第一篇:最好的全等三角形证明题
全等三角形证明题汇编
1.如图2-1,在四边形ABCD中,AC平分DAB,若AB>AD,DC=BC.求证:BD180.图2-
12.如图:已知在ABC中,AC=BC,ACB90,BD平分ABC.求证:AB=BC+CD.图2-
23.如图2-3,在ABC中,C2B,12,试证明AB=AC+CD.图2-
34.如图2-4(1),A、E、F、C在一条直线上,AE=CF,过E、F分别作DEAC,BFAC,若AB=CD.(1)试证明:BD平分EF.(2)若将DEC的边EC沿AC方向移动变为图(2)时,其余条件不变,上述结论是否成立,请说明理由.D(1)
图2-
4(2)
5.如图2-5所示,已知:AB=AC,DB=DC.(1)若E、F、G、H分别是各边的中点。求证:EH=FG.(2)若连接AD、BC交于点P,问AD、BC有何关系?证明你的结论
.图2-
56.如图3-
1所示,已知在中,AD平分BAC,AB+BD=AC.求B︰C的值
图3-
17.如图3-2所示,在ACB中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DGGF,交AB于点E,连结EG.求证:BG=CF.请你判断BE+CF与EF的大小关系,并证明你的结论.B
G
图3-
2C
8.如图所示,A、B、C、D、E、F、M、N是某公园里的八个景点,D、E、B三个景点间的距离相等,A、B、C三个景点间的距离相等.其中D、B、C三个景点在同一直线上,E、F、N、C在同一直线上,D、M、F、A在同一直线上,游客甲从E点出发,沿E-F-N-C-A-B-M游览,游客乙从D点出发,沿D-M-F-A-C-B-N游览.若两人的速度相同,且在各景点游览的时间相同,甲、乙两人谁先游览完?说明理由
.D
BC
9.如图所示,ABAD,BCDE,12,求证:(1)ACAE;(2)2
CAE..1题
10.如图所示,CEAB,BFAC,BF交CE于D,且BD=CD,求证:点D在BAC的平分线上.B
A
2题
C
11.如图所示,已知12,ACBD.说出ABCBAD成立的理由
.3题
12.如图所示,在ABC中,AB=AC,AD和BE是高,它们相交于点H,且AE=BE.求证:AH=2BD.4题
13.P为等边ABC外一点,求证:PAPBPC
5题
14.如图,ABC和ADE都是等腰直角三角形,CE与BD相交于点M,BD交AC于点N,求证:(1)BD=CE;(2)BDCE.E
当ABC绕A点沿顺时针方向旋转到(1)(2)(3)位置时,上述结论是否成立?请说明。
E
6题D
EC
C
B
A3
15.如图,在ABC中,AB=AC,P为BC上任一点,PMAB于M,PNAC于N,BDAC于D.求证:BD=PM+PN.A
D
MP
7题
NC
16.如图所示,已知正方形ABCD中,M为CD的中点,E为MC上一点,且BAE2DAM.求证:AE=BC+CE.ME
8题
17.如图,已知在ABC中,AB=AC,P是三角形内一点且有APBAPC.求证:PB
B
C
9题
第二篇:全等三角形证明题
全等三角形证明题
1在直角坐标系中,有两个点A(2,4)B(-2,-4),(即A.B两点是
关于圆点对称的),将直角坐标系关于Y轴翻折,得A1,B1,然后分别
连接A,A1和B,B1后,证AA1O和BB1O两三角行全等!
2有一个正方形,分别连接它的对角,求其中的全等三角形?
3一个等腰三角形,做这个三角形的高线后,求其中的全等三角形?
4在直角坐标系中,有一个直角三角形,将此三角形向左平移6格,求平移后的三角形和原料的三角形是否全等?
5有两个直三角形,其一个三角形三边的长为3,4,5,另一个三角形的直角边长为3和4.求证两三角形全等.(注:SAS)
6一个等边三角形的边长为5cm,另一个等边三角形边长也是5cm,求两个等边三角形全等.(注:SAS或SSS)
7.已知平行四边形ABCD,连接点AC,求三角形ABC和三
角形CDA全等.8等腰梯形ABCD对角相连求全等的三角形?
9在一个圆上,在圆内做两个三角形,圆心是公共的两个三角形的端点,且这两个角度数都为30度,求两三角形全等.(由
于圆半径相等,且两边夹角相等,所以SAS)
10.已知:三角形中AB=AC,求证:(1)∠B=∠C
11三角形ABC和三角形FDE,AB=FD,AC=FE,BC=DE,求全等(SSS)
12三角形ABC和三角形FDE,∠C=∠E,AC=FE,∠A=∠F,求全等
(ASA)
三角形ADF是直角三角形
所以角EAD=90度-角BDA
三角形ADB是直角三角形
所以角BAD=90度-角BDA
所以角EAD=角BAD
CE平行AB
所以同旁内角互补
所以角BAD+角ACE=180度
角BAD=90度
所以角ACE=90度
所以角BAD=角ACE
所以三角形BAD和三角形ACE中
角EAD=角BAD
角BAD=角ACE
AB=AC
由ASA
三角形BAD≌三角形ACE
所以AD=CE
因为D是AC中点,且AB=AC
所以AB=2AD
所以AB=2CE
只要证明直角三角形BAD全等ACE就可以了
AE垂直BD,所以角EAC=角DBA(为什么?因为角EAC+角BAE=90度,而角BAE+角DBA=90度,所以角EAC=角DBA)
然后因为CE平行AB,所以角ACE=90度
看三角形BAD和ACE
角EAC=角DBA
角BAD=角ACE=90
又因为AB=AC
所以两个直角三角形全等
所以AD=CE
又因为BD是中线,所以AC=2AD
所以AB=2CE
∵∠DEC=∠AEB(对顶角相等)
∠A=∠D
AE=ED
∴△ABE全等于△DEC(ASA)
∴EB=EC
∵∠DEC=50°
∴∠BEC=180°—∠EDC=180°—50°=130°
∵BE=EC
∴△BEC是等腰三角形
∴∠EBC=∠ECB=(180°—∠BEC)×(1/2)=25°
第三篇:全等三角形证明题
全等三角形证明题
1B
E
5.如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE,DG.
求证:BEDG.
A B
G F
AB∥ED,ABCE,BCED.C为BE上一点,1.已知:如图,点A,D分别在BE两侧.求
证:ACCD.
2.如图,在正方形ABCD中,CEDF.求证:△CBE≌△DCF.E B
F
C
A
D
C
6.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.D
(1)求证:△ADE≌△CB′E;(2)若AB=8,DE=3,试求BC的长.AD
′
E
C
B
3.如图,ABCD是正方形.G是 BC 上的一点,DE⊥AG于 E,BF⊥AG 于 F.(1)求证:△ABF≌△DAE;(2)DEEFFB.
A
B
D
全等三角形证明题
21.如图,D是AB上一点,DF交AC于点E,AEEC,CF∥AB. 求证:ADCF.
A
E
C
2.已知:如图,在矩形ABCD中,AF=BE.求证:DE=CF.
4.如图,在△ABC中,AB=AC,D是BC的中点,连结AD,在AD的延长线上取一点E,连结BE,CE.求证:△ABE≌△ACE.F G
C
B
E
A
C
B
C,AD,AD的延长线交3.把两个含有45°角的直角三角板如图放置,点D在BC上,连结 BE
BE于点F.(1)求证:△BEC≌△ADC;(2)说明:AF⊥BE.
全等三角形证明题
31.如图,AB∥DE,AC∥DF,BE=CF. 求证:AB=DE.
D
C
B E C
F
4.已知:如图,E、F是平行四边行ABCD的对角线AC上的两点,AE=CF.求证:(1)△ADF≌△CBE;(2)EB∥DF.2.如图,△ABC和△ECD都是等腰直角三角形,∠ACB∠DCE90,D为AB边上一点.求证:(1)△ACE≌△BCD;(2)ADAEDE.
D
E
B
5.如图,将一等腰直角三角形ABC的直角顶点置于直线l上,且过A、B两点分别作直线l的垂线,垂足分别为D、E.请你仔细观察后,在图中找出一对全等三角形,并写出证明它们全
A
等的过程.
C
3.如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在射线
BC上,且PE=PB.求证:(1)PE=PD ;(2)PE⊥PD.的位置,连结EF、CF.求证:(1)△ABE≌△CBF;(2)FC⊥AC.D
D
E
6.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连结AE、BE,BE⊥AE,延长AE
交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.
4.如图,正方形ABCD中,E是对角线AC或延长线上一点,把BE绕点B顺时针旋转90°到BF
DEF
AB C
E
B
C
F
第四篇:全等三角形证明题精选
6.已知:如图,△ABC和△A'B'C'中,∠BAC=∠B'A'C',∠B=∠B',AD、A'D'分别是∠BAC、∠B'A'C'的平分线,且AD=A'D'。求证:△ABC≌△A’B’C’。
A' A
2D' D B C B'
7.已知:如图,AB=CD,AD=BC,O是AC中点,OE⊥AB于E,OF⊥D于F。求证:OE=OF。
C'
O C
A E B
8.已知:如图,AC⊥OB,BD⊥OA,AC与BD交于E点,若OA=OB,求证:AE=BE。
O
C
9.已知:如图,AB//DE,AE//BD,AF=DC,EF=BC。求证:△AEF≌△DBC。
E C
B A
10.如图,B,E分别是CD、AC的中点,AB⊥CD,DE⊥AC求证:AC=CD
11如图,已知AD是△ABC的中线,DE⊥AB于E,DF⊥AC于F,且BE=CF,求证:
(1)AD是∠BAC的平分线;(2)AB=AC.
F
B
C
12如图,等腰直角三角形ABC中,∠ACB=90°,AD为腰CB上的中线,CE⊥AD交AB于E.求证∠CDA=∠EDB.C
AB E
13在Rt△ABC中,∠A=90°,CE是角平分线,和高AD相交于F,作FG∥BC交AB于
G,求证:AE=BG.
C D
14如图,已知△ABC是等边三角形,∠BDC=120º,求证
AD=BD+CD
15如图,在△ABC中,AD是中线,BE交AD于F,且AE=EF,求证AC=BF
16如图,在△ABC中,∠ABC=100º,AM=AN,CN=CP,求∠MNP的度数
17如图,在△ABC中,AB=BC,M,N为BC边上的两点,并且∠BAM=∠CAN,MN=AN,求∠MAC的度数
.18如图,已知∠BAC=90º,AD⊥BC, ∠1=∠2,EF⊥BC, FM⊥AC,说明FM=FD的理由
19如图A、B、C、D四点在同一直线上,请你从下面四项中选出三个作为条件,其余一个作为结论,构成一个真命题,并进行证明. EAEBF①ACED,②ABCD,③,④ EAGFBG
DG
20如图,△ACB和△ECD都是等腰直角三角形,A,C,D三点在同一直线上,连结BD,AE,并延长AE交BD于F.求证:(1)△ACE≌△BCD(2)直线AE与BD互相垂直
第五篇:全等三角形证明题09
全等三角形证明题09 ⑴ 已知如图,△ABC中,∠A=90°,AB=AC,AO为BC上的中线.
① 求证:OA=OB=OC.
② 设点M在AC上移动,点N在AB上移动,连结OM、ON、MN,当AM=BN时,试判断△MON的形状并予以证明.
M A B O C A B O C N ⑵ 已知如图,△ABC中,∠C=90°,AC=BC,D为AB的中点.一直角三角板的直角顶点绕D旋转,其两条直角边分别交射线AC于G,交射线CB于H.试找出图中除AC=BC,AD=CD=BD以外所有相等的线段并予以证明.
⑶ 已知如图,△ABC中,BD⊥AC于D,CE⊥AB于E.
① 在BD上截取BF=AC,在CE的延长线上截取CG=AB,连结AG、AF、GF,试判断△AFG的形状并予以证明.
B F C D E G A C G H B D A ② 分别在BD、CE的反向延长线上截取BF=AC,CG=AB,连结AG、AF、GF,①中的结论还成立吗?若成立,请予证明;若不成立,请说明理由.
G B F
C E
D A
全等三角形证明题09 ⑷ 探求规律.
① 如图,等边三角形ABC中,BM、CN相交于O,∠BON=60°,求证:BM=CN.
② 如图,正方形ABCD中,BM、CN相交于O,∠BON=90°,求证:BM=CN.
③ 如图,正五边形ABCDE中,BM、CN相交于O,∠BON=108°,求证:BM=CN.
④ 如图,正六边形ABCDEF中,BM、CN相交于O,∠BON=108°,求证:BM=CN.
⑤ 正n边形ABCDEFGH……中,BM、CN相交于O,当∠BON等于多少度时,BM=CN.请写出你的猜测(不需证明).
⑥ 如图,五边形ABCDE中,BM、CN相交于O,∠BON=108°,BM=CN仍成立吗?若成立,请予证明;若不成立,请说明理由.
E N A O B C D M B A F N E M O D B A O C E N D M B O C A N D M B N M O C A C 2