第一篇:初二数学证明题
初二数学证明题
1、如图,AB=AC,∠BAC=90°,BD⊥AE于D,CE⊥AE于E.且BD>CE,证明BD=EC+ED
.解答:证明:∵∠BAC=90°,CE⊥AE,BD⊥AE,∴∠ABD+∠BAD=90°,∠BAD+∠DAC=90°,∠ADB=∠AEC=90°.∴∠ABD=∠DAC.又∵AB=AC,∴△ABD≌△CAE(AAS).∴BD=AE,EC=AD.∵AE=AD+DE,∴BD=EC+ED.2、△ABC是等要直角三角形。∠ACB=90°,AD是BC边上的中线,过C做AD的垂线,交AB于点E,交AD于点F,求证∠ADC=∠BDE
解:作CH⊥AB于H交AD于p,∵在Rt△ABC中AC=CB,∠ACB=90°,∴∠CAB=∠CBA=45°.∴∠HCB=90°-∠CBA=45°=∠CBA.又∵中点D,∴CD=BD.又∵CH⊥AB,∴CH=AH=BH.又∵∠pAH+∠ApH=90°,∠pCF+∠CpF=90°,∠ApH=∠CpF,∴∠pAH=∠pCF.又∵∠ApH=∠CEH,在△ApH与△CEH中
∠pAH=∠ECH,AH=CH,∠pHA=∠EHC,∴△ApH≌△CEH(ASA).∴pH=EH,又∵pC=CH-pH,BE=BH-HE,∴Cp=EB.在△pDC与△EDB中
pC=EB,∠pCD=∠EBD,DC=DB,∴△pDC≌△EDB(SAS).∴∠ADC=∠BDE.2证明:作OE⊥AB于E,OF⊥AC于F,∵∠3=∠4,∴OE=OF.(问题在这里。理由是什么埃我有点不懂)
∵∠1=∠2,∴OB=OC.∴Rt△OBE≌Rt△OCF(HL).∴∠5=∠6.∴∠1+∠5=∠2+∠6.即∠ABC=∠ACB.∴AB=AC.∴△ABC是等腰三角形
过点O作OD⊥AB于D
过点O作OE⊥AC于E
再证Rt△AOD≌Rt△AOE(AAS)
得出OD=OE
就可以再证Rt△DOB≌Rt△EOC(HL)
得出∠ABO=∠ACO
再因为∠OBC=∠OCB
得出∠ABC=∠ABC
得出等腰△ABC
41.E是射线AB的一点,正方形ABCD、正方形DEFG有公共顶点D,问当E在移动时,∠FBH的大小是一个定值吗?并验证
(过F作FM⊥AH于M,△ADE全等于△MEF证好了)
2.三角形ABC,以AB、AC为边作正方形ABMN、正方形ACpQ
1)若DE⊥BC,求证:E是NQ的中点
2)若D是BC的中点,∠BAC=90°,求证:AE⊥NQ
3)若F是Mp的中点,FG⊥BC于G,求证:2FG=BC
3.已知AD是BC边上的高,BE是∠ABC的平分线,EF⊥BC于F,AD与BE交于G
求证:1)AE=AG(这个证好了)2)四边形AEFG是菱形
第二篇:初二数学证明题测试
例
1、如图,AB∥CD,且∠ABE=120°,∠CDE=110°,求∠BED的度数。
例
2、已知,∠FED=∠AHD,∠GFA=40°,∠HAQ=15°,∠ACB=70°,且AQ平分∠FAC
求证:BD∥GE∥
AH
例
3、如图,已知B,E分别是线段AC,DF上的点,AF交BD于G,交EC于H,∠1=∠2,∠D=∠C。求证:∠A=∠
F
例
4、如图,AB∥CD,直线MN分别交AB,CD于E,F,EG平分∠BEF,FG平分∠EFD.求证:EG⊥FG
例
5、如图,线段AM∥DN,直线l与AM,DN分别交于点B,C,直线l绕BC的中点P旋转(点C由D点向N点方向移动)
(1)线段BC与AD,AB,CD围成的图形在初始状态下,形状是△ABD(即△ABC),请你写出变化过程中其余的各种特殊四边形的名称。
(2)任取变化过程中的两个图形,测量AB,CD的长度后,分别计算每一个图形中的AB+CD(精确到1厘米),比较这两个和是否相等,试说明理由。
【模拟试题】(答题时间:30分钟)
一、选择题
1.如图1,AB∥CD,则下列结论成立的是()A.∠A+∠C=180° B.∠A+∠B=180°C.∠B+∠C=180° D.∠B+∠D=180°
(1)(2)(3)(4)
2.若两个角的一边在同一条直线上,另一边互相平行,那么这两个角的关系是()A.相等B.互补C.相等或互补D.相等且互补
3.如图2,∠B=70°,∠DEC=100°,∠EDB=110°,则∠C等于()A.70° B.110°C.80°D.100° 4.如图3,下列推理正确的是()
A.∵MA∥NB,∴∠1=∠3B.∵∠2=∠4,∴MC∥ND C.∵∠1=∠3,∴MA∥NBD.∵MC∥ND,∴∠1=∠3 5.如图4,AB∥CD,∠A=25°,∠C=45°,则∠E的度数是()A.60°B.70°C.80°D.65°
二、填空题
1.如图5,已知AB∥CD,∠1=65°,∠2=45°,则∠ADC
=________.(5)(6)(7)(8)
2.如图6,已知∠1=∠2,∠BAD=57°,则∠B=________.3.如图7,若AB∥EF,BC∥DE,则∠B+∠E=________.4.如图8,由A测B的方向是________.三、解答题
1.已知:如图9,AD∥BC,∠B=∠D.求证:AB∥CD.(9)(10)(11)(12)2.已知:如图10,∠1=∠B,∠A=32°.求:∠2的度数.3.已知:如图11,AD∥BC,∠B=∠C,求证:AD平分∠EAC.4.如图12,A、B之间是一座山,要修一条铁路通过A、B两地,在A地测得铁路走向是北偏东58°11′.如果A、B两地同时开工开隧道,那么在B地按北偏西多少度施工,才能使铁路隧道在山腹中准确接通?
第三篇:初二数学几何证明题
1.在△ABC中,AB=AC,D在AB上,E在AC的延长线上,且BD=CE,线段DE交BC于点F,说明:DF=EF。
2.已知:在正方形ABCD中,M是AB的中点,E是AB延长线上的一点,MN垂直DM于点M,且交∠CBE的平分线于点N.(1)求证:MD=MN.(2)若将上述条件中的“M是AB的中点”改为“M是AB上任意一点”其余条件不变,则(1)的结论还成立吗?如果成立,请证明,如果不成立,请说明理由。
3.。如图,点E,F分别是菱形ABCD的边CD和CB延长线上的点,且DE=BF,求证∠E=∠F。
4,如图,在△ABC中,D,E,F,分别为边AB,BC,CA,的中点,求证四边形DECF为平行四边形。
5.如图,在菱形ABCD中,∠DAB=60度,过点C作CE垂直AC且与AB的延长线交与点E,求证四边形AECD是等腰梯形?
6.如图,已知平行四边形ABCD中,对角线AC,BD,相交与点0,E是BD延长线上的点,且三角形ACE是等边三角形。
1.求证四边形ABCD是菱形。
2.若∠AED=2∠EAD,求证四边形ABCD是正方形。
7.已知正方形ABCD中,角EAF=45度,F点在CD边上,E点在BC边上。求证:EF=BE+DF
第四篇:初二几何证明题
1如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=DCCF.(1)求证:D是BC的中点;(2)如果AB=ACADCF的形状,并证明你的结论
A
E
B
第五篇:经典数学证明题
1.AB为边长为1的正五边形边上的点.证明:AB
(25分)2.AB为y1x2上在y轴两侧的点,求过AB的切线与x轴围成面积的最小值.(25分)
3.向量OA与OBOA1OB2,OP(1t)OA,OQtOB,0≤t≤1PQ
1在t0时取得最小值,问当0t0时,夹角的取值范围.(25分)
5,使得sinx,cosx,tanx,cotx为等差数列.(25分)
25.圆内接四边形ABCD,AB=1,BC=2,CD=3,DA=4。求圆半径。
6.已知一无穷等差数列中有3项:13,25,41。求证:2009为数列中一项。4.存不存在0x
7.是否存在实数x使tanx+(根3)与cotx+(根3)为有理数?
8.已知对任意x均有acosx+bcos2x>=-1恒成立,求a+b的最大值
9.某次考试共有333名学生做对了1000道题。做对3道及以下为不及格,6道及以上为优秀。问不及格和优秀的人数哪个多?
15.的整数部分为a,小数部分为b 1求a,b;
2求a2b2ab; 2
bb2bn 3求limn
2n2n16.1x,y为实数,且xy1,求证:对于任意正整数n,xy
122n1
2a,b,c为正实数,求证:abc3,其中x,y,z为a,b,c的一种排列 xyz
17.请写出所有三个数均为质数,且公差为8的等差数列,并证明你的结论
x2y2
18.已知椭圆221,过椭圆左顶点Aa,0的直线L与椭圆交于Q,与y轴交于R,ab
过原点与L平行的直线与椭圆交于P
求证:AQ,AR成等比数列
19.已知sintcost1,设scostisint,求f(s)1ss2sn
20.随机挑选一个三位数I
1求I含有因子5的概率;2求I中恰有两个数码相等的概率
21.四面体ABCD中,ABCD,ACBD,ADBC
1求证:四面体每个面的三角形为锐角三角形;
2设三个面与底面BCD所成的角分别为,,,求证:coscoscos1
222..证明当p,q均为奇数时,曲线yx2px2q与x轴的交点横坐标为无理数
23.设a1,a2,,a2n1均为整数,性质P为: 对a1,a2,,a2n1中任意2n个数,存在一种分法可将其分为两组,每组n个数,使得两组所有元素的和相等
求证:a1,a2,,a2n1全部相等当且仅当a1,a2,,a2n1具有性质P
24.已知a,b,c
都是有理数;
25.(1)一个四面体,证明:至少存在一个顶点,从其出发的三条棱组成一个三角形;
(2)四面体一个顶点处的三个角分别是
二面角; 23,arctan2,求的面和arctan2的面所成的326.求正整数区间m,n(mn)中,不能被3整除的整数之和;
27.已知sincos的取值范围;
28.若limf(x)f(0)1,f(2x)f(x)x,求f(x); x02
29.证明:以原点为中心的面积大于4的矩形中,至少还有两个格点。
ex
30.求f(x)的单调区间及极值.x
31.设正三角形T1边长为a,Tn1是Tn的中点三角形,An为Tn除去Tn1后剩下三个三角形内切圆面积之和.求limnAk1nk.32.已知某音响设备由五个部件组成,A电视机,B影碟机,C线路,D左声道和E右声道,其中每个部件工作的概率如下图所示.能听到声音,当且仅当A与B中有一工作,C工作,D与E中有一工作;且若D和E同时工作则有立体声效果.求:(1)能听到立体声效果的概率;
(2)听不到声音的概率.33.(1)求三直线xy60,y
1x,y0所围成三角形上的整点个数; 2
y2x1(2)求方程组yx的整数解个数.2xy60
34.已知A(1,1),△ABC是正三角形,且B、C在双曲线xy1(x0)一支上.(1)求证B、C关于直线yx对称;
(2)求△ABC的周长.2r0,使得35.对于集合MR,称M为开集,当且仅当P0M,{PR2PP0r}M.判断集合{(x,y)4x2y50}与{(x,y)x0,y0}是否为开集,并证明你的结论.36.求最小正整数n,使得I(
12123i)n为纯虚数,并求出I.
37.已知a、b为非负数,Ma4b4,ab1,求M的最值.
n、si、n38.已知sic为o等差数列,sin、sin、cos为等比数列,求
1cos2cos2的值.
239.求由正整数组成的集合S,使S中的元素之和等于元素之积.
40.随机取多少个整数,才能有0.9以上的概率使得这些数中至少有一个偶数.
41.yx2上一点P(非原点),在P处引切线交x、y轴于Q、R,求PQ
PR.
42.已知f(x)满足:对实数a、b有f(ab)af(b)bf(a),且f(x)1,求证:f(x)恒为零.
(可用以下结论:若limg(x)0,f(x)M,M为一常数,那么lim(f(x)g(x))0)xx