)
=3333×10000
=33330000
分析与解
将分子部分变形,再利用除法性质可以使运算简便。
分析与解
在计算时,利用除法性质可以使运算简便。
分析与解
这道分数乘、除法计算题中,各分数的分子、分母的数都很大,为了便于计算时进行约分,应该先将各分数的分子、分母分别分解质因数,这样计算比较简便。
分析与解
通过观察发现,原算式是求七个分数相加的和,而这七个分
由此得出原算式
分析与解观察题中给出的数据特点,应该将小括号去掉,然后适当分组,这样可使运算简便。
分析与解
观察这些分数的分母,都是连续自然数的和,我们可以先求出分母来,再进行拆项,简算。
分析与解
我们知道
例12
计算
1×2+2×3+3×4+……+10×11
分析与解
将这10个等式左、右两边分别相加,可以得到
例13
计算1×3+2×4+3×5+4×6+……+50×52
分析与解
我们知道
1×3=1×3-1+1=1×(3-1)+1=1×2+1
2×4=2×4-2+2=2×(4-1)+2==2×3+2
3×5=3×5-3+3=3×(5-1)+3=3×4+3
4×6=4×6-4+4=4×(6-1)+4=4×5+4
……
50×52=50×52-50+50=50×(52-1)+50
=50×51+50
将上面各式左、右两边分别相加,可以得到
1×3+2×4+3×5+4×6+……+50×52
=1×2+1+2×3+2+3×4+3+4×5+4+……+50×51+50
=1×2+2×3+3×4+4×5+……+50×51+1+2+3+4+……+50
=44200+1275
=45475
例14
计算(1+0.23+0.34)×
(0.23+0.34+0.56)-
(1+0.23+0.34+0.56)×(0.23+0.34)
分析与解
根据题中给出的数据,设1+0.23+0.34=a,0.23+0.34=b,那么
a-b=1+0.23+0.34-0.23-0.34=1。
于是原式变为
a×(b+0.56)-(a+0.56)×b
=ab+0.56a-ab-0.56b
=0.56a-0.56b
=0.56(a-b)
=0.56×1
=0.56
例15
算式2×3×5×7×11×13×17最后得到的乘积中,所有数位上的数字和是多少?
分析与解
要求算式乘积的各个数位上的数字和是多少,就要先求出乘积来。求积时应用乘法结合律可使计算简便。
2×3×5×7×11×13×17
=(2×5)×(7×11×13)×(3×17)
=10×1001×51
=10010×51
=510510
因此,乘积的所有数位上的数字和是
5+1+0+5+1+0=12
答:乘积的所有数位上的数字和是12。
分析与解
根据已知,要是算出两个数的乘积再求出积的各个数位的数字和,那就太复杂了。不妨先从简单的算起,寻找解题的规律。
例如,9×9=81,积的数字和是8+1=9;
99×99=9801,积的数字和是
9+8+1=18;
999×999
=998001,积的数字和是
9+9+8+1=27;
9999×9999=99980001,积的数字和是
9+9+9+8+1=36;
……
从计算的结果可以看出,一个因数中9的个数决定了积的各个数位的数字之和是几。
9×9的每个因数中有1个9,那么积的各个数位的数字和就是1个9;
99×99的每个因数中有
2个9,那么积的各个数位的数字和就是2个9,即等于18;
999×999的每个因数中有
3个
9,那么积的各个数位的数字和就是3个9,即等于27;
个9,即等于9×1993=17937。
分析与解
比较几个分数的大小时通常采用的方法是先将几个分数通分,再比较它们的大小;或者将几个分数先化成小数,再比较它们的大小。观察题中给出的五个数,不难发现,采用前面提到的这两种方法都不容易。但是在观察这几个分数时我们也不难发现,这几个分数的分子都比较小,并能看出3、2、15、10、12的最小公倍数是60,那么就应该把这几个分数都化成分子相同的分数,去比较它们的大小。我们知道,分子相同的分数,分母大的反而小,分母小的反而大。
还是比B小?
例19
1~1994这些自然数中所有数字的和是多少?
分析与解
要求1~1994这些自然数中所有数字的和,可以先求出0~1999这些数中所有数字的和,然后再减去1995~1999这五个数的数字和。
将0~1999这2000个数分组,每两个数为一组,可以分成1000组:
(0,1999),(1,1998),(2,1997),(3,1996),(4,1995),……,(996,1003),(997,1002),(998,1001),(999,1000)。
这里每组的两数的和都是1999,并且每组中两个数相加时都不进位,这样,1~1999这些自然数所有数字和是:
(1+9+9+9)×1000=28×1000=
28000
而
1995~1999这五个数的数字和是:
(1+9+9)×5+(5+6+7+8+9)=95+35=130
因此1~1994这些自然数中所有数字的和是:
28000-130=27870
答:1~1994这些自然数中所有数字的和是27870。
分析与解
要是先计算出正确的结果,再回答题中所问的这个繁分数化简后整数部分是多少,那可不是简单的计算。
这个繁分数的分子是1,那么这个繁分数化简后的结果,不就是这个繁分数分母部分各个分数之和的倒数吗?因此,只要看看分母部分是多少就可以了。
个分数相加。
然这个繁分数化简后的结果就是1了。
繁分数化简后的整数部分就是1了。