首页 > 实用范文 > 其他范文
地下室挡土墙结构设计分析论文(合集)
编辑:雨声轻语 识别码:130-820645 其他范文 发布时间: 2023-12-02 15:54:49 来源:网络

第一篇:地下室挡土墙结构设计分析论文

摘要:地下室挡土墙按常规设计时存在着一些安全隐患,综合考虑不同部位挡土墙的具体受力情况,对挡土墙结构设计进行分析整理与总结,并同时提出了相应的设计建议。

关键词:地下室;挡土墙;设计;建议

目前地下室设计最常用的解决土压力作用的方法即是结构自挡土,地下室挡土墙是直接接触土压力的构件,当按常规设计时,没有具体问题具体分析,因此,挡土墙设计存在着一些安全隐患。本文将从挡土墙结构设计中计算简图的选取、荷载取值、一般部位及特殊部位进行分析整理,总结了地下室挡土墙结构设计时的设计方法及要点。

1地下室挡土墙的计算简图的确定常

规设计时,将地下室各层楼板、基础底板等作为地下室挡土墙的支承,计算简图通常按下述方式处理:顶板处简化为铰接,基础底板处简化为固端,其他地下室楼层作为连续支座,将挡土墙按1m宽板带简化为多跨连续梁进行内力计算和配筋,这也是设计人员通常所采用的挡土墙的计算简图。但是还应该考虑基础底板及顶板约束作用的实际大小,否则可能会给相关部分的受力构件带来安全隐患。且地下室楼板因为使用功能的需要,在车道、楼梯、开洞等处楼板的传力途径并不直接,甚至无法作为支承。故在确定地下室外墙的计算简图时,必须熟悉地下室各层的布置和楼板的缺失情况等,考虑由外墙传来的土压力的传力途径,并保证传力途径简单直接。

2土压力的取值

2.1静止土压力

当挡土墙的刚度很大,在土压力作用下墙处于静止状态即位移为零时,墙后土体处于弹性平衡状态,因此,地下室挡土墙的土压力按静止土压力计算。土压力计算公式为:p=γhKo,静止土压力系数Ko与土性、土的密实程度等因素有关,在一般情况下,砂土Ko=0.35~0.5,黏性土Ko=0.5~0.7,计算时可近似取为0.5。地下水位以上取土的饱和容重,地下水位以下取土的浮容重并采用水土分算法进行计算。静止土压力按下述公式计算:p=K0(q+“z)(z≤hw)p=K0[q+”hw+“’(z-hw)](z>hw)式中q—作用于地表的室外荷载,kN/m2;”─土的重度,kN/m3;z─计算土压力点的深度,m;K0─静止土压力系数;"’─土的浮重度,kN/m3;hw─地下水的埋藏深度,m。

2.2室外堆载和消防车荷载对土压力取值

计算地下室挡土墙时,要考虑室外堆载和消防车荷载的影响,但两者不同时考虑。室外堆载荷载一般取10kN/m2;根据《全国民用建筑工程设计技术措施》[2],明确给出停放消防车的室外地面活荷载取5kN/m2。综合考虑室外活荷载取值按10kN/m2满足各工况要求。

3一般部位地下室挡土墙受力分析与设计

3.1地下室挡土墙底部嵌固条件

当基础底板对侧墙有较好的约束时才可以满足简化计算模型中固端的条件。当仅采用柱下独立基础且没有抗水板,或者抗水板置于较软的土层上时,抗水板无法对侧墙形成有效的约束作用,此时依然采用基础底板处简化为固端的简化计算模型会导致外墙靠底板处的外侧弯矩偏大,而内侧弯矩偏小,偏不安全。因此,在进行地下室挡土墙设计时,应对这种情况的地下室侧墙跨中弯矩采取乘以放大系数的方式或者按照底部采用不动铰支座进行包络设计。

3.2水浮力的附加弯矩作用

当地下室抗浮水位很高时,由于地下水对于底板的作用,会导致底板与外侧墙相交处产生一个与侧墙根部弯矩方向相反的转动,此时底板对于侧墙的约束作用超过计算模型中固端的假定,实际的负弯矩可能会大于按照计算模型中固端计算的负弯矩,此时应将地下室底板与侧墙弯矩共同计算设计。

3.3次梁对地下室挡土墙的约束作用

由于次梁对地下室挡土墙的约束作用,在有次梁的地方侧墙会产生一个较大的负弯矩,这种情况与侧墙上部不动铰支座的计算假定有较大的出入,而计算弯矩值较大,因此,在有次梁的地方应采取特殊的构造措施。建议将次梁的上部钢筋锚入侧墙后往下延伸一段后进行锚固。

4特殊部位地下室挡土墙受力分析与设计

4.1地下室挡土墙转角处

由于地下室挡土墙转角处形成了连续支座,按单向板计算时水平向在该处应考虑墙体的嵌固作用,应按转角处简化为固端的双向板计算支座弯矩值(水平向的计算跨度可取墙体高度的2倍),并按该弯矩配筋。选筋时可考虑分离式配筋,不必与墙体分布筋协调,支座钢筋与水平分布钢筋采用搭接连接。

4.2临边坡道处地下室挡土墙计算

沿地下室外墙布置车道时,由于车道打断了地下室外墙的楼板支承,当考虑车道板作为外墙的支承时,应注意车道板是否能有效传递水土压力。因车道板与楼板不在一个标高,须通过柱或墙来间接传递,建议在车道板的另一侧增设钢筋混凝土墙体,以平衡车道板传来的水土压力。车道处由于车道板倾斜,地下室外墙的受力情况相对较复杂。1)车道范围地下室挡土墙各处的计算跨度均不同。2)由于车道板倾斜,与楼面标高不一致,导致支承地下外墙的水平力不能直接传递,其传力方式有:①车道板一端支承于地下室外墙,一端支承于梁上时,地下室外墙传递的水平力先传给车道板,车道梁板整体作为一个水平放置的受弯构件承受地下室外墙传来的荷载,受弯构件的跨度为车道板的斜长或有效支承间的距离;②车道板一端支承于地下室外墙,另一端支承于钢筋混凝土内墙上时,地下室外墙传递的水平力先传给车道板,车道板再将集中力传递至内墙上,即内墙需考虑承受外墙传来的水平荷载,而不仅仅是按构造配筋;③当不符合①、②两种传力方式时,则地下室外墙应作为支承于地下室底板的悬挑构件计算。针对车道处地下室外墙的受力特点,计算时对地下室外墙可采取分区段计算的方法,根据计算结果对其分区段采用不同的配筋方式或构造。然后根据车道板的支承情况,将车道梁板整体作为受弯构件进行计算,或将车道板传递的集中荷载传给地下室内墙进行计算。沿地下室外墙布置车道时,车道处外墙的高度是变数,跨度变化大,应适当分段计算并配筋,配筋方式应特别注意这一特点,对应力集中处应加强配筋构造,以优化设计。

4.3地下室外墙处楼板开洞

由于地下室外墙在楼层板处的支承楼板缺失,外墙的支承条件发生了改变,对该部分墙体的计算和配筋构造需专门分析,并采取符合实际受力特点的计算简图进行计算。对该类墙体可采用双向板的计算简图进行计算,上端简化为自由端,下端为固定端,左右为固定端并考虑弯矩折减,适当增大挡土墙内侧分布钢筋。

5结论与建议

综上所述,地下室挡土墙的设计,要达到安全、经济、合理,应该从头至尾做到正确的概念设计,准确的计算模式、构造和合理的配筋,才能够保证设计结果既安全又经济,也是减少或者避免施工过程中安全事故发生的重要举措。

参考文献:

[1]GB50010-2010混凝土结构设计规范[S].

[2]住房和城乡建设部工程质量安全监管司.全国民用建筑工程设计技术措施(2009)-结构(地基与基础)[M].北京:中国计划出版社,2009.

[3]张克恭,刘松玉.土力学[M].3版.北京:中国建筑工业出版社,2010.

[4]GB50009-2012建筑结构荷载规范[S].

第二篇:挡土墙分析实验报告

《工程力学A2》小组作业报告

挡土墙分析

院 系:土木建筑工程学院 组 名:第三组 组 长:侯森磊

成 员:侯森磊 符维滨 孙铭锴 日 期:20151212

摘要:灵活运用《理论力学》和《材料力学》里的力学知识分析本报告通过分析一道经典的挡土墙问题,得到其荷载应力状态,得出相应的结论,解决相应的问题,并进行的一系列讨论和总结,最终理解挡土墙问题。

一、简介

图示一混凝土挡土墙,墙高4m,已知墙背承受的土压力F=137kN,并且与铅垂线成角,混凝土的密度为2.35×103kg/m3,其他尺寸如图所示。取1m长墙体作为研究对象,试计算作用在截面AB上点A和点B处的正应力。又砌体的许用压应力为3.5MPa,需用拉应力为0.14MPa,(1)试作强度校核。

(2)如果以点A作为转动轴,试验算坝体是否会倾覆

(3)如果坝体后面有地下水,地下水面距坝顶2m,此时由于地下水的浮力作用,墙背承受的土压力变小,变为,并且与铅垂线成角,试计算分析此时坝体底面AB截面的应力分布情况。(提示,需要考虑水压力)

二、解决思路与方法

解决思路:

(1)强度校核:先分析1m长的挡土墙上承受的外力,然后分析AB截面上的轴力和弯矩最后进行强度校核(2)可以先求出A轴的力矩,判断其大小和方向,可以试验算坝体是否 倾覆

(3)水的压强在同一深度,各个方向的压强都一样且水的压强垂直作用在坝上,其余求解过程如(1)

具体过程 <1>(1)1m长的挡土墙上承受的外力[图(b)]为

F1x=F1sin45.7°=137kN×0.716=98.1kN

F1y=F1cos45.7°=137kN×0.698=95.6kN

F2=1m×4m×0.6m×2.35×103kg/m3×9.8N/kg=55.3kN

(2)AB截面上的轴力和弯矩分别为

FN=F1y+F2+F3=224.6kN

M=F1x×1m+F2×0.8m-F3×0.033m-F1y×0.7m

=73.0kN·m

故A点和B点处的正应力分别为

(3)强度校核 因为

所以 强度合格 <2> MA = F1x ×1m-F2×0.3m-F3×(1.1+0.033)m-F1y×(1.1+0.7)m

=-174.1kN·m

(顺时针)因为MA 为顺时针 所以不会倾覆 <3> 水的压强:

在同一深度,各个方向的压强都一样 ,水的压强垂直作用在坝上,如图(c)所示。

图(C)

F1x=F1sin41.7°=110kN×0.665=73.2kN F1y=F1cos41.7°=110kN×0.747=82.2kN

F2=1m×4m×0.6m×2.35×103kg/m3×9.8N/kg=55.3kN

F4x=F4sin68.2=26.1kN F4y=F4cos68.2=10.4kN FN=F1y+F2+F3+F4y=212.6kN M=F1x1m+F20.8m-F30.033m-F1y0.7m-F4y×1.3m+

F4x×0.7m=62.2kN·m

故A点和B点处的正应力分别为

三、结论与讨论

图示的混凝土挡土墙设计合理,无论是否存在地下水,该挡土墙的强度都符合要求。而且,不会倾覆。

前两问考察的是《理论力学》和《材料力学》的结合,只要对力学知识掌握熟练,便可轻易解出。第三问主要是加入了水的压力,只要了解到水的压强在同一深度,各个方向的压强都一样,便可理解为多了一个已知力,很容易解出答案

四、总结

本实验报告主要是通过灵活运用《理论力学》和《材料力学》里的力学知识分析一道经典的挡土墙问题,得到其荷载应力状态,最终得出相应的结论,解决相应的问题,即该挡土墙符合强度要求,不会倾覆。而且还进行了一系列讨论和总结,还有解决大作业的心得和体会。

五、心得与体会

解决大作业时,各成员没有进行好交流和沟通。刚开始没有确定好分工,导致大作业进展缓慢,后来又有小组成员不与其他成员沟通,到后期直接退出,打乱了大作业的进展。总之,无论是做任何事,参与者之间的沟通很重要。

通过本次大作业,小组全体成员既加强了对《理论力学》《材料力学》的运用,同时也使小组成员对《土力学》有了一定的接触和了解,使以后对《土力学》的学习更加轻松。

第三篇:异形柱结构设计分析论文

一、异形柱的概念

异形柱是指截面肢厚小于300mm的L、T、+形的截面柱。建筑界所讲的“异形柱”,特点是截面肢薄,由此引起构件性能与矩形柱性能的包括受力、变形、构造做法等一系列差异。制定规程主要是针对肢厚200、250mm的异形柱。其形式与短墙肢相似,若肢较长就称短墙肢,很难划分两者的界线。

其中“Z”、“一”形柱未列入规程的原因如下。

第一,“Z”形柱在实际工程中,应用很多。“Z”形截面柱与“一”形截面柱类似,即两主轴方向抗弯能力相差甚大,多数情况下是Z形的上下两水平肢受与其方向一致的力,即由两根梁传来的拉力或压力,这只有通过中间肢的受扭来传递,后果只能是中间肢的断裂。“Z”形异形柱目前研究的不是很多,但在实际工程还是有用的。如果结构中只是个别柱为Z形,可以采用加强构造的设计。

第二,“一”形柱截面两主轴方向抗弯能力相差甚大。不论是在风荷载作用下还是在地震作用下结构中的柱一般都是受到两个方向的弯矩同时作用,其受力后的表现可想而知,它在双向剪力作用下性能也不好,由GB50010柱双向受剪承载力计算公式可见,柱截面相邻两边长相差越多,其斜向受剪承载力越低。

二、底层减柱的限制

第一,落地的框架柱应连续贯通房屋,框架柱应连续贯通转换层以上的所有楼层。底部抽柱数不宜超过转换层相邻上部楼层框架柱总数的30%,转换层下部结构的框架柱不应采用异形柱。底部抽柱带转换层的异形柱结构可用于非抗震设计和6度、7度抗震设计的房屋建筑。

第二,带转换层的异形柱结构在地面以上大空间的层数,非抗震设计不宜超过3层;抗震设计不宜超过2层;底部抽柱带转换层异形柱结构适用的房屋最大高度不少于10%,且框架结构不应超过6层。框架-剪力墙结构,非抗震设计不应超过12层,抗震设计不应超过10层。

第三,不落地的框架柱应直接落在转换层主结构上。托柱梁应双向布置,可双向均为框架梁,或一方向为框架梁,另一方向为托柱次梁;转换层上部异形柱向底部框架柱转换时,下部框架柱截面的外轮廓尺寸不宜小于上部异形柱截面外轮廓尺寸。转换层上部异形柱截面形心与下部框架柱截面形心宜重合,当不重合时应考虑偏心的影响;

第四,转换层上部结构与下部结构的侧向刚度比宜接近1。转换层上、下部结构侧向刚度比可按国家行业标准《高层建筑混凝土结构技术规程》JGJ3-2002第E.0.2条的规定计算。规程不允许次梁转换(二次转换)。

第五,转换层及下部结构的混凝土强度等级不应低于C30;转换层楼面应采用现浇楼板,楼板的厚度不应小于150mm,且应双层双向配筋,每层每方向的配筋率不宜小于0.25%。楼板钢筋应锚固在边梁或墙体内;

第六,托柱框架梁的截面宽度,不应小于梁宽度方向被托异形柱截面的肢高或一般框架柱的截面高度;不宜大于托柱框架柱相应方向的截面宽度。托柱框架梁的截面高度不宜小于托柱框架梁计算跨度的1/8;当双向均为托柱框架时,不宜小于短跨框架梁计算跨度的1/8。托柱次梁应垂直于托柱框架梁方向布置,梁的宽度不应小于400mm,其中心线应与同方向被托异形柱截面肢厚或一般框架柱截面的中心线重合。

第七,注解:直接承托不落地柱的框架称托柱框架,直接承托不落地柱的框架梁称托柱框架梁,直接承托不落地柱的非框架梁称托柱次梁。

三、应用范围及特点

异形柱应用在7度设防以下。在异形柱结构中使用扁平柱是可以的,建议最小厚度取250,梁纵筋用3级钢,直径不超过12。各项验算同普通框架柱,构造和轴压比建议控制更严格一些。因“一”形异形柱不提倡用,在某工程上缺了还不行,没办法可用扁平柱,其计算按矩形柱方法计算。

地震力系数放大,自振周期折减。因用异形柱导致刚度下降,使得地震力减小,应采用地震力放大系数来适当地增加地震力。计算各振型地震影响系数所采用的结构自振周期,应考虑非承重填充墙体对结构整体刚度的影响予以折减。

四、截面定义输入

异形柱截面有T形、十形、L形,对一字形、Z字形规程未列入应用,在PMCAD截面定义中输入T形按2截面工形输入,不用的地方输0;十形按6截面十形输入;L形用5截面槽钢形输入。其宽均为240,肢长为600。输入轴线节点处应注意偏心材料应定为砼。为减少输入偏心转角的麻烦,在定义时要多定几个不同的截面类型。

五、配筋计算及施工图画法

配筋计算如下:采用双偏压、拉计算,箍筋采用双剪箍。异形柱肢长与肢宽比≤4时,否则应考虑梁的刚域。这时梁柱重叠部分,按刚域参数考虑。

施工图画法如下:a全楼柱钢筋归并;b平面柱大样画法画异形柱施工图,应注意箍筋加密与普通柱相同;柱分布筋之间设拉筋,其直径同箍筋,间距是箍筋的2倍;横向肢、竖向肢分别按计算配置一个矩形箍筋,并分别满足X、Y向计算箍筋面积的要求;c竖向筋要满足最小间距要求,采用对称配筋,一排排不下,程序自动放两排;按固定钢筋和分布筋的构造要求分别配制固定钢筋和分布筋。d在核心区箍筋相交处,若无主筋时,应设竖向架立筋如T形柱内侧,架立筋为构造筋,隐含直径D=14mm。

六、其它

顶层托斜层顶的(角)柱,规程对此没有涉及,它所受轴力、弯矩均不大,柱本身强度不会成问题,关键是房屋顶部结构整体性能,设计人员自己把握抗震设计的异形柱结构不应有错层,原因是免形成短柱。这里的错层是指规范和高规中的“较大的错层”。抗震设计时,框架柱的净高与柱截面长边之比不宜小于4,不应小于3。一般楼梯处易出现短柱,为此在楼梯间两侧布置剪力墙其它地方以异型柱为主。异形柱在斜向水平荷载作用下,其受剪承载力的平面图形为梅花状,等肢情况下异形截面柱受剪承载力在各象限图形是凸的。

在斜向剪力下,如果按X、Y两个分量分别配筋满足要求的话,其斜向承载力也能满足要求。由以上原因,异形柱规程规定异形柱的斜截面承载力可以分X、Y向分别进行设计,不等肢情况时,该图形的凸出程度要差一些,两肢长度相差越大,凸出程度越差,一形柱就是个扁椭圆。所以,这也是规程规定异形柱截面任一肢肢长不得小于500mm的一个原因。

第四篇:焊接机器人结构设计分析的论文

0引言

管道对接是管道铺设过程中一个重要的工序,它广泛应用于的油气、天然气输送管道等需要两管对接的行业。鉴于现在大直径管道焊接绝大多数还是采用传统的手工焊接,工作效率低,工作进度慢,对人身伤害大,进而设计一种适合大直径、全位置的焊接机器人对大直径管道铺设具有代表性的意义[1~3]。

1焊接机器人组成介绍

焊接机器人采用了移动小车式,具有结构简单、便于携带、灵活性好等特点,其三维实体模型如图1所示,具有3个运动机构,分别是周向旋转机构、轴向摆动机构和径向伸缩机构。周向旋转机构主要由车体、钢带型轨道、主动链轮、链条和张紧机构等组成。周向旋转机构采用齿轮链条机构,电机驱动主动齿轮旋转,齿轮带动链条,链条和钢带的摩擦力促使小车绕驱动方向的反方向运动。这里的链条的外链板具有齿锯,从而增加了链条和钢带的摩擦度。轴向摆动机构主要由滚珠丝杠、直线导轨、支架等组成。轴向摆动机构采用的是滚珠丝杠—直线导轨机构传动机构,电机驱动滚珠丝杆,丝杆带动丝母在直线导轨上沿轴向来回摆动。径向伸缩机构就是焊枪调整架的一部分,主要由齿轮、齿条、支架等组成。当电机驱动齿轮,齿轮带动齿条径向升降。

2焊接机器人的结构设计

2.1周向旋转机构

周向旋转机构是实现大管径、全位置焊接,以及便于装卸的关键内容。焊接小车是焊接机器人的主要承载体,其结构如图2所示。

2.2轴向摆动机构

轴向摆动机构是使焊枪实现在焊道轴向摆动焊接的关节,其结构如图3所示。

2.3径向伸缩机构

径向伸缩机构是使焊接机器人实现适应径向高度(随着焊道填充叠加)的关节,其结构因焊枪而选取,这里就不过多介绍。

3运动学干涉分析

大直径管对接焊接机器人的运动学干涉问题就是:当小车环绕管道作旋转运动时,链条和小车车体可能存在干涉的问题。我们先用CAD作出管道和小车的几何关系图,如图4所示;再找出链条和钢带以及和主动齿轮分度圆的接触切点,也就是图8里的C、D两点;再测得小车车体和链条的垂直距离D。由图7可以看出来:R值越大,D的值也就越大。当管道半径取最小值(R=170mm)时,此时D>0。这就可以得出,无论R取任何值,D都大于0。从而可以得出,链条和小车不存在干涉。

4运动学仿真

这里对管径为400mm,管壁为10mm的圆形管道进行运动学仿真。设定小车的焊接速度为0.14rad/s,轴向摆动速度为0,从管道顶端顺时针绕一周。利用Pro/E软件对其进行运动学仿真,得到执行机构的位置轨迹和速度曲线,如图7、图8所示。图7可以看出来,焊接机器人执行机构(焊枪)的位置轨迹与焊缝的轨迹相同;图8可以看出,焊接速度起初是一个启动过程,速度增大到0.14rad/s后,趋于稳定,当快到顶端时,开始减速,最后停止。

5结论

对大直径对接管焊接机器人进行了本体结构设计、运动学干涉分析、运动学仿真和位置仿真。通过上述分析,有利于对大直径对接管焊接机器人的本体结构及运动学特性等深入了解,从而为大直径对接管焊接机器人的生产与运动控制提供了理论依据。

第五篇:超限高层商业楼的结构设计分析论文

随着社会经济的发展,商业建筑迎来了蓬勃发展的时期。在建筑功能不断集成的过程中,出现了一系列的结构问题:体量大、体型复杂、大跨、开洞等,因此现代商业建筑对结构设计的要求越来越高。本文将结合工程实例,总结超限高层商业建筑的结构设计方法,为此类项目的设计提供参考。

工程概况

某工程由 1 栋 6 层商业楼,4 栋超高层住宅楼,1 栋 59 层超高层办公楼组成。本文以 6 层商业楼为例,分析总结超限高层商业建筑的结构设计方法。结合 6 层商业楼的建筑功能和结构平面布置的特点,设两道防震缝将其分为 A、B、C 三个区,分区后仅 A 区属超限高层,故本文主要介绍商业楼 A 区,下文所提商业楼均指商业楼 A 区。

本工程所在地区基本设防烈度为 6 度,设计基本地震加速度为0.05g,设计地震分组为第一组,建筑场地类别为Ⅱ类,场地特征周期,多遇地震为 0.35s,罕遇地震为 0.40s.商业 A 区结构单元抗震设防类别为重点设防类,应按高于本地区抗震设防烈度提高一度的要求加强其抗震措施,故商业楼框架抗震等级应为 2 级。多遇地震计算时结构阻尼比取 0.05,风振计算时结构阻尼比取 0.02.2 基础设计

商业楼基础设计等级为甲级,采用桩加防水板基础。根据前期试桩检测报告结论,采用Φ700 钻孔灌注桩,抗压兼抗拔桩。基础埋深12.1m,远大于建筑结构高度的 1/18.经复核,风荷载及水平地震作用下基底均不出现零应力区,可满足高层建筑结构抗倾覆稳定要求。地下车库设计

地下车库采用框架剪力墙结构,局部增加的剪力墙,主要有两个作用:一是为了使得地下 1 层与地上 1 层的剪切刚度比大于 2,满足正负零作为地上单体嵌固端的要求,二是为了更好地保证室内外高差处水平力的传递。商业楼室内及室外相关范围内,正负零零层采用梁板式结构,板厚 180 ~250,双层双向配筋,且配筋率不小于 0.25%.上部结构设计

(1)超限情况的判定

根据“住房和城乡建设部关于印发《超限高层建筑工程抗震设防专项审查技术要点》的通知(建质〔2010〕109 号)”,对商业楼的超限情况判定如下:商业楼结构高度 29.2m,采用现浇钢筋混凝土框架结构,属于 A 级高度高层建筑,高度不超限。商业楼3 层以上竖向构件缩进大于 25%,属尺寸突变(立面收进);商业楼地上楼层存在多处楼板有效宽度小于 50%,开洞面积大于30%的情况;④商业楼3 层和4层之间质心相差达 18m,大于相应边长的 15%,同时,考虑偏心扭转位移比大于 1.2,小于 1.4.综合以上分析,商业楼属于超限高层建筑。

(2)上部结构计算分析

在小震作用下,全部结构处于弹性状态,构件承载力和变形应该满足规范的相关要求。根据《高层建筑混凝土结构技术规程》JGJ 3-2010 第 5.1.12 条的要求,本工程采用 SATWE 与 PMSAP 两种不同分析软件分别进行了整体内力及位移计算,两种软件的计算结果基本一致,结构体系满足承载力、稳定性和正常使用的要求。楼层最大位层间移角小于 1/550,满足 JGJ 32010 第 5.1.2 条,对不规则建筑应采用时程分析进行多遇地震下的补充计算。本工程所选的三条波为 TH2TG035、TH4TG035、RH4TG035,每条时程曲线计算得到的结构底部剪力均大于 CQC 法的 65%,三组时程曲线计算得到的底部剪力平均值大于 CQC 法计算得到的底部剪力的 80%,故所选三条波满足规范要求。时程分析的结果表明,结构体系无明显薄弱层,时程分析法包络值较 CQC 法计算结果小,故结构的小震弹性设计由 CQC 法计算结果控制。

根据高层建筑混凝土结构技术规程 JGJ 3-2010 第 5.1.13 条的要求,对商业楼采用弹塑性静力分析方法进行了补充计算。两个方向罕遇地震下性能点最大层间位移角均小于 1/50,小于规范弹塑性位移角限值,因此宏观上商业楼所用结构体系能保证大震不倒的设计要求。

在通过二阶段设计实现三个水准的基本设防目标以外,针对本工程的具体情况,提出了以下抗震性能化目标:设防地震作用下,中庭连廊等薄弱处楼板内双层双向钢筋不屈服;设防地震作用下,悬挑梁根部框架柱及大跨梁两端相连框架柱斜截面抗剪按弹性设计,正截面抗弯按不屈服设计;PMSAP 楼板应力分析结果表明,中庭连廊根部、平面凹口阴角位置一般为应力集地区域,在多遇地震作用下,楼板主拉应力不大于混凝土抗拉强度标准值,楼板不会开裂,在设防地震作用下,应力集中位置楼板主拉应力略大于混凝土抗拉强度标准值,但适当加大楼板配筋,即可满足楼板内钢筋不屈服。

在设防地震作用下,利用 SATWE 进行弹性设计和不屈服设计,分别校核悬挑梁根部框架柱及大跨梁两端相连框架柱的箍筋和纵筋,并与多遇地震计算结果一起进行包络设计。计算结果表明,配筋值均在合理范围,配筋切实可行。通过以上性能化设计措施,在对结构的经济性影响较小的情况下,提高了结构的抗震性能,增加了建筑的安全性。

(3)上部结构设计针对偏心布置和扭转不规则,设计时,尽量使结构抗侧力构件在平面布置中对称均匀布置,避免刚度中心与质量中心之间存在过大的偏离;加强外围构件的刚度,增强结构的抗扭性能。计算时,考虑偶然偏心的影响,设计时适当加强受扭转影响较大部位构件的强度、延性及配筋构造。通过调整结构布置,将考虑偶然偏心下的最大位移比严格控制在 1.4 以下,第一扭转周期和第一平动周期比严格控制在 0.9 以下。

针对立面收进带来的扭转不利影响而采取的抗震措施详第(1)条。构造上,对收进楼层(4 层)加厚至 140mm 且双层双向加强配筋,配筋率不小于 0.25%,但为减小大跨部分楼板自重,室内大跨度区域楼板厚 120mm,屋面大跨度区域楼板厚 130mm,收进部位上下层楼板(3 层和 5 层)厚度不小于 120mm,并双层双向加强配筋。根据《高层建筑混凝土结构技术规程 JGJ3-2010》的相关规定,体型收进部位上、下各两层塔楼周边竖向结构构件的抗震等级提高一级,框架柱在此范围内箍筋全高加密,提高纵筋配筋率;收进部位以下两层结构周边竖向构件配筋加强。

针对因开洞形成楼板不连续情况,整体计算时按实际开洞情况建模,并将以上楼层定义为弹性膜,以考虑楼板不连续对结构的影响;同时,构造加厚连廊等薄弱区域楼板至 130mm 厚,并双层双向配筋,配筋率不小于 0.25%.结语

本文对某超限高层商业楼的结构设计进行了简要介绍,主要的设计要点可总结如下:(1)结合建筑功能和结构布置合理设缝,规避平面布置的不规则;(2)优化布置结构抗侧力构件,适当加强外圈构件的刚度,提高结构的抗扭性能;(3)采用两种软件进行多遇地震弹性分些,结构应满足相应的强度和刚度要求;(4)对结构进行多遇地震下的弹性时程分析,验证结构体系的合理性,并与振型分解反应谱法进行包络设计;(5)补充罕遇下的静力弹塑性分析,控制性能点层间位移角不大于规范要求;(6)根据工程的具体情况,提出合理的抗震性能化设计目标;(7)利用概念设计原理,结合规范要求,对薄弱部位进行构造加强。

参考文献:

[1]吕西林。超限高层建筑工程抗震设计指南[M].上海:同济大学出版社,2005.

地下室挡土墙结构设计分析论文(合集)
TOP