第一篇:最大公因数教学设计
最大公因数教学设计
教学内容
人教版第十册第79页的例1,课本第81页的例题及课本第81页的做一做 教学目标
1、使学生理解和掌握公因数和最大公因数的概念。
2、能了解求两个数的公因数和最大公因数的方法,并能用自己喜欢的方法,找出两个数的最大公因数。
3、经历活动过程,训练学生思维的有序性和条理性。教学重点
最大公因数的求法 教学准备 电脑课件 教学方法
探究法 自主法 教程
一、创设情境
1、课件出示“六一”儿童节情景图
师:“六一”儿童节到了,小朋友们为了庆祝准备36朵红花和48朵白花做花束,两种花都没有剩余,如果每个花束里的红花朵数相同,白花朵数相同,有几种扎法,最多可以扎几束?同学们,你们能帮小朋友们解决这个问题了吗?
(让学生独立思考一分钟)师:你们找到方法了吗?
师:看来要知道有几种扎法,还得讲究方法,我们可以用红色的小棒表示红花的朵数,用白色的小棒表示白花的朵数,分小组合作找一找红花可以扎几束,白花可以扎几束。
师生:通过合作学习,你们想说什么?
生:36朵红花可以扎成的束数:1、2、3、4、6、36、18、12、9 48朵白花可以扎成的束数:1、2、3、4、6、48、24、12、8、16 师:两种花做花束可能有几种扎法:1、2、3、4、6、12。最多可以扎几束:12。
评析:“最大公因数”是一个抽象的数学概念。学生难以理解,老师通过联系学生“六一”儿童节做花束这个生活情境提出问题,为学生提供了一个“最大公因数”的现实情境,在小组合作中,让学生初步感知公因数、最大公因数的特点,体会求最大公因数的方法,为理解公因数、最大公因数的含义奠定了基础。
二、归纳概念
师:我们一起来观察每一组数。先来看看红花这一组,这些数与36有什么联系?
生:都是36的因数。
师:接下来看白花这一组,这些数有什么特点? 生:都是48的因数。
师:两种花做花束的束数与36和48有什么关系? 生:这些数既是36的因数,又是48的因数。师:我们可以把这些数称为36和48的公因数。
师:12和36和48的公因数中最大的一个,我们可以把它称为它们的最大公因数。
师:今天我们一起研究两个数的最大公因数。
师:现在谁能用自己的话说一说什么叫公因数?什么叫最大公因数? 评析:这一环节,让学生在解决实际生活问题的基础上逐步抽象出36和48的公因数和最大公因数,从而使学生经历一个从具体事物到抽象概念的数学化提炼过程,这样让学生利用日常生活经验,既理解了数学概念,而且又深深体会到数学与生活的密切联系。
三、两个数最大公因数的求法
师:刚才我们认识了公因数和最大公因数,那怎样求两个数的最大公因数? 师:下面我们就以18和30为例,先请大家独立探索一下,求两个数的最大公因数的方法
1.(小组交流)
师:分小组讨论,求两个数的最大公因数有几种求法? 2.(全班交流)各组代表发言,师板书
生1:我们这组先分别找出18和30的因数,再找它们的公因数,最后从它们的公因数中找最大的一个。
18的因数有1、18、2、9、36 30的因数有:1、30、2、15、3、10、5、6 18和30的公因数是:1、2、3、6 18和30的最大公因数是:6 师:我们把他们组的方法叫列举法。
生2:我们这组用分解质因数的方法,先找18的质因数,再找30的质因数,然后找出18和30公有质因数,最后把它们公有的质因数相乘
18=2×3×3
30=2×3×5 18和30的最大公因数是2×3=6 生3:我们这组是这样算的: 6 18 30 3 5 18和30的最大公因数是6
3、优化算法
师:刚才大家想到了求最大公因数的方法有三种,在实际应用中,同学们可以自己“当家作主”灵活选用各种方法。
评析:在这一环节中,为学生提供了探索的空间,放手让学生自主探究。通过讨论交流得出了求两个数的最大公因数三种不同的方法,充分体现了学生的自主性,避免了学生在老师的牵引下被动的学习。
四、巩固练习
1、课件出示:
①找出20和30的最大公因数
②先分别找出下面各数的最大公因数,再仔细观察,你发现了什么? 18和36 8和9 8和16 1和7
2、写出下列各分数分子、分母的最大公因数 4 10 12 5()12()16()18 21 18()24()49()
3、课件出示:
王叔叔家贮藏室长16dm,宽限12dm,如果用边长是束分米的正方形地砖把贮藏室的地面铺满,(使用的地砖都是整块)边长最大是几分米?
评析:此环节设计了三个层次的练习,使学生经历了从“纯数学”的应用到实际问题的解决过程,在这个环节中不仅巩固了已学知识,而为以后约分教学作了铺垫,形成了新旧知识链。
总评:加强了数学与生活的联系,创设生活情境,以学生解决生活问题为引入,既激发了学生的学习兴趣,同时让学生感到“数学原来就在我身边”。在探究求两个数的最大公因数的方法时,充分发挥学生的独立自主,打破了传统教法中,学生在老师的牵引下被动地学习,思维狭窄,在本课教学中,老师在学生独立探究,给了学生一个较大的探究空间,学生的思维就象脱缰的野马,自由驰骋着,他们有的从最大公因数定义出发,按照因数→公因数→最大公因数这样非常清晰的思路,找出了18和30的最大公因数,有的从寻找两个数公有的质因数入手,对18和30分解质因数从而找出18和30的最大公因数,第3钟方法“短除法”:这种方法是由于实际需要而产生的“奇思妙想”,也可以说,是由学生自己创造出来的。这些充分体现了学生思维的敏捷性。
最大公因数这样非常清晰的思路,找出了18和30的最大公因数,有的从寻找两个数公有的质因数入手,对18和30分解质因数从而找出18和30的最大公因数,第3钟方法“短除法”:这种方法是由于实际需要而产生的“奇思妙想”,也可以说,是由学生自己创造出来的。这些充分体现了学生思维的敏捷性。
第二篇:最大公因数教学设计
《最大公因数》教学设计 天宝乡中心学校 卢玉梅
教学目标:1.使学生理解和掌握公因数和最大公因数的概念;
2.能掌握求两个数的公因数和最大公因数的三种方法,能快速准确的找出两个数的最大公因数;
3.经过小组合作,提高学生的小组合作能力,培养学生的数学学习兴趣。教学重点:最大公因数的求法。教学难点:最大公因数的求法。教学方法:探究法 教学过程:
一、设疑自探 导入:
问:大家在家都喜不喜欢看电视啊?(喜欢!)
师:那么相信大家都看过这个电视(展示唐僧师徒照片),这是什么电视?(《西游记》)。话说呢,唐僧师徒四人,经过跋山涉水,渡过了许多劫难呢,终于到达了取经的目的地——大雷音寺。师徒四人,参拜完了如来佛祖之后,如来让其座下的迦叶尊者带唐僧四人前往藏经阁拿取真经。可是在藏经阁门口的时候,却被这个迦叶尊者给拦住了。(展示图片)尊者说:经不可轻传!要想求取真经必须要先回答出一个问题。
想知道迦叶尊者给师徒四人出了什么难题吗?(想)
迦叶尊者道:“我们藏经阁总共有许多经书,每本经书都对应的有不同的编号。而你们所需要的经书,它的编号呢,是个两位数。12和18的最大的公有的因数是经书编号十位上的数字;12和18的最小的公有的因数是经书编号个位上的数字。那么经书的编号是多少呢?”同学们有没有信心帮助唐僧四人解决这一难题呢?
二、解疑合探
1.认识公因数和最大公因数
找出12和18的全部因数
12的因数:1,2,3,4,6,12
18的因数:1,2,3,6,9,18(用乘法算式形式得出)
问1:这里尊者的问题里出现了“公有的因数”有没有谁知道是什么意思?
(是12的因数也是18的因数;12和18的相同的因数)12和18的相同因数有:1,2,3,6 问2:12和18的公有因数就是谁的定义呢?(公因数)
师:我们看一下这个迦叶尊者的题目:最大的公有因数是经书编号的十位数,那么最大的是多少呢?
生:6 师:同学们我们认识了公因数,找到了最大的公因数。现在大家能不能概括出最大公因数的定义呢?
生:公因数中最大的就是最大公因数。
师:我们找到了最大公因数。那大家能不能找到唐僧师徒所取真经的编号呢?
生:能。61 师:在这里还提出了最小的公有因数,是几呢? 生:1 师:1是12的因数也是18的因数。那么1还是不是其它数的因数呢? 生:1还是除0外所有自然数的因数。师:1是所有非零自然数的公因数。
以上,我们通过帮助唐僧四人取得真经,认识了公因数,也认识了最大公因数。下面我们将研究一下如何找出两个数的最大公因数。有什么简洁快速的方法准确的方法来找最大公因数。今天我们研究找最大公因数。(板书“找最大公因数”)
2.找最大公因数
这里有八组数:
5和11;
8和9;
6和30;
28和7 12和8;
9和15;
20和25;
12和16 大家根据上面我们所用的这种列举的方法,分别求出每组数的最大公因数。注意两点要求:1.观察各组数中两个数的特点,2.思考两个数之间有什么关系?(学生上小黑板演示,一组一人)
师:首先我们看第一组数,5和11的最大公因数是多少?让我们刚才上黑板展示展示这一题的同学来说一下。生:5和11的最大公因数是1.师:这里还有一个问题,5和11都是什么数?它门和最大公因数1有什么关系呢? 生:5和11是质数,它们的最大公因数是1。
师:在数学上我们把这种只有一个公因数1的两个数叫做互质数。如果两个是互质数,那么它们的最大公因数是1。
师:第二组,我们有请第二组的同学来说一下。
生:8的因数有1,2,4,8;9的因数有1,3,9.它们的最大公因数是1.师:根据刚才我们对互质数的定义,8和9是不是互质数呢? 生:是
师:所以是互质数的两个数并不一定是质数,还可能是合数。师:第三组,请第三组的学生讲一下 生:6的因数有:1,2,3,6;
30的因数有:1,2,3,5,6,10,15,30 6和30的最大公因数是6 师:这组数种6和30之间是什么关系呢? 生:30是6的倍数,6是30的因数。
师:30是6的倍数,6是30的因数。它们是倍数关系。那么我还有一个问题:一般地最大公因数都比这两个数小,这里为什么最大公因数跟6相等呢? 生:因为一个数的最大公因数可以是它本身 师:(点评)数学上我们把一个数是另一个数的因数,另一个数是一个数的倍数的关系叫做倍数关系。这么是倍数关系的两个数的最大公因数是其中的大的那个还是小的那个呢? 生:小的那个
„„
三,质疑再谈
试用列举法找出120和96的最大公因数。好不好找?我们发现当两个数比较大时,用列举法找它们的最大公因数比较困难,而且还容易出错。
为了解决这一困难,我们介绍一种更简洁更快捷更准确的方法来求两个数的最大公因数,它就是“短除法”(板书)
强调:要除到最后的两个数是互质数的时候就为止。师:这种方法最大公因数就刚好是所有除数的乘积。对于这种方法,有没有同学还有没有什么疑问呢? 四,拓展练习1,填空。
(1)10和15的公因数有
,最大公因数是:
(2)14和49的公因数有
,最大公因数是:
2,找出下面每组数的最大公因数
42和54
30和45
17和34 五,总结
1.公因数:两个数共有的因数叫做它们的公因数
2.最大公因数:两个数最大的公因数,就是它们的最大公因数。六.板书设计
公因数:两个数共有的因数; 最大公因数:最大的公因数 找最大公因数: 互质数关系:公因数只有1的两个数,叫做互质数。互质的两个数最大公因数是1; 倍数关系:倍数关系的两个数的最大公因数是其中较小的那个数; 找最大公因数:列举法,短除法 七,作业
第三篇:《最大公因数》教学设计
《最大公因数》教学设计
教学目标:
1、经历具体的操作活动,认识公因数和最大公因数,会在集合图中分别表示两个数的因数和它们的公因数,在探究中体会数形结合的数学思想。
2、在探索寻找公因数和最大公因数的过程中,经历观察、归纳等数学活动,进一步发展初步的推理能力。
3、会运用公因数,最大公因数的知识解决简单的实际问题,体验数学与生活的联系,增强数学意识。
教学重点、难点:理解公因数和最大公因数以及求2个数的公因数和最大公因数。教学准备:若干张长16cm,宽12cm的长方形纸以及若干张1cm,2cm3,cm,4cm的正方形纸和尺子。教学过程:
一、创设生活情景
1、师:老师今天想请大家来帮我个忙,大家愿意吗?首先来看看是帮忙的是什么事吧!
出示主题图:我家贮藏室准备铺地砖,贮藏室长16分米,宽12分米。
师:大家别着急,还有要求呢!
2、如果要用边长是整分米的正方形地砖把贮藏室的地面铺满(使用的地砖都是整块),可以选择边长是几分米的地砖?边长最大是几分米?
师:同学们,仔细读要求,你们认为解决这个问题要注意什么?
预设:A:铺满(注意肯定)B:使用的地砖是整块 C:铺的地砖是正方形 D:地砖必须是整分米数
3、师:那请同学们想想,按照要求,可以选择边长是几分米的地砖呢?边长最大又是几分米呢?(停顿)一下子解决这个问题有些困难,让我们借助学具来完成吧!
二、小组合作,动手操作
1、师:老师给大家准备了一张长16厘米,宽12厘米的长方形纸,那我们现在就用这张纸代替贮藏室的地面,根据上面的4点要求,利用手中的小正方形摆一摆,也可以画一画,或者算一算,看谁的方法多。
2、学生动手操作,教师巡逻指导。
学生以小组为单位,探究如何拼摆。每组在课前印好画有长方形的方格纸上,每人选择方砖的一种边长,试一试,只要画满一条长边,一条宽边就可以。
师:哪个小组愿意把你们的结果告诉大家?
多媒体演示拼摆过程,进一步验证学生动手操作的情况。
教师根据学生汇报,记录:1cm,2cm,4cm(教师幻灯片出示已画好的纸)
三、自主探究,、形成概念(发现问题,解决问题)
1、师:还有其他的摆法么?为什么3cm的正方形不行,而1cm,2cm,4cm却可以?
生:因为1cm既是16的因数,又是12的因数。2cm既是16的因数,又是12的因数。4cm既是16的因数,又是12的因数。
而3cm只是12的因数,却不是16的因数也就是只能摆满一条宽边,而长边摆了5个后面还剩下一点。
师:同学们真了不起,发现里面有我们学过的因数的知识,下面,就让我们用因数的知识来研究为什么要用边长是1分米、2分米、4分米的方砖吧!
2、通过交流,得出结论:要使所用的正方形地砖都是整块的,地砖的边长必须既是16的因数,又是12 的因数。
3、师:接下来我们利用以前的找一找他们的因数吧!
4、师:先找16的因数,再找12的因数,最后不难发现:1、2、4这三个数是他们共同的因数,到这里咱们的问题就解决了,边长最大是4分米。师:同学们想一想,以后再遇到这种类似铺地砖的问题,都需要做一张长方形的纸,然后拼一拼、摆一摆吗?只要怎么样就可以了?(求长边和宽边的公因数)
接下来看聪聪的集合图。
师:黑板上的这图画,叫做集合图,用它来表示,可以比较直观地表示出两个数的公因数。相交部分填1、2、4,表示12和16的公因数,左边只是16的因数,右边只是12的因数
师:因此,我们把1、2、4叫做16和12的公因数;其中,4是最大的公因数,叫做最大公因数。
5、教学公因数和最大公因数。
(这就是咱们这节课学习的内容):揭示课题:最大公因数
四、怎么求18和27的最大公因数?
师:接写来我们来算一下18和27的最大公因数,请大家拿出草稿纸,在你的纸上算一算。学生自主活动,在小组中交流,可能会有以下方法:
A:分别列出两个数的因数,再找最大公因数
B:先找出18的因数,再从18的因数中找出27的因数 C:先找出27的因数,再从27的因数中找出18的因数 D:利用分解质因数找最大公因数 学生汇报,教师记录:
A:18的因数有:1、2、3、6、9、18 27的因数有:1、3、9、27 公因数有:1、3、9 最大公因数是:9 B:先求出18的因数,再找找看27的因数中有哪些也是18的因数 C:先求出27的因数,再找找看18的因数中有哪些也是27的因数 D:分解质因数
五、课题回顾,布置作业
师:同学们表现真好,课后讨论一下除了刚才提到的方法还有什么方法,作业:P80 做一做
第四篇:最大公因数教学设计
五年级《找最大公因数》教学设计
教学目标:
1、通过游戏和动手操作理解两个数的公因数与最大公因数的意义,并能用集合图表示两个数的因数和公因数。
2、通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。
3、渗透集合思想,培养学生的分析,归纳能力和解决问题能力。教学重点:理解公因数和最大公因数的意义。教学难点:灵活找两个数的公因数的方法。教具准备:课件、实物展示台 教学过程:
一、复习旧知,导入新课
师:同学们,我们已经学过找一个数的因数的方法,如果老师现在给你一个数(12),你能很快找出它的因数吗?(生回答师板书)师:你们真棒!照这样的方法,你能很快说出18的全部因数吗?(生回答师板书)
师:哪几个数既是12的因数又是18的因数? 生:1、2、3、6 师:能不能简单的说说它们是12和18的什么数吗? 生:公因数
师:在这些公因数里面,哪个数最大? 生:6最大
师:6就是12和18的最大公因数。
这就是我们这节课要学习的内容 ———找最大公因数(师板书课题)
二、探究新知:
1、学生当裁判,玩游戏:
(1)请学号是12因数的同学到前面来。(左)(2)请学号是18因数的同学到前面来。(右)
(个别同学站位出现问题,请全体同学做裁判,1、2、3、6号应该站在什么位置?为什么?)
2、学习集合图:
生:让1、2、3、6号站在中间。因为1、2、3、6既是12的因数又是18的因数,它们是12和18的公因数。可以用集合圈来表示。(课件出示)
(1)师:两个集合圈交叉重合的部分表示什么?填什么数?(生:填公因数)
(2)师:那圈里的左边、右边填什么数?(同桌交流,汇报结果)
3、得出结论:1、2、3、6既是12的因数又是18的因数,它们是12和18的公因数。在这些公因数里面,哪个数最大?(生:6最大)6就是12和18的最大公因数。
4、师:找两个数的公因数,除了上面的方法,谁还有不同的方法? 生:我先找出12的全部因数,再在12的因数中圈出和18相同的因数。
5、小结:
找两个数的公因数的方法: ①先找出各个数的因数 ②找出两个数公有的因数 ③确定最大公因数
三、小组合作,解决问题。小组合作完成下面各题: 找每组数的最大公因数:(1)、4和8 6和12 5和10 21和7 观察每组数,我们发现:(上面的每组数都是倍数关系,它们的最大公因数是较小的数)
(2)、3和5 2和7 11和19 13和23 观察每组数,我们发现:(上面的每组数都是不相同的质数,它们的最大公因数是1)
(3)、8和9 11和 12 5和6 14和15 观察每组数,我们发现:(上面的每组数都是相邻的自然数(0除外),它们的最大公因数是1)
总结:我们今天学习了找两个数的最大公因数的方法有:
1、列举法
①先找出各个数的因数 ②找出两个数公有的因数 ③ 确定最大公因数
2、画集合图的方法
3、特殊数的方法:(1)如果两数是倍数关系,那么它们的最大公因数是较小的数。(2)如果两数是不相同的质数,那么它们的最大公因数是1。(3)如果两数是相邻的自然数(0除外),那么它们的最大公因数是1。
四、巩固拓展:
1、我是小法官,对错我来判:
(1)两个数的公因数的个数是无限的。(2)两个数的公因数一定小于这两个数。(3)最大公因数是1的两个数一定都是质数。
2、学校组织了男生30人,女生20人的合唱队,男女生分别排队,要使每排人数相同,每排最多有多少人?
3、写出下列分数分子和分母的最大公因数:
8/12()5/7()9/10()
五、总结回顾:
通过这节课的学习,你有什么收获? 板书设计:
找最大公因数
12的因数有:1、2、3、4、6、12 18的因数有:1、2、3、6、9、18 1、2、3、6是12和18的公因数 6是它们的最大公因数
两个数公有的因数叫作这两个数的公因数 公因数中最大的一个叫作它们的最大公因数
()()()6/18()
第五篇:《最大公因数》教学设计
《最大公因数》教学设计
教学内容:
《义务教育课程标准实验教科书 数学》(人教版)五(下)第60—61页。
教学目标:
1、使学生理解两个数的公因数和最大公因数的意义。
2、培养学生独立思考及合作交流的能力,能用不同方法找两个数的最大公因数。
重点难点:
1、理解公因数和最大公因数的意义。
2、掌握求两个数的最大公因数的方法。教具准备:多媒体课件。教学过程:
一、热身运动 1、3的因数有哪些?10的因数有哪些?41呢?
2、一个数的因数最小是(),一个数的因数最大是(),一个数的因数的个数是()。
二、探究新知
1、请学号是8的因数的同学起立,板书8的因数:1、2、4、8 请学号是12的因数的同学起立,板书 12的因数:1、2、3、4、6、12 请学号是8的因数的同学站到左边,学号是12的因数的同学站到右边。1、2、4是8的因数,也是12的因数,谁能用一句简洁的话来说说,他们是8和12的什么数呢?板书:公因数 8和12的公因数有:1、2、4 师:在8和12的公因数中,最大的是几? 板书:8和12的最大公因数是4。
2、老师用多媒体课件演示集合图。
指出 :1,2,4是8 和12公有的因数,叫做他们的公因数。其中,4是最大的公因数,叫做他们的最大公因数。
3、出示例2。怎样求18和27的最大公因数?
(1)学生先独立思考,用你喜欢的方法试着找出18和27的最大公因数。(2)小组讨论,再在全班交流。(3)老师用多媒体课件演示方法
方法一 :先分别写出18和27的因数,再圈出公有的因数,从中找到最大公因数。
方法二 :先找出18的因数,再看18的因数中有哪些是27的因数,从中找最大。18的因数有:①,2,③,6,⑨,18 方法三 :先找出27的因数,再看27的因数中有哪些是18的因数,从中找最大。27的因数有:①,③,⑨,27 方法四 :先写出18的因数1,2,3,6,9,18。然后从大到小依次看是不是27的因数,第一个数9是27的因数,所以9是18和27的最大公因数。
4、仔细观察,静静思考,两个数的公因数和它们的最大公因数之间有什么关系?
生1:公因数和最大公因数都是因数中的一部分。
生2:公因数都是最大公因数的因数,最大公因数是公因数的倍数。
5、求出下面每组数的最大公因数。
6和3 2和5
2和4 4和8 7和14 5和9 3和7
8和9 学生先独立完成,仔细观察,每组数有什么特点,你有什么发现?再进行交流。
小结:求两个数最大公因数的特殊情况。
⑴ 当两个数成倍数关系时,较小的数就是他们的最大公因数。⑵ 当两个数只有公因数1时,他们的最大公因数是1。
6、你能很快说出下列各组数的最大公因数吗? 9和18 16和32 1和7 6和11
7、优化方法
仔细观察,静静思考,你更喜欢上面的哪种方法,为什么?
生1:我更喜欢列举法,因为列举法简单易懂,不仅可以求出两个数的最大公因数,还可以求出它们的所有公因数。
生2:我更喜欢筛选法,因为筛选法能更简洁、更快的求出两个数的最大公因数,也可以很快求出它们的公因数,只要再写出最大公因数的因数就是它们的公因数了。生
3、我更喜欢集合法
三、巩固训练
1、选出正确答案的编号填在括号里 1、9和16的最大公因数是()A.1 B.3 C.4 D.9 2、16和48的最大公因数是()A.4 B.6 C.8 D.16
3、甲数是乙数的倍数,甲乙两数的最大公因数是()A.1 B.甲数 C.乙数 D.甲、乙两数的积
2、写出下列各分数分子和分母的最大公因数。7/9 8/36 18/72 11/66
3、有两根绳子,一根长12米,另一根长18米,要把它们截成同样长的小段,而且没有剩余,每段最长应是几米?
4、有一张长方形纸,长 70 cm,宽 50 cm。如果要剪成若干同样大小的正方形而没有剩余,剪出的小正方形的边长最大是几厘米?
四、课堂小结:
通过本节课的学习,我们主要认识了公因数、最大公因数的意义;掌握了找两个数的最大公因数的方法:找两个数的最大公因数,可以先分别写出这两个数的因数,再圈出相同的因数,从中找出最大的公因数;也可以先找到一个数的因数,再从大到小看看那个数是另一个数的因数,从而找到最大公因数。
五、拓展延伸:
有三根小棒,分别长10㎝,16㎝, 48㎝。要把他们都结成同样长的小棒,步许剩余,每根小棒最长能有多少厘米?
六、板书设计:
最大公因数
8的因数有:1,2,4 12的因数有:1,2 , 3, 4, 6, 12 8和12的公因数有:1,2,4 8和12的最大公因数是4