首页 > 精品范文库 > 8号文库
不等式证明 之 放缩法[5篇范文]
编辑:琴心剑胆 识别码:17-729812 8号文库 发布时间: 2023-10-03 21:21:10 来源:网络

第一篇:不等式证明 之 放缩法

不等式证明 之 放缩法

放缩法的定义

所谓放缩法,即要证明不等式A

(1)放缩的方向要一致。

(2)放与缩要适度。

(3)很多时候只对数列的一部分进行放缩法,保留一些项不变(多为前几项或后几项)。

(4)用放缩法证明极其简单,然而,用放缩法证不等式,技巧性极强,稍有不慎,则会出现放缩失当的现象。

典例分析:

1、设x>y>z,nN,且

22例

2、已知:x>0,y>0,z>0,求证:xxyy*11n恒成立,求n的最大值.xyyzxzy2yzz2xyz.例

3、求证:2n11)1

4、求证:1

变式:求证:1

1213...1n2n,nN*.111...2,nN*.22223n1117...,nN*.222423n

5、已知:an2

求证:

234...n(n1),(nN),n(n1)n(n2).an2

2例

6、{bn}满足:b11,bn1bn(n2)bn

3(1)用数学归纳法证明:bnn

(2)Tn

解:(1)略

(2)bn13bn(bnn)2(bn3)

又bnn

*bn132(bn3),nN 211111...,求证:Tn 3b13b23b33bn

2迭乘得:bn32

n1(b13)2n1 11n1,nN* bn32

Tn1111111 ...234n1n12222222

2点评:把握“bn3”这一特征对“bn1bn(n2)bn3”进行变形,然后去掉一个正项,这是不等式证明放缩的常用手法。

7、设a,bR,且abc,求证:

abc.1a1b1c

巩固练习:

1、设a,b,c,dR,S

求证:1

3、已知a,b,cR且abc,求证:abc(n3且nN).222nnn*abcd,abdabcbcdacd11111...21 nn1n2n3n

[放缩法的常见技巧]

(1)应用基本不等式放缩(例如均值不等式)。

131(2)舍掉(或加进)一些项。如aa2422

2(3)在分式中放大或缩小分子或分母。如111(k∈N,k>1),2k(k1)kk(k1)

kk1

1k2

kk1(k∈N,k>1)。

(4)应用函数的单调性进行放缩。

(5)根据题目条件进行放缩。

(6)构造等比数列进行放缩。

(7)构造裂项条件进行放缩。

(8)利用函数切线、割线逼近进行放缩。

第二篇:放缩法证明不等式

放缩法证明不等式

在学习不等式时,放缩法是证明不等式的重要方法之一,在证明的过程如何合理放缩,是证明的关键所在。现例析如下,供大家讨论。例1:设a、b、c是三角形的边长,求证

abc≥3 bcacababc证明:由不等式的对称性,不妨设a≥b≥c,则bca≤cab≤abc

且2cab≤0,2abc≥0

 ∴abcabc3111

bcacababcbcacababc2abc2bac2cab2abc2bca2cab≥0

bcacababccabcabcababc≥3 bcacababc2bac无法放缩。所以在运用放

cab[评析]:本题中为什么要将bca与abc都放缩为cab呢?这是因为2cab≤0,2abc≥0,而2bac无法判断符号,因此缩法时要注意放缩能否实现及放缩的跨度。

例2:设a、b、c是三角形的边长,求证

abc(bc)2(ca)2(ab)2≥ bccaab1 [(ab)2(bc)2(ca)2]

3证明:由不等式的对称性,不防设a≥b≥c,则3abc0,3bca≥bccca

bca0

左式-右式3abc3bca3cab(bc)2(ca)2(ab)2 bcacab3bca3cab(ca)2(ab)2 abab2(bca)3bca3cab(ab)2(ab)2(ab)2≥0 ababab ≥ ≥[评析]:本题中放缩法的第一步“缩”了两个式了,有了一定的难度。由例

1、例2也可知运用放缩法前先要观察目标式子的符号。

例3:设a、b、cR且abc1求证

111≤1 1ab1bc1ca证明:设ax3,by3,cz3.且 x、y、zR.由题意得:xyz1。

∴1abxyzx3y3

∴x3y3(x2yxy2)x2(xy)y2(yx)(xy)2(xy)≥0 ∴x3y3≥x2yxy2

∴1abxyzx3y3≥xyzxy(xy)xy(xyz)

1z1≤

xy(xyz)xyz1abyx11≤,≤ ∴命题得证.xyzxyz1bc1ca同理:由对称性可得[评析]:本题运用了排序不等式进行放缩,后用对称性。

39例4:设a、b、c≥0,且abc3,求证a2b2c2abc≥

22证明:不妨设a≤b≤c,则a≤1又∵(44。∴a0。33ab23a23434)≥bc,即()≥bc,也即bc(a)≥(3a)2(a)。2223833∴左边(abc)22(abbcca)abc

23434 92a(bc)bc(a)≥92a(3a)(3a)2(a)

2383

3416339(3a)[(3a)(a)a]9(3a)[a2a4]9(a32a2a12)8338899393a(a22a1)a(a1)2≥

2282893 ∴a2b2c2abc≥

22[评析]:本题运用对称性确定符号,在使用基本不等式可以避开讨论。

例5:设a、b、cR,pR,求证:

abc(apbpcp)≥ap2(abc)bp2(abc)cp2(abc)

证明:不妨设a≥b≥c>0,于是

左边-右边ap1(bca2abca)bp1(cab2bcab)cp1(abc2cabc)

ap1(ab)[(ab)(bc)]bp1(ab)(bc)cp1[(ab)(bc)](bc)ap1(ab)2(ab)(bc)(ap1bp1cp1(bc)2

≥(ab)(bc)(ap1bp1cp1)如果p1≥0,那么ap1bp1≥0;如果p1<0,那么cp1bp1≥0,故有(ab)(bc)(ap1bp1cp1)≥0,从而原不等式得证.例6:设0≤a≤b≤c≤1,求证:

abc(1a)(1b)(1c)≤1

bc1ca1ab1abcabc≤,再证明以 bc1ca1ab1ab1证明:设0≤a≤b≤c≤1,于是有下简单不等式

abcab1c1(1a)(1b)(1c)≤1,因为左边(1a)(1b)(1c)

ab1ab1ab1

11c[1(1ab)(1a)(1b)],再注意(1ab)(1a)(1b)≤(1abab)

ab1(1a)(1b)(1a)(1b)(1a)(1b)(1a2)(1b2)≤1得证.在用放缩法证明不等式A≤B,我们找一个(或多个)中间量C作比较,即若能断定A ≤C与C≤B同时成立,那么A≤B显然正确。所谓的“放”即把A放大到C,再把C放大到B,反之,所谓的“缩”即由B缩到C,再把C缩到A。同时在放缩时必须时刻注意放缩的跨度,放不能过头,缩不能不及。

第三篇:放缩法证明不等式

放缩法证明不等式

不等式是数学的基本内容之一,它是研究许多数学分支的重要工具,在数学中有重要的地位,也是高中数学的重要组成部分,在高考和竞赛中都有举足轻重的地位。不等式的证明变化大,技巧性强,它不仅能够检验学生数学基础知识的掌握程度,而且是衡量学生数学水平的一个重要标志,本文将着重介绍以下几种不等式的初等证明方法和部分方法的例题以便理解。

一、不等式的初等证明方法

1.综合法:由因导果。

2.分析法:执果索因。基本步骤:要证..只需证..,只需证..(1)“分析法”证题的理论依据:寻找结论成立的充分条件或者是充要条件。

(2)“分析法”证题是一个非常好的方法,但是书写不是太方便,所以我们可利用分析法寻找证题的途径,然后用“综合法”进行表达。

3.反证法:正难则反。

4.放缩法:将不等式一侧适当的放大或缩小以达证题目的。放缩法的方法有:

(1)添加或舍去一些项,如

(2)利用基本不等式,如:

(3)将分子或分母放大(或缩小):

5.换元法:换元的目的就是减少不等式中变量,以使问题

化难为易、化繁为简,常用的换元有三角换元和代数换元。

二、部分方法的例题

1.换元法

换元法是数学中应用最广泛的解题方法之一。有些不等式通过变量替换可以改变问题的结构,便于进行比较、分析,从而起到化难为易、化繁为简、化隐蔽为外显的积极效果。

2.放缩法

欲证A≥B,可将B适当放大,即B1≥B,只需证明A≥B1。相反,将A适当缩小,即A≥A1,只需证明A1≥B即可。

注意:用放缩法证明数列不等式,关键是要把握一个度,如果放得过大或缩得过小,就会导致解决失败。放缩方法灵活多样,要能想到一个恰到好处进行放缩的不等式,需要积累一定的不等式知识,同时要求我们具有相当的数学思维能力和一定的解题智慧。

数学题目是无限的,但数学的思想和方法却是有限的。我们只要学好了有关的基础知识,掌握了必要的数学思想和方法,就能顺利地应对那无限的题目。题目并不是做得越多越好,题海无边,总也做不完。关键是你有没有培养起良好的数学思维习惯,有没有掌握正确的数学解题方法。当然,题目做得多也有若干好处:一是“熟能生巧”,加快速度,节省时间,这一点在考试时间有限时显得很重要;二是利用做题来巩固、记忆所学的定义、定理、法则、公式,形成良性循环。

解题需要丰富的知识,更需要自信心。没有自信就会畏难,就会放弃;有了自信,才能勇往直前,才不会轻言放弃,才会加倍努力地学习,才有希望攻克难关,迎来属于自己的春天。

第四篇:放缩法证明不等式

主备人:审核:包科领导:年级组长:使用时间:

放缩法证明不等式

【教学目标】

1.了解放缩法的概念;理解用放缩法证明不等式的方法和步骤。

2.能够利用放缩法证明简单的不等式。

【重点、难点】

重点:放缩法证明不等式。

难点:放缩法证明不等式。

【学法指导】

1.据学习目标,自学课本内容,限时独立完成导学案;

2.红笔勾出疑难点,提交小组讨论;

3.预习p18—p19,【自主探究】

1,放缩法:证明命题时,有时可以通过缩小(或)分式的分母(或),或通过放大(或缩小)被减式(或)来证明不等式,这种证明不

等式的方法称为放缩法。

2,放缩时常使用的方法:①舍去或加上一些项,即多项式加上一些正的值,多项式的值变大,或多项式减上一些正的值,多项式的值变小。如t22t2,t22t2等。

②将分子或分母放大(或缩小):分母变大,分式值减小,分母变小,分

式值增大。

如当(kN,k1)1111,22kkk(k1)k(k1),③利用平均值不等式,④利用函数单调性放缩。

【合作探究】

证明下列不等式

(1)

(2),已知a>0,用放缩法证明不等式:loga

(a1)1111...2(nN)2222123nloga(a1)1

(3)已知x>0, y>0,z>0求证

xyz

(4)已知n

N,求证:1

【巩固提高】

已知a,b,c,d都是正数,s

【能力提升】

求证: ...abcd求证:1

1aba

1ab

1b

本节小结:

第五篇:用放缩法证明不等式

用放缩法证明不等式

蒋文利飞翔的青蛙

所谓放缩法就是利用不等式的传递性,对照证题目标进行合情合理的放大和缩小的过程,在使用放缩法证题时要注意放和缩的“度”,否则就不能同向传递了,此法既可以单独用来证明不等式,也可以是其他方法证题时的一个重要步骤。下面举例谈谈运用放缩法证题的常见题型。

一.“添舍”放缩

通过对不等式的一边进行添项或减项以达到解题目的,这是常规思路。

例1.设a,b为不相等的两正数,且a3-b3=a2-b2,求证1<a+b<4。

3证明:由题设得a2+ab+b2=a+b,于是(a+b)2>a2+ab+b2=a+b,又a+b>0,得a+b>1,又ab<(a+b),而(a+b)=a+b+ab<a+b+

+b)2<a+b,所以a+b<

例2.已知a、b、c不全为零,求证:

a2abb2b2bcc2c2aca2>3(abc)21422132(a+b),即(a4444,故有1<a+b<。3

3证明:因为a2abb2

同理b2bcc2>bc,2(ab23)b2>42(ab2)2abb≥a,22c2aca2>ca。

23(abc)2所以a2abb2

二.分式放缩 b2bcc2c2aca2>

一个分式若分子变大则分式值变大,若分母变大则分式值变小,一个真分式,分子、分母同时加上同一个正数则分式值变大,利用这些性质,可达到证题目的。

例3.已知a、b、c为三角形的三边,求证:1<abc++<2。bcacab

证明:由于a、b、c为正数,所以baab>>,bcabcacabc

cc

>ababc,所以

abcabc

++>++=1,又a,b,c为三角形的bcaca+b+ca+b+ca+b+cab

边,故b+c>a,则

c2c,<

ababc

a2a2b

为真分数,则a<,同理b<,bcabcacabcbc

abc2a2b2c

++<++2.bcacabcabcabcab

abc

++<2。bcacab

综合得1<

三.裂项放缩

若欲证不等式含有与自然数n有关的n项和,可采用数列中裂项求和等方法来解题。例4.已知n∈N*,求1

1n

„

1n

2n

n

„

1n

<2n。

证明:因为<

nn13

2(nn1),则1

<12(21)2(2)„2(nn1)2n1<2n,证毕。

n(n1)2

5.an

已知

(n1)2

nN

*

an

223n(n1),求证:

对所有正整数n都成立。

n

证明:因为n(n1)又n(n1)

122

n,所以an12n

n(n1),n(n1)

232,n(n1)

2n12

(n1)

所以an立。

,综合知结论成四.公式放缩

利用已知的公式或恒不等式,把欲证不等式变形后再放缩,可获简解。

例6.已知函数f(x)证明:由题意知

f(n)

nn1

2121

nn

2121

x

x,证明:对于nN*且n3都有f(n)

nn1。

nn1

(1

221

n)(1

1n1)

1n1

221

n

2(2n1)(n1)(21)

n

n

又因为nN*且n3,所以只须证2n2n1,又因为,n

(11)

n

Cn

CnCn

Cn

n1

Cn

n

1n

n(n1)

n12n1

以f(n)

nn1。

例7.已知f(x)x2,求证:当ab时f(a)f(b)ab。证

f(a)f(b)

1a2

b2

a2b2a

b

ababa

b2

1

ababab

(ab)ab

ab

ab证毕。

五.换元放缩

对于不等式的某个部分进行换元,可显露问题的本质,然后随机进行放缩,可达解题目的。

例8.已知abc,求证

1ab

1bc

1ca

0。

证明:因为abc,所以可设act,bcu(tu0),所以tu0则

1ab

1bc

1ca

1tu

1u1t1u1ttutu

0,即

1ab

1bc

1ca

0。

例9.已知a,b,c为△ABC的三条边,且有a2b2c2,当nN*且n3时,求证:anbncn。

证明:由于a2b2c2,可设a=csina,b=ccosa(a为锐角),因为0sina1,0cosa1,则当n3时,sinnasin2a,cosnacos2a,所以anbncn(sinnacosna)cn(sin2acos2a)cn。

六.单调函数放缩

根据题目特征,通过构造特殊的单调函数,利用其单调性质进行放缩求解。例10.已知a,b∈R,求证

x1x

ab1ab

a1a

b1b。

证明:构造函数f(x)

f(x1)f(x2)

x11x1

(x0),首先判断其单调性,设0x1x2,因为

x21x2

x1x2(1x1)(1x2)

0,所以fx1fx2,所以f(x)在[0,]上是增函数,取x1ab,x2ab,显然满足0x1x2,所以f(ab)f(|a||b|),即

|ab|1|ab|

|a||b|1|a||b|

|a|1|a||b|

|b|1|a||b|

|a|1|a|

|b|1|b|

。证毕。

不等式证明 之 放缩法[5篇范文]
TOP