首页 > 精品范文库 > 12号文库
谢希仁计算机网络原理第五版课后习题答案
编辑:诗酒琴音 识别码:21-944375 12号文库 发布时间: 2024-03-12 00:37:11 来源:网络

第一篇:谢希仁计算机网络原理第五版课后习题答案

谢希仁计算机网络原理第五版课后习题答案.txt生活是过出来的,不是想出来的。放得下的是曾经,放不下的是记忆。无论我在哪里,我离你都只有一转身的距离。计算机网络(第五版)课后答案 第一章 概述

1-01 计算机网络向用户可以提供那些服务? 答: 连通性和共享

1-02 简述分组交换的要点。答:(1)报文分组,加首部(2)经路由器储存转发(3)在目的地合并

1-03 试从多个方面比较电路交换、报文交换和分组交换的主要优缺点。

答:(1)电路交换:端对端通信质量因约定了通信资源获得可靠保障,对连续传送大量数据效率高。

(2)报文交换:无须预约传输带宽,动态逐段利用传输带宽对突发式数据通信效率高,通信迅速。

(3)分组交换:具有报文交换之高效、迅速的要点,且各分组小,路由灵活,网络生存性能好。

1-04 为什么说因特网是自印刷术以来人类通信方面最大的变革?

答: 融合其他通信网络,在信息化过程中起核心作用,提供最好的连通性和信息共享,第一次提供了各种媒体形式的实时交互能力。

1-05 因特网的发展大致分为哪几个阶段?请指出这几个阶段的主要特点。答:从单个网络APPANET向互联网发展;TCP/IP协议的初步成型

建成三级结构的Internet;分为主干网、地区网和校园网;

形成多层次ISP结构的Internet;ISP首次出现。1-06 简述因特网标准制定的几个阶段? 答:(1)因特网草案(Internet Draft)——在这个阶段还不是 RFC 文档。

(2)建议标准(Proposed Standard)——从这个阶段开始就成为 RFC 文档。(3)草案标准(Draft Standard)(4)因特网标准(Internet Standard)1-07小写和大写开头的英文名字 internet 和Internet在意思上有何重要区别?

答:(1)internet(互联网或互连网):通用名词,它泛指由多个计算机网络互连而成的网络。;协议无特指

(2)Internet(因特网):专用名词,特指采用 TCP/IP 协议的互联网络 区别:后者实际上是前者的双向应用

1-08 计算机网络都有哪些类别?各种类别的网络都有哪些特点? 答:按范围:(1)广域网WAN:远程、高速、是Internet的核心网。(2)城域网:城市范围,链接多个局域网。

(3)局域网:校园、企业、机关、社区。

(4)个域网PAN:个人电子设备

按用户:公用网:面向公共营运。专用网:面向特定机构。1-09 计算机网络中的主干网和本地接入网的主要区别是什么? 答:主干网:提供远程覆盖高速传输和路由器最优化通信

本地接入网:主要支持用户的访问本地,实现散户接入,速率低。

1-10 试在下列条件下比较电路交换和分组交换。要传送的报文共x(bit)。从源点到终点共经过k段链路,每段链路的传播时延为d(s),数据率为b(b/s)。在电路交换时电路的建立时间为s(s)。在分组交换时分组长度为p(bit),且各结点的排队等待时间可忽略不计。问在怎样的条件下,分组交换的时延比电路交换的要小?(提示:画一下草图观察k段链路共有几个结点。)

答:线路交换时延:kd+x/b+s, 分组交换时延:kd+(x/p)*(p/b)+(k-1)*(p/b)其中(k-1)*(p/b)表示K段传输中,有(k-1)次的储存转发延迟,当s>(k-1)*(p/b)时,电路交换的时延比分组交换的时延大,当x>>p,相反。

1-11 在上题的分组交换网中,设报文长度和分组长度分别为x和(p+h)(bit),其中p为分组的数据部分的长度,而h为每个分组所带的控制信息固定长度,与p的大小无关。通信的两端共经过k段链路。链路的数据率为b(b/s),但传播时延和结点的排队时间均可忽略不计。若打算使总的时延为最小,问分组的数据部分长度p应取为多大?(提示:参考图1-12的分组交换部分,观察总的时延是由哪几部分组成。)

答:总时延D表达式,分组交换时延为:D= kd+(x/p)*((p+h)/b)+(k-1)*(p+h)/b D对p求导后,令其值等于0,求得p=[(xh)/(k-1)]^0.5 1-12 因特网的两大组成部分(边缘部分与核心部分)的特点是什么?它们的工作方式各有什么特点?

答:边缘部分:由各主机构成,用户直接进行信息处理和信息共享;低速连入核心网。

核心部分:由各路由器连网,负责为边缘部分提供高速远程分组交换。1-13 客户服务器方式与对等通信方式的主要区别是什么?有没有相同的地方?

答:前者严格区分服务和被服务者,后者无此区别。后者实际上是前者的双向应用。1-14 计算机网络有哪些常用的性能指标?

答:速率,带宽,吞吐量,时延,时延带宽积,往返时间RTT,利用率

1-15 假定网络利用率达到了90%。试估计一下现在的网络时延是它的最小值的多少倍? 解:设网络利用率为U。,网络时延为D,网络时延最小值为D0 U=90%;D=D0/(1-U)---->D/ D0=10

现在的网络时延是最小值的10倍

1-16 计算机通信网有哪些非性能特征?非性能特征与性能特征有什么区别?

答:征:宏观整体评价网络的外在表现。性能指标:具体定量描述网络的技术性能。

1-17 收发两端之间的传输距离为1000km,信号在媒体上的传播速率为2×108m/s。试计算以下两种情况的发送时延和传播时延:

(1)数据长度为107bit,数据发送速率为100kb/s。(2)数据长度为103bit,数据发送速率为1Gb/s。从上面的计算中可以得到什么样的结论? 解:(1)发送时延:ts=107/105=100s 传播时延tp=106/(2×108)=0.005s(2)发送时延ts =103/109=1μs 传播时延:tp=106/(2×108)=0.005s 结论:若数据长度大而发送速率低,则在总的时延中,发送时延往往大于传播时延。但若数据长度短而发送速率高,则传播时延就可能是总时延中的主要成分。1-18 假设信号在媒体上的传播速度为2×108m/s.媒体长度L分别为:(1)10cm(网络接口卡)(2)100m(局域网)(3)100km(城域网)(4)5000km(广域网)试计算出当数据率为1Mb/s和10Gb/s时在以上媒体中正在传播的比特数。解:(1)1Mb/s:传播时延=0.1/(2×108)=5×10-10 比特数=5×10-10×1×106=5×10-4 1Gb/s: 比特数=5×10-10×1×109=5×10-1(2)1Mb/s: 传播时延=100/(2×108)=5×10-7 比特数=5×10-7×1×106=5×10-1 1Gb/s: 比特数=5×10-7×1×109=5×102(3)1Mb/s: 传播时延=100000/(2×108)=5×10-4 比特数=5×10-4×1×106=5×102 1Gb/s: 比特数=5×10-4×1×109=5×105(4)1Mb/s: 传播时延=5000000/(2×108)=2.5×10-2 比特数=2.5×10-2×1×106=5×104 1Gb/s: 比特数=2.5×10-2×1×109=5×107 1-19 长度为100字节的应用层数据交给传输层传送,需加上20字节的TCP首部。再交给网络层传送,需加上20字节的IP首部。最后交给数据链路层的以太网传送,加上首部和尾部工18字节。试求数据的传输效率。数据的传输效率是指发送的应用层数据除以所发送的总数据(即应用数据加上各种首部和尾部的额外开销)。

若应用层数据长度为1000字节,数据的传输效率是多少? 解:(1)100/(100+20+20+18)=63.3%(2)1000/(1000+20+20+18)=94.5% 1-20 网络体系结构为什么要采用分层次的结构?试举出一些与分层体系结构的思想相似的日常生活。

答:分层的好处: ①各层之间是独立的。某一层可以使用其下一层提供的服务而不需要知道服务是如何实现的。②灵活性好。当某一层发生变化时,只要其接口关系不变,则这层以上或以下的各层均不受影响。

③结构上可分割开。各层可以采用最合适的技术来实现 ④易于实现和维护。⑤能促进标准化工作。

与分层体系结构的思想相似的日常生活有邮政系统,物流系统。1-21 协议与服务有何区别?有何关系?

答:网络协议:为进行网络中的数据交换而建立的规则、标准或约定。由以下三个要素组成:(1)语法:即数据与控制信息的结构或格式。

(2)语义:即需要发出何种控制信息,完成何种动作以及做出何种响应。(3)同步:即事件实现顺序的详细说明。

协议是控制两个对等实体进行通信的规则的集合。在协议的控制下,两个对等实体间的通信使得本层能够向上一层提供服务,而要实现本层协议,还需要使用下面一层提供服务。协议和服务的概念的区分:

1、协议的实现保证了能够向上一层提供服务。本层的服务用户只能看见服务而无法看见下面的协议。下面的协议对上面的服务用户是透明的。

2、协议是“水平的”,即协议是控制两个对等实体进行通信的规则。但服务是“垂直的”,即服务是由下层通过层间接口向上层提供的。上层使用所提供的服务必须与下层交换一些命令,这些命令在OSI中称为服务原语。

1-22 网络协议的三个要素是什么?各有什么含义? 答:网络协议:为进行网络中的数据交换而建立的规则、标准或约定。由以下三个要素组成:(1)语法:即数据与控制信息的结构或格式。

(2)语义:即需要发出何种控制信息,完成何种动作以及做出何种响应。(3)同步:即事件实现顺序的详细说明。

1-23 为什么一个网络协议必须把各种不利的情况都考虑到?

答:因为网络协议如果不全面考虑不利情况,当情况发生变化时,协议就会保持理想状况,一直等下去!就如同两个朋友在电话中约会好,下午3点在公园见面,并且约定不见不散。这个协议就是很不科学的,因为任何一方如果有耽搁了而来不了,就无法通知对方,而另一方就必须一直等下去!所以看一个计算机网络是否正确,不能只看在正常情况下是否正确,而且还必须非常仔细的检查协议能否应付各种异常情况。

1-24 论述具有五层协议的网络体系结构的要点,包括各层的主要功能。答:综合OSI 和TCP/IP 的优点,采用一种原理体系结构。各层的主要功能: 物理层 物理层的任务就是透明地传送比特流。(注意:传递信息的物理媒体,如双绞 线、同轴电缆、光缆等,是在物理层的下面,当做第0 层。)物理层还要确定连接电缆插头的定义及连接法。

数据链路层 数据链路层的任务是在两个相邻结点间的线路上无差错地传送以帧(frame)为单位的数据。每一帧包括数据和必要的控制信息。

网络层 网络层的任务就是要选择合适的路由,使 发送站的运输层所传下来的分组能够 正确无误地按照地址找到目的站,并交付给目的站的运输层。

运输层 运输层的任务是向上一层的进行通信的两个进程之间提供一个可靠的端到端 服务,使它们看不见运输层以下的数据通信的细节。应用层 应用层直接为用户的应用进程提供服务。

1-25 试举出日常生活中有关“透明”这种名词的例子。答:电视,计算机视窗操作系统、工农业产品

1-26 试解释以下名词:协议栈、实体、对等层、协议数据单元、服务访问点、客户、服务器、客户-服务器方式。

答:实体(entity)表示任何可发送或接收信息的硬件或软件进程。

协议是控制两个对等实体进行通信的规则的集合。

客户(client)和服务器(server)都是指通信中所涉及的两个应用进程。客户是服务的请求方,服务器是服务的提供方。

客户服务器方式所描述的是进程之间服务和被服务的关系。

协议栈:指计算机网络体系结构采用分层模型后,每层的主要功能由对等层协议的运行来实现,因而每层可用一些主要协议来表征,几个层次画在一起很像一个栈的结构.对等层:在网络体系结构中,通信双方实现同样功能的层.协议数据单元:对等层实体进行信息交换的数据单位.服务访问点:在同一系统中相邻两层的实体进行交互(即交换信息)的地方.服务访问点SAP是一个抽象的概念,它实体上就是一个逻辑接口.1-27 试解释everything over IP 和IP over everthing 的含义。

TCP/IP协议可以为各式各样的应用提供服务(所谓的everything over ip)

答:允许IP协议在各式各样的网络构成的互联网上运行(所谓的ip over everything)第二章 物理层

2-01 物理层要解决哪些问题?物理层的主要特点是什么? 答:物理层要解决的主要问题:

(1)物理层要尽可能地屏蔽掉物理设备和传输媒体,通信手段的不同,使数据链路层感觉不到这些差异,只考虑完成本层的协议和服务。

(2)给其服务用户(数据链路层)在一条物理的传输媒体上传送和接收比特流(一般为串行按顺序传输的比特流)的能力,为此,物理层应该解决物理连接的建立、维持和释放问题。(3)在两个相邻系统之间唯一地标识数据电路 物理层的主要特点:

(1)由于在OSI之前,许多物理规程或协议已经制定出来了,而且在数据通信领域中,这些物理规程已被许多商品化的设备所采用,加之,物理层协议涉及的范围广泛,所以至今没有按OSI的抽象模型制定一套新的物理层协议,而是沿用已存在的物理规程,将物理层确定为描述与传输媒体接口的机械,电气,功能和规程特性。

(2)由于物理连接的方式很多,传输媒体的种类也很多,因此,具体的物理协议相当复杂。2-02 归层与协议有什么区别? 答:规程专指物理层协议

2-03 试给出数据通信系统的模型并说明其主要组成构建的作用。答:源点:源点设备产生要传输的数据。源点又称为源站。

发送器:通常源点生成的数据要通过发送器编码后才能在传输系统中进行传输。接收器:接收传输系统传送过来的信号,并将其转换为能够被目的设备处理的信息。终点:终点设备从接收器获取传送过来的信息。终点又称为目的站 传输系统:信号物理通道

2-04 试解释以下名词:数据,信号,模拟数据,模拟信号,基带信号,带通信号,数字数据,数字信号,码元,单工通信,半双工通信,全双工通信,串行传输,并行传输。答:数据:是运送信息的实体。

信号:则是数据的电气的或电磁的表现。模拟数据:运送信息的模拟信号。模拟信号:连续变化的信号。

数字信号:取值为有限的几个离散值的信号。数字数据:取值为不连续数值的数据。

码元(code):在使用时间域(或简称为时域)的波形表示数字信号时,代表不同离散数值的基本波形。

单工通信:即只有一个方向的通信而没有反方向的交互。

半双工通信:即通信和双方都可以发送信息,但不能双方同时发送(当然也不能同时接收)。这种通信方式是一方发送另一方接收,过一段时间再反过来。全双工通信:即通信的双方可以同时发送和接收信息。

基带信号(即基本频带信号)——来自信源的信号。像计算机输出的代表各种文字或图像文件的数据信号都属于基带信号。

带通信号——把基带信号经过载波调制后,把信号的频率范围搬移到较高的频段以便在信道中传输(即仅在一段频率范围内能够通过信道)。

2-05 物理层的接口有哪几个方面的特性?个包含些什么内容? 答:(1)机械特性

明接口所用的接线器的形状和尺寸、引线数目和排列、固定和锁定装置等等。(2)电气特性

指明在接口电缆的各条线上出现的电压的范围。(3)功能特性

指明某条线上出现的某一电平的电压表示何意。(4)规程特性 说明对于不同功能的各种可能事件的出现顺序。

2-06 数据在信道重的传输速率受哪些因素的限制?信噪比能否任意提高?香农公式在数据通信中的意义是什么?“比特/每秒”和“码元/每秒”有何区别? 答:码元传输速率受奈氏准则的限制,信息传输速率受香农公式的限制

香农公式在数据通信中的意义是:只要信息传输速率低于信道的极限传信率,就可实现无差传输。

比特/s是信息传输速率的单位

码元传输速率也称为调制速率、波形速率或符号速率。一个码元不一定对应于一个比特。

2-07 假定某信道受奈氏准则限制的最高码元速率为20000码元/秒。如果采用振幅调制,把码元的振幅划分为16个不同等级来传送,那么可以获得多高的数据率(b/s)? 答:C=R*Log2(16)=20000b/s*4=80000b/s

2-08 假定要用3KHz带宽的电话信道传送64kb/s的数据(无差错传输),试问这个信道应具有多高的信噪比(分别用比值和分贝来表示?这个结果说明什么问题?)答:C=Wlog2(1+S/N)(b/s)W=3khz,C=64khz----àS/N=64.2dB 是个信噪比要求很高的信源

2-09 用香农公式计算一下,假定信道带宽为为3100Hz,最大信道传输速率为35Kb/s,那么若想使最大信道传输速率增加60%,问信噪比S/N应增大到多少倍?如果在刚才计算出的基础上将信噪比S/N应增大到多少倍?如果在刚才计算出的基础上将信噪比S/N再增大到十倍,问最大信息速率能否再增加20%?

答:C = W log2(1+S/N)b/s-àSN1=2*(C1/W)-1=2*(35000/3100)-1 SN2=2*(C2/W)-1=2*(1.6*C1/w)-1=2*(1.6*35000/3100)-1 SN2/SN1=100信噪比应增大到约100倍。C3=Wlong2(1+SN3)=Wlog2(1+10*SN2)C3/C2=18.5% 如果在此基础上将信噪比S/N再增大到10倍,最大信息通率只能再增加18.5%左右 2-10 常用的传输媒体有哪几种?各有何特点? 答:双绞线

屏蔽双绞线 STP(Shielded Twisted Pair)无屏蔽双绞线 UTP(Unshielded Twisted Pair)同轴电缆

W 同轴电缆 75 W 同轴电缆 光缆

无线传输:短波通信/微波/卫星通信

2-11假定有一种双绞线的衰减是0.7dB/km(在 1 kHz时),若容许有20dB的衰减,试问使用这种双绞线的链路的工作距离有多长?如果要双绞线的工作距离增大到100公里,试应当使衰减降低到多少?

解:使用这种双绞线的链路的工作距离为=20/0.7=28.6km 衰减应降低到20/100=0.2db 2-12 试计算工作在1200nm到1400nm之间以及工作在1400nm到1600nm之间的光波的频带宽度。假定光在光纤中的传播速率为2*10e8m/s.解: V=L*F-àF=V/L--àB=F2-F1=V/L1-V/L2 1200nm到1400nm:带宽=23.8THZ 1400nm到1600nm:带宽=17.86THZ 2-13 为什么要使用信道复用技术?常用的信道复用技术有哪些? 答:为了通过共享信道、最大限度提高信道利用率。频分、时分、码分、波分。

2-14 试写出下列英文缩写的全文,并做简单的解释。

FDM,TDM,STDM,WDM,DWDM,CDMA,SONET,SDH,STM-1 ,OC-48.答:FDM(frequency pision multiplexing)TDM(Time Division Multiplexing)STDM(Statistic Time Division Multiplexing)WDM(Wave Division Multiplexing)DWDM(Dense Wave Division Multiplexing)CDMA(Code Wave Division Multiplexing)SONET(Synchronous Optical Network)同步光纤网 SDH(Synchronous Digital Hierarchy)同步数字系列

STM-1(Synchronous Transfer Module)第1级同步传递模块 OC-48(Optical Carrier)第48级光载波

2-15 码分多址CDMA为什么可以使所有用户在同样的时间使用同样的频带进行通信而不会互相干扰?这种复用方法有何优缺点?

答:各用户使用经过特殊挑选的相互正交的不同码型,因此彼此不会造成干扰。

这种系统发送的信号有很强的抗干扰能力,其频谱类似于白噪声,不易被敌人发现。占用较大的带宽。

2-16 共有4个站进行码分多址通信。4个站的码片序列为 A:(-1-1-1+1+1-1+1+1)B:(-1-1+1-1+1+1+1-1)C:(-1+1-1+1+1+1-1-1)D:(-1+1-1-1-1-1+1-1)现收到这样的码片序列S:(-1+1-3+1-1-3+1+1)。问哪个站发送数据了?发送数据的站发送的是0还是1?

解:S?A=(+1-1+3+1-1+3+1+1)/8=1,A发送1 S?B=(+1-1-3-1-1-3+1-1)/8=-1,B发送0 S?C=(+1+1+3+1-1-3-1-1)/8=0,C无发送 S?D=(+1+1+3-1+1+3+1-1)/8=1,D发送1 2-17 试比较xDSL、HFC以及FTTx接入技术的优缺点?

答:xDSL 技术就是用数字技术对现有的模拟电话用户线进行改造,使它能够承载宽带业务。成本低,易实现,但带宽和质量差异性大。

HFC网的最大的优点具有很宽的频带,并且能够利用已经有相当大的覆盖面的有线电视网。要将现有的450 MHz 单向传输的有线电视网络改造为 750 MHz 双向传输的 HFC 网需要相当的资金和时间。

FTTx(光纤到„„)这里字母 x 可代表不同意思。可提供最好的带宽和质量、但现阶段线路和工程成本太大。

2-18为什么在ASDL技术中,在不到1MHz的带宽中却可以传送速率高达每秒几个兆比? 答:靠先进的DMT编码,频分多载波并行传输、使得每秒传送一个码元就相当于每秒传送多个比特

第三章 数据链路层 3-01 数据链路(即逻辑链路)与链路(即物理链路)有何区别? “电路接通了”与”数据链路接通了”的区别何在? 答:数据链路与链路的区别在于数据链路出链路外,还必须有一些必要的规程来控制数据的传输,因此,数据链路比链路多了实现通信规程所需要的硬件和软件。

“电路接通了”表示链路两端的结点交换机已经开机,物理连接已经能够传送比特流了,但是,数据传输并不可靠,在物理连接基础上,再建立数据链路连接,才是“数据链路接通了”,此后,由于数据链路连接具有检测、确认和重传功能,才使不太可靠的物理链路变成可靠的数据链路,进行可靠的数据传输当数据链路断开连接时,物理电路连接不一定跟着断开连接。3-02 数据链路层中的链路控制包括哪些功能?试讨论数据链路层做成可靠的链路层有哪些优点和缺点.答:链路管理

帧定界

流量控制

差错控制 将数据和控制信息区分开

透明传输

寻址

可靠的链路层的优点和缺点取决于所应用的环境:对于干扰严重的信道,可靠的链路层可以将重传范围约束在局部链路,防止全网络的传输效率受损;对于优质信道,采用可靠的链路层会增大资源开销,影响传输效率。

3-03 网络适配器的作用是什么?网络适配器工作在哪一层? 答:适配器(即网卡)来实现数据链路层和物理层这两层的协议的硬件和软件 网络适配器工作在TCP/IP协议中的网络接口层(OSI中的数据链里层和物理层)

3-04 数据链路层的三个基本问题(帧定界、透明传输和差错检测)为什么都必须加以解决?

答:帧定界是分组交换的必然要求

透明传输避免消息符号与帧定界符号相混淆

差错检测防止合差错的无效数据帧浪费后续路由上的传输和处理资源 3-05 如果在数据链路层不进行帧定界,会发生什么问题? 答:无法区分分组与分组

无法确定分组的控制域和数据域

无法将差错更正的范围限定在确切的局部

3-06 PPP协议的主要特点是什么?为什么PPP不使用帧的编号?PPP适用于什么情况?为什么PPP协议不能使数据链路层实现可靠传输?

答:简单,提供不可靠的数据报服务,检错,无纠错

不使用序号和确认机制

地址字段A 只置为 0xFF。地址字段实际上并不起作用。控制字段 C 通常置为 0x03。PPP 是面向字节的

当 PPP 用在同步传输链路时,协议规定采用硬件来完成比特填充(和 HDLC 的做法一样),当 PPP 用在异步传输时,就使用一种特殊的字符填充法

PPP适用于线路质量不太差的情况下、PPP没有编码和确认机制

3-07 要发送的数据为1101011011。采用CRC的生成多项式是P(X)=X4+X+1。试求应添加在数据后面的余数。数据在传输过程中最后一个1变成了0,问接收端能否发现?若数据在传输过程中最后两个1都变成了0,问接收端能否发现?采用CRC检验后,数据链路层的传输是否就变成了可靠的传输?

答:作二进制除法,1101011011 0000 10011 得余数1110,添加的检验序列是1110.作二进制除法,两种错误均可发展

仅仅采用了CRC检验,缺重传机制,数据链路层的传输还不是可靠的传输。

3-08 要发送的数据为101110。采用CRCD 生成多项式是P(X)=X3+1。试求应添加在数据后面的余数。

答:作二进制除法,101110 000 10011 添加在数据后面的余数是011 3-09 一个PPP帧的数据部分(用十六进制写出)是7D 5E FE 27 7D 5D 7D 5D 65 7D 5E。试问真正的数据是什么(用十六进制写出)? 答:7D 5E FE 27 7D 5D 7D 5D 65 7D 5E 7E FE 27 7D 7D 65 7D 3-10 PPP协议使用同步传输技术传送比特串***0。试问经过零比特填充后变成怎样的比特串?若接收端收到的PPP帧的数据部分是***1110110,问删除发送端加入的零比特后变成怎样的比特串? 答:011011111 11111 00 ***000 ***1110110 000111011111 11111 110 3-11 试分别讨论一下各种情况在什么条件下是透明传输,在什么条件下不是透明传输。(提示:请弄清什么是“透明传输”,然后考虑能否满足其条件。)(1)普通的电话通信。

(2)电信局提供的公用电报通信。(3)因特网提供的电子邮件服务。

3-12 PPP协议的工作状态有哪几种?当用户要使用PPP协议和ISP建立连接进行通信需要建立哪几种连接?每一种连接解决什么问题?

3-13 局域网的主要特点是什么?为什么局域网采用广播通信方式而广域网不采用呢? 答:局域网LAN是指在较小的地理范围内,将有限的通信设备互联起来的计算机通信网络 从功能的角度来看,局域网具有以下几个特点:

(1)共享传输信道,在局域网中,多个系统连接到一个共享的通信媒体上。

(2)地理范围有限,用户个数有限。通常局域网仅为一个单位服务,只在一个相对独立的局部范围内连网,如一座楼或集中的建筑群内,一般来说,局域网的覆盖范围越位10m~10km内或更大一些。

从网络的体系结构和传输检测提醒来看,局域网也有自己的特点:(1)低层协议简单

(2)不单独设立网络层,局域网的体系结构仅相当于相当与OSI/RM的最低两层

(3)采用两种媒体访问控制技术,由于采用共享广播信道,而信道又可用不同的传输媒体,所以局域网面对的问题是多源,多目的的连连管理,由此引发出多种媒体访问控制技术 在局域网中各站通常共享通信媒体,采用广播通信方式是天然合适的,广域网通常采站点间直接构成格状网。

3-14 常用的局域网的网络拓扑有哪些种类?现在最流行的是哪种结构?为什么早期的以太网选择总线拓扑结构而不是星形拓扑结构,但现在却改为使用星形拓扑结构? 答:星形网,总线网,环形网,树形网

当时很可靠的星形拓扑结构较贵,人们都认为无源的总线结构更加可靠,但实践证明,连接有大量站点的总线式以太网很容易出现故障,而现在专用的ASIC芯片的使用可以讲星形结构的集线器做的非常可靠,因此现在的以太网一般都使用星形结构的拓扑。3-15 什么叫做传统以太网?以太网有哪两个主要标准? 答:DIX Ethernet V2 标准的局域网

DIX Ethernet V2 标准与 IEEE 的 802.3 标准

3-16 数据率为10Mb/s的以太网在物理媒体上的码元传输速率是多少码元/秒?

答:码元传输速率即为波特率,以太网使用曼彻斯特编码,这就意味着发送的每一位都有两个信号周期。标准以太网的数据速率是10MB/s,因此波特率是数据率的两倍,即20M波特 3-17 为什么LLC子层的标准已制定出来了但现在却很少使用?

答:由于 TCP/IP 体系经常使用的局域网是 DIX Ethernet V2 而不是 802.3 标准中的几种局域网,因此现在 802 委员会制定的逻辑链路控制子层 LLC(即 802.2 标准)的作用已经不大了。

3-18 试说明10BASE-T中的“10”、“BASE”和“T”所代表的意思。答:10BASE-T中的“10”表示信号在电缆上的传输速率为10MB/s,“BASE”表示电缆上的信号是基带信号,“T”代表双绞线星形网,但10BASE-T的通信距离稍短,每个站到集线器的距离不超过100m。

3-19 以太网使用的CSMA/CD协议是以争用方式接入到共享信道。这与传统的时分复用TDM相比优缺点如何?

答:传统的时分复用TDM是静态时隙分配,均匀高负荷时信道利用率高,低负荷或符合不均匀时资源浪费较大,CSMA/CD课动态使用空闲新到资源,低负荷时信道利用率高,但控制复杂,高负荷时信道冲突大。

3-20 假定1km长的CSMA/CD网络的数据率为1Gb/s。设信号在网络上的传播速率为200000km/s。求能够使用此协议的最短帧长。

答:对于1km电缆,单程传播时间为1/200000=5为微秒,来回路程传播时间为10微秒,为了能够按照CSMA/CD工作,最小帧的发射时间不能小于10微秒,以Gb/s速率工作,10微秒可以发送的比特数等于10*10^-6/1*10^-9=10000,因此,最短帧是10000位或1250字节长 3-21 什么叫做比特时间?使用这种时间单位有什么好处?100比特时间是多少微秒? 答:比特时间是发送一比特多需的时间,它是传信率的倒数,便于建立信息长度与发送延迟的关系

“比特时间”换算成“微秒”必须先知道数据率是多少,如数据率是10Mb/s,则100比特时间等于10微秒。

3-22 假定在使用CSMA/CD协议的10Mb/s以太网中某个站在发送数据时检测到碰撞,执行退避算法时选择了随机数r=100。试问这个站需要等待多长时间后才能再次发送数据?如果是100Mb/s的以太网呢?

答:对于10mb/s的以太网,以太网把争用期定为51.2微秒,要退后100个争用期,等待时间是51.2(微秒)*100=5.12ms 对于100mb/s的以太网,以太网把争用期定为5.12微秒,要退后100个争用期,等待时间是5.12(微秒)*100=512微秒

3-23 公式(3-3)表示,以太网的极限信道利用率与连接在以太网上的站点数无关。能否由此推论出:以太网的利用率也与连接在以太网的站点数无关?请说明你的理由。

答:实际的以太网各给发送数据的时刻是随即的,而以太网的极限信道利用率的得出是假定以太网使用了特殊的调度方法(已经不再是CSMA/CD了),使各结点的发送不发生碰撞。3-24 假定站点A和B在同一个10Mb/s以太网网段上。这两个站点之间的传播时延为225比特时间。现假定A开始发送一帧,并且在A发送结束之前B也发送一帧。如果A发送的是以太网所容许的最短的帧,那么A在检测到和B发生碰撞之前能否把自己的数据发送完毕?换言之,如果A在发送完毕之前并没有检测到碰撞,那么能否肯定A所发送的帧不会和B发送的帧发生碰撞?(提示:在计算时应当考虑到每一个以太网帧在发送到信道上时,在MAC帧前面还要增加若干字节的前同步码和帧定界符)

答:设在t=0时A开始发送,在t=(64+8)*8=576比特时间,A应当发送完毕。t=225比特时间,B就检测出A的信号。只要B在t=224比特时间之前发送数据,A在发送完毕之前就一定检测到碰撞,就能够肯定以后也不会再发送碰撞了 如果A在发送完毕之前并没有检测到碰撞,那么就能够肯定A所发送的帧不会和B发送的帧发生碰撞(当然也不会和其他站点发生碰撞)。

3-25 在上题中的站点A和B在t=0时同时发送了数据帧。当t=255比特时间,A和B同时检测到发生了碰撞,并且在t=255+48=273比特时间完成了干扰信号的传输。A和B在CSMA/CD算法中选择不同的r值退避。假定A和B选择的随机数分别是rA=0和rB=1。试问A和B各在什么时间开始重传其数据帧?A重传的数据帧在什么时间到达B?A重传的数据会不会和B重传的数据再次发生碰撞?B会不会在预定的重传时间停止发送数据? 答:t=0时,A和B开始发送数据

T1=225比特时间,A和B都检测到碰撞(tau)

T2=273比特时间,A和B结束干扰信号的传输(T1+48)T3=594比特时间,A 开始发送(T2+Tau+rA*Tau+96)T4=785比特时间,B再次检测信道。(T4+T2+Tau+Rb*Tau)如空闲,则B在T5=881比特时间发送数据、否则再退避。(T5=T4+96)

A重传的数据在819比特时间到达B,B先检测到信道忙,因此B在预定的881比特时间停止发送

3-26 以太网上只有两个站,它们同时发送数据,产生了碰撞。于是按截断二进制指数退避算法进行重传。重传次数记为i,i=1,2,3,„..。试计算第1次重传失败的概率、第2次重传的概率、第3次重传失败的概率,以及一个站成功发送数据之前的平均重传次数I。答:将第i次重传成功的概率记为pi。显然

第一次重传失败的概率为0.5,第二次重传失败的概率为0.25,第三次重传失败的概率为0.125.平均重传次数I=1.637 3-27 假定一个以太网上的通信量中的80%是在本局域网上进行的,而其余的20%的通信量是在本局域网和因特网之间进行的。另一个以太网的情况则反过来。这两个以太网一个使用以太网集线器,而另一个使用以太网交换机。你认为以太网交换机应当用在哪一个网络? 答:集线器为物理层设备,模拟了总线这一共享媒介共争用,成为局域网通信容量的瓶颈。

交换机则为链路层设备,可实现透明交换

局域网通过路由器与因特网相连

当本局域网和因特网之间的通信量占主要成份时,形成集中面向路由器的数据流,使用集线器冲突较大,采用交换机能得到改善。

当本局域网内通信量占主要成份时,采用交换机改善对外流量不明显

3-28 有10个站连接到以太网上。试计算一下三种情况下每一个站所能得到的带宽。(1)10个站都连接到一个10Mb/s以太网集线器;(2)10个站都连接到一个100Mb/s以太网集线器;(3)10个站都连接到一个10Mb/s以太网交换机。

答:(1)10个站都连接到一个10Mb/s以太网集线器:10mbs(2)10个站都连接到一个100mb/s以太网集线器:100mbs(3)10个站都连接到一个10mb/s以太网交换机:10mbs 3-29 10Mb/s以太网升级到100Mb/s、1Gb/S和10Gb/s时,都需要解决哪些技术问题?为什么以太网能够在发展的过程中淘汰掉自己的竞争对手,并使自己的应用范围从局域网一直扩展到城域网和广域网?

答:技术问题:使参数a保持为较小的数值,可通过减小最大电缆长度或增大帧的最小长度

在100mb/s的以太网中采用的方法是保持最短帧长不变,但将一个网段的最大电缆的度减小到100m,帧间时间间隔从原来9.6微秒改为现在的0.96微秒

吉比特以太网仍保持一个网段的最大长度为100m,但采用了“载波延伸”的方法,使最短帧长仍为64字节(这样可以保持兼容性)、同时将争用时间增大为512字节。并使用“分组突发”减小开销

10吉比特以太网的帧格式与10mb/s,100mb/s和1Gb/s以太网的帧格式完全相同

吉比特以太网还保留标准规定的以太网最小和最大帧长,这就使用户在将其已有的以太网进行升级时,仍能和较低速率的以太网很方便地通信。由于数据率很高,吉比特以太网不再使用铜线而只使用光纤作为传输媒体,它使用长距离(超过km)的光收发器与单模光纤接口,以便能够工作在广 3-30 以太网交换机有何特点?用它怎样组成虚拟局域网? 答:以太网交换机则为链路层设备,可实现透明交换

虚拟局域网 VLAN 是由一些局域网网段构成的与物理位置无关的逻辑组。这些网段具有某些共同的需求。

虚拟局域网协议允许在以太网的帧格式中插入一个 4 字节的标识符,称为 VLAN 标记(tag),用来指明发送该帧的工作站属于哪一个虚拟局域网。

3-31 网桥的工作原理和特点是什么?网桥与转发器以及以太网交换机有何异同? 答:网桥工作在数据链路层,它根据 MAC 帧的目的地址对收到的帧进行转发。

网桥具有过滤帧的功能。当网桥收到一个帧时,并不是向所有的接口转发此帧,而是先检查此帧的目的 MAC 地址,然后再确定将该帧转发到哪一个接口 转发器工作在物理层,它仅简单地转发信号,没有过滤能力 以太网交换机则为链路层设备,可视为多端口网桥

3-32 图3-35表示有五个站点分别连接在三个局域网上,并且用网桥B1和B2连接起来。每一个网桥都有两个接口(1和2)。在一开始,两个网桥中的转发表都是空的。以后有以下各站向其他的站发送了数据帧:A发送给E,C发送给B,D发送给C,B发送给A。试把有关数据填写在表3-2中。

发送的帧 B1的转发表 B2的转发表 B1的处理(转发?丢弃?登记?)B2的处理(转发?丢弃?登记?)

地址 接口 地址 接口

A→E A 1 A 1 转发,写入转发表 转发,写入转发表 C→B C 2 C 1 转发,写入转发表 转发,写入转发表 D→C D 2 D 2 写入转发表,丢弃不转发 转发,写入转发表 B→A B 1

写入转发表,丢弃不转发 接收不到这个帧

3-33 网桥中的转发表是用自学习算法建立的。如果有的站点总是不发送数据而仅仅接受数据,那么在转发表中是否就没有与这样的站点相对应的项目?如果要向这个站点发送数据帧,那么网桥能够把数据帧正确转发到目的地址吗? 答:没有与这样的站点相对应的项目;网桥能够利用广播把数据帧正确转发到目的地址 第四章 网络层

1.网络层向上提供的服务有哪两种?是比较其优缺点。

网络层向运输层提供 “面向连接”虚电路(Virtual Circuit)服务或“无连接”数据报服务

前者预约了双方通信所需的一切网络资源。优点是能提供服务质量的承诺。即所传送的分组不出错、丢失、重复和失序(不按序列到达终点),也保证分组传送的时限,缺点是路由器复杂,网络成本高;

后者无网络资源障碍,尽力而为,优缺点与前者互易

2.网络互连有何实际意义?进行网络互连时,有哪些共同的问题需要解决?

网络互联可扩大用户共享资源范围和更大的通信区域 进行网络互连时,需要解决共同的问题有: 不同的寻址方案 不同的最大分组长度 不同的网络接入机制 不同的超时控制 不同的差错恢复方法 不同的状态报告方法 不同的路由选择技术 不同的用户接入控制

不同的服务(面向连接服务和无连接服务)不同的管理与控制方式

3.作为中间设备,转发器、网桥、路由器和网关有何区别?

中间设备又称为中间系统或中继(relay)系统。物理层中继系统:转发器(repeater)。

数据链路层中继系统:网桥或桥接器(bridge)。网络层中继系统:路由器(router)。

网桥和路由器的混合物:桥路器(brouter)。网络层以上的中继系统:网关(gateway)。

4.试简单说明下列协议的作用:IP、ARP、RARP和ICMP。

IP协议:实现网络互连。使参与互连的性能各异的网络从用户看起来好像是一个统一的网络。网际协议IP是TCP/IP体系中两个最主要的协议之一,与IP协议配套使用的还有四个协议。

ARP协议:是解决同一个局域网上的主机或路由器的IP地址和硬件地址的映射问题。RARP:是解决同一个局域网上的主机或路由器的硬件地址和IP地址的映射问题。ICMP:提供差错报告和询问报文,以提高IP数据交付成功的机会 因特网组管理协议IGMP:用于探寻、转发本局域网内的组成员关系。5.IP地址分为几类?各如何表示?IP地址的主要特点是什么? 分为ABCDE 5类;每一类地址都由两个固定长度的字段组成,其中一个字段是网络号 net-id,它标志主机(或路由器)所连接到的网络,而另一个字段则是主机号 host-id,它标志该主机(或路由器)。各类地址的网络号字段net-id分别为1,2,3,0,0字节;主机号字段host-id分别为3字节、2字节、1字节、4字节、4字节。特点:

(1)IP 地址是一种分等级的地址结构。分两个等级的好处是: 第一,IP 地址管理机构在分配 IP 地址时只分配网络号,而剩下的主机号则由得到该网络号的单位自行分配。这样就方便了 IP 地址的管理。

第二,路由器仅根据目的主机所连接的网络号来转发分组(而不考虑目的主机号),这样就可以使路由表中的项目数大幅度减少,从而减小了路由表所占的存储空间。(2)实际上 IP 地址是标志一个主机(或路由器)和一条链路的接口。

当一个主机同时连接到两个网络上时,该主机就必须同时具有两个相应的 IP 地址,其网络号 net-id 必须是不同的。这种主机称为多归属主机(multihomed host)。

由于一个路由器至少应当连接到两个网络(这样它才能将 IP 数据报从一个网络转发到另一个网络),因此一个路由器至少应当有两个不同的 IP 地址。

(3)用转发器或网桥连接起来的若干个局域网仍为一个网络,因此这些局域网都具有同样的网络号 net-id。

(4)所有分配到网络号 net-id 的网络,范围很小的局域网,还是可能覆盖很大地理范围的广域网,都是平等的。

6.试根据IP地址的规定,计算出表4-2中的各项数据。

解:1)A类网中,网络号占七个bit, 则允许用的网络数为2的7次方,为128,但是要 除去0和127的情况,所以能用的最大网络数是126,第一个网络号是1,最后一个网络号是 126。主机号占24个bit, 则允许用的最大主机数为2的24次方,为16777216,但是也要除 去全0和全1的情况,所以能用的最大主机数是16777214。

2)B类网中,网络号占14个bit,则能用的最大网络数为2的14次方,为16384,第 一个网络号是128.0,因为127要用作本地软件回送测试,所以从128开始,其点后的还可以 容纳2的8次方为256,所以以128为开始的网络号为128.0~~128.255,共256个,以此类 推,第16384个网络号的计算方法是:16384/256=64128+64=192,则可推算出为191.255。主机号占16个 bit, 则允许用的最大主机数为2的16次方,为65536,但是也要除去全0和全 1的情况,所以能用的最大主机数是65534。

3)C类网中,网络号占21个bit, 则能用的网络数为2的21次方,为2097152,第一个 网络号是

192.0.0,各个点后的数占一个字节,所以以

192 为开始的网络号为 192.0.0~~192.255.255,共256*256=65536,以此类推,第2097152个网络号的计算方法是: 2097152/65536=32192+32=224,则可推算出为223.255.255。主机号占8个bit, 则允许用的最大主机数为2的8次方,为256,但是也要除去全0和全1的情况,所以能用的最大主机数是254。

7.试说明IP地址与硬件地址的区别,为什么要使用这两种不同的地址?

IP 地址就是给每个连接在因特网上的主机(或路由器)分配一个在全世界范围是唯一的 32 位的标识符。从而把整个因特网看成为一个单一的、抽象的网络 在实际网络的链路上传送数据帧时,最终还是必须使用硬件地址。

MAC地址在一定程度上与硬件一致,基于物理、能够标识具体的链路通信对象、IP地址给予逻辑域的划分、不受硬件限制。

8.IP地址方案与我国的电话号码体制的主要不同点是什么? 于网络的地理分布无关

9.(1)子网掩码为255.255.255.0代表什么意思? 有三种含义

其一是一个A类网的子网掩码,对于A类网络的IP地址,前8位表示网络号,后24位表示主机号,使用子网掩码255.255.255.0表示前8位为网络号,中间16位用于子网段的划分,最后8位为主机号。

第二种情况为一个B类网,对于B类网络的IP地址,前16位表示网络号,后16位表示主机号,使用子网掩码255.255.255.0表示前16位为网络号,中间8位用于子网段的划分,最后8位为主机号。

第三种情况为一个C类网,这个子网掩码为C类网的默认子网掩码。

(2)一网络的现在掩码为255.255.255.248,问该网络能够连接多少个主机? 255.255.255.248即11111111.11111111.11111111.11111000.每一个子网上的主机为(2^3)=6 台

掩码位数29,该网络能够连接8个主机,扣除全1和全0后为6台。

(3)一A类网络和一B网络的子网号subnet-id分别为16个1和8个1,问这两个子网掩码有何不同?

A类网络:11111111 11111111 11111111 00000000 给定子网号(16位“1”)则子网掩码为255.255.255.0 B类网络 11111111 11111111 11111111 00000000 给定子网号(8位“1”)则子网掩码为255.255.255.0但子网数目不同

(4)一个B类地址的子网掩码是255.255.240.0。试问在其中每一个子网上的主机数最多是多少?

(240)10=(128+64+32+16)10=(11110000)2 Host-id的位数为4+8=12,因此,最大主机数为: 2^12-2=4096-2=4094 11111111.11111111.11110000.00000000 主机数2^12-2(5)一A类网络的子网掩码为255.255.0.255;它是否为一个有效的子网掩码? 是 10111111 11111111 00000000 11111111(6)某个IP地址的十六进制表示C2.2F.14.81,试将其转化为点分十进制的形式。这个地址是哪一类IP地址?

C2 2F 14 81--à(12*16+2).(2*16+15).(16+4).(8*16+1)---à194.47.20.129 C2 2F 14 81---à11000010.00101111.00010100.10000001 C类地址

(7)C类网络使用子网掩码有无实际意义?为什么?

有实际意义.C类子网IP地址的32位中,前24位用于确定网络号,后8位用于确定主机号.如果划分子网,可以选择后8位中的高位,这样做可以进一步划分网络,并且不增加路由表的内容,但是代价是主机数相信减少.10.试辨认以下IP地址的网络类别。

(1)128.36.199.3(2)21.12.240.17(3)183.194.76.253(4)192.12.69.248(5)89.3.0.1(6)200.3.6.2(2)和(5)是A类,(1)和(3)是B类,(4)和(6)是C类.11.IP数据报中的首部检验和并不检验数据报中的数据。这样做的最大好处是什么?坏处是什么?

在首部中的错误比在数据中的错误更严重,例如,一个坏的地址可能导致分组被投寄到错误的主机。许多主机并不检查投递给他们的分组是否确实是要投递给它们,它们假定网络从来不会把本来是要前往另一主机的分组投递给它们。

数据不参与检验和的计算,因为这样做代价大,上层协议通常也做这种检验工作,从前,从而引起重复和多余。

因此,这样做可以加快分组的转发,但是数据部分出现差错时不能及早发现。

12.当某个路由器发现一IP数据报的检验和有差错时,为什么采取丢弃的办法而不是要求源站重传此数据报?计算首部检验和为什么不采用CRC检验码? 答:纠错控制由上层(传输层)执行

IP首部中的源站地址也可能出错请错误的源地址重传数据报是没有意义的不采用CRC简化解码计算量,提高路由器的吞吐量

13.设IP数据报使用固定首部,其各字段的具体数值如图所示(除IP地址外,均为十进制表示)。试用二进制运算方法计算应当写入到首部检验和字段中的数值(用二进制表示)。5 0 28 1 0 0 4 17 10.12.14.5 12.6.7.9 01000101 00000000 00000000 00000001 00000100 00010001 xxxxxxxx xxxxxxxx 00001010 00001100 00001100 00000110 00000000 00011100 00000000 00000000 00001110 00000101 00000111 00001001作二进制检验和(XOR)01110100 01001110取反码 10001011 10110001 14.重新计算上题,但使用十六进制运算方法(没16位二进制数字转换为4个十六进制数字,再按十六进制加法规则计算)。比较这两种方法。

01000101 00000000 00000000-00011100 4 5 0 0 0 0 1 C 00000000 00000001 00000000-00000000 0 0 0 1 0 0 0 0 00000100 000010001 xxxxxxxx xxxxxxxx 0 4 1 1 0 0 0 0 00001010 00001100 00001110 00000101 0 A 0 C 0 E 0 5 00001100 00000110 00000111 00001001 0 C 0 6 0 7 0 9 01011111 00100100 00010101 00101010 5 F 2 4 1 5 2 A 5 F 2 4 1 5 2 A 7 4 4 E-à8 B B 1 15.什么是最大传送单元MTU?它和IP数据报的首部中的哪个字段有关系?

答:IP层下面数据链里层所限定的帧格式中数据字段的最大长度,与IP数据报首部中的总长度字段有关系

16.在因特网中将IP数据报分片传送的数据报在最后的目的主机进行组装。还可以有另一种做法,即数据报片通过一个网络就进行一次组装。是比较这两种方法的优劣。在目的站而不是在中间的路由器进行组装是由于:

(1)路由器处理数据报更简单些;效率高,延迟小。

(2)数据报的各分片可能经过各自的路径。因此在每一个中间的路由器进行组装可能总会缺少几个数据报片;

(3)也许分组后面还要经过一个网络,它还要给这些数据报片划分成更小的片。如果在中间的路由器进行组装就可能会组装多次。(为适应路径上不同链路段所能许可的不同分片规模,可能要重新分片或组装)

17.一个3200位长的TCP报文传到IP层,加上160位的首部后成为数据报。下面的互联网由两个局域网通过路由器连接起来。但第二个局域网所能传送的最长数据帧中的数据部分只有1200位。因此数据报在路由器必须进行分片。试问第二个局域网向其上层要传送多少比特的数据(这里的“数据”当然指的是局域网看见的数据)? 答:第二个局域网所能传送的最长数据帧中的数据部分只有1200bit,即每个IP数据片的数据部分<1200-160(bit),由于片偏移是以8字节即64bit为单位的,所以IP数据片的数据部分最大不超过1024bit,这样3200bit的报文要分4个数据片,所以第二个局域网向上传送的比特数等于(3200+4×160),共3840bit。18.(1)有人认为:“ARP协议向网络层提供了转换地址的服务,因此ARP应当属于数据链路层。”这种说法为什么是错误的?

因为ARP本身是网络层的一部分,ARP协议为IP协议提供了转换地址的服务,数据链路层使用硬件地址而不使用IP地址,无需ARP协议数据链路层本身即可正常运行。因此ARP不再数据链路层。

(2)试解释为什么ARP高速缓存每存入一个项目就要设置10~20分钟的超时计时器。这个时间设置的太大或太小会出现什么问题?

答:考虑到IP地址和Mac地址均有可能是变化的(更换网卡,或动态主机配置)10-20分钟更换一块网卡是合理的。超时时间太短会使ARP请求和响应分组的通信量太频繁,而超时时间太长会使更换网卡后的主机迟迟无法和网络上的其他主机通信。

(3)至少举出两种不需要发送ARP请求分组的情况(即不需要请求将某个目的IP地址解析为相应的硬件地址)。

在源主机的ARP高速缓存中已经有了该目的IP地址的项目;源主机发送的是广播分组;源主机和目的主机使用点对点链路。

19.主机A发送IP数据报给主机B,途中经过了5个路由器。试问在IP数据报的发送过程中总共使用了几次ARP?

6次,主机用一次,每个路由器各使用一次。20.设某路由器建立了如下路由表:

目的网络 子网掩码 下一跳 128.96.39.0 255.255.255.128 接口m0 128.96.39.128 255.255.255.128 接口m1 128.96.40.0 255.255.255.128 R2 192.4.153.0 255.255.255.192 R3 *(默认)—— R4 现共收到5个分组,其目的地址分别为:(1)128.96.39.10(2)128.96.40.12(3)128.96.40.151(4)192.153.17(5)192.4.153.90(1)分组的目的站IP地址为:128.96.39.10。先与子网掩码255.255.255.128相与,得128.96.39.0,可见该分组经接口0转发。(2)分组的目的IP地址为:128.96.40.12。

① 与子网掩码255.255.255.128相与得128.96.40.0,不等于128.96.39.0。

② 与子网掩码255.255.255.128相与得128.96.40.0,经查路由表可知,该项分组经R2转发。

(3)分组的目的IP地址为:128.96.40.151,与子网掩码255.255.255.128相与后得128.96.40.128,与子网掩码255.255.255.192相与后得128.96.40.128,经查路由表知,该分组转发选择默认路由,经R4转发。

(4)分组的目的IP地址为:192.4.153.17。与子网掩码255.255.255.128相与后得192.4.153.0。与子网掩码255.255.255.192相与后得192.4.153.0,经查路由表知,该分组经R3转发。

(5)分组的目的IP地址为:192.4.153.90,与子网掩码255.255.255.128相与后得192.4.153.0。与子网掩码255.255.255.192相与后得192.4.153.64,经查路由表知,该分组转发选择默认路由,经R4转发。

21某单位分配到一个B类IP地址,其net-id为129.250.0.0.该单位有4000台机器,分布在16个不同的地点。如选用子网掩码为255.255.255.0,试给每一个地点分配一个子网掩码号,并算出每个地点主机号码的最小值和最大值

4000/16=250,平均每个地点250台机器。如选255.255.255.0为掩码,则每个网络所连主机数=28-2=254>250,共有子网数=28-2=254>16,能满足实际需求。可给每个地点分配如下子网号码

地点: 子网号(subnet-id)子网网络号 主机IP的最小值和最大值

1: 00000001 129.250.1.0 129.250.1.1---129.250.1.254 2: 00000010 129.250.2.0 129.250.2.1---129.250.2.254 3: 00000011 129.250.3.0 129.250.3.1---129.250.3.254 4: 00000100 129.250.4.0 129.250.4.1---129.250.4.254 5: 00000101 129.250.5.0 129.250.5.1---129.250.5.254 6: 00000110 129.250.6.0 129.250.6.1---129.250.6.254 7: 00000111 129.250.7.0 129.250.7.1---129.250.7.254 8: 00001000 129.250.8.0 129.250.8.1---129.250.8.254 9: 00001001 129.250.9.0 129.250.9.1---129.250.9.254 10: 00001010 129.250.10.0 129.250.10.1---129.250.10.254 11: 00001011 129.250.11.0 129.250.11.1---129.250.11.254 12: 00001100 129.250.12.0 129.250.12.1---129.250.12.254 13: 00001101 129.250.13.0 129.250.13.1---129.250.13.254 14: 00001110 129.250.14.0 129.250.14.1---129.250.14.254 15: 00001111 129.250.15.0 129.250.15.1---129.250.15.254 16: 00010000 129.250.16.0 129.250.16.1---129.250.16.254 22..一个数据报长度为4000字节(固定首部长度)。现在经过一个网络传送,但此网络能够

传送的最大数据长度为1500字节。试问应当划分为几个短些的数据报片?各数据报片的数据字段长度、片偏移字段和MF标志应为何数值? IP数据报固定首部长度为20字节

总长度(字节)数据长度(字节)MF 片偏移 原始数据报 4000 3980 0 0 数据报片1 1500 1480 1 0 数据报片2 1500 1480 1 185 数据报片3 1040 1020 0 370 23 分两种情况(使用子网掩码和使用CIDR)写出因特网的IP成查找路由的算法。见课本P134、P139 24.试找出可产生以下数目的A类子网的子网掩码(采用连续掩码)。

(1)2,(2)6,(3)30,(4)62,(5)122,(6)250.(1)255.192.0.0,(2)255.224.0.0,(3)255.248.0.0,(4)255.252.0.0,(5)255.254.0.0,(6)255.255.0.0 25.以下有4个子网掩码。哪些是不推荐使用的?为什么?(1)176.0.0.0,(2)96.0.0.0,(3)127.192.0.0,(4)255.128.0.0。只有(4)是连续的1和连续的0的掩码,是推荐使用的 26.有如下的4个/24地址块,试进行最大可能性的聚会。212.56.132.0/24 212.56.133.0/24 212.56.134.0/24 212.56.135.0/24 212=(11010100)2,56=(00111000)2 132=(10000100)2,133=(10000101)2 134=(10000110)2,135=(10000111)2 所以共同的前缀有22位,即11010100 00111000 100001,聚合的CIDR地址块是:212.56.132.0/22 27.有两个CIDR地址块208.128/11和208.130.28/22。是否有那一个地址块包含了另一个地址?如果有,请指出,并说明理由。208.128/11的前缀为:11010000 100 208.130.28/22的前缀为:11010000 10000010 000101,它的前11位与208.128/11的前缀是一致的,所以208.128/11地址块包含了208.130.28/22这一地址块。28.已知路由器R1的路由表如表4—12所示。

表4-12习题4-28中路由器R1的路由表

地址掩码 目的网络地址 下一跳地址 路由器接口 /26 140.5.12.64 180.15.2.5 m2 /24 130.5.8.0 190.16.6.2 m1 /16 110.71.0.0 „„ m0 /16 180.15.0.0 „„ m2 /16 196.16.0.0 „„ m1 默认 默认 110.71.4.5 m0 试画出个网络和必要的路由器的连接拓扑,标注出必要的IP地址和接口。对不能确定的情应该指明。

图形见课后答案P380 29.一个自治系统有5个局域网,其连接图如图4-55示。LAN2至LAN5上的主机数分别为:91,150,3和15.该自治系统分配到的IP地址块为30.138.118/23。试给出每一个局域网的地址块(包括前缀)。

30.138.118/23--?30.138.0111 011 分配网络前缀时应先分配地址数较多的前缀

题目没有说LAN1上有几个主机,但至少需要3个地址给三个路由器用。本题的解答有很多种,下面给出两种不同的答案:

第一组答案 第二组答案 LAN1 30.138.119.192/29 30.138.118.192/27 LAN2 30.138.119.0/25 30.138.118.0/25 LAN3 30.138.118.0/24 30.138.119.0/24 LAN4 30.138.119.200/29 30.138.118.224/27 LAN5 30.138.119.128/26 30.138.118.128/27

30.一个大公司有一个总部和三个下属部门。公司分配到的网络前缀是192.77.33/24.公司的网络布局如图4-56示。总部共有五个局域网,其中的LAN1-LAN4都连接到路由器R1上,R1再通过LAN5与路由器R5相连。R5和远地的三个部门的局域网LAN6~LAN8通过广域网相连。每一个局域网旁边标明的数字是局域网上的主机数。试给每一个局域网分配一个合适的网络的前缀。见课后答案P380 31.以下地址中的哪一个和86.32/12匹配:请说明理由。

(1)86.33.224.123:(2)86.79.65.216;(3)86.58.119.74;(4)86.68.206.154。86.32/12 ? 86.00100000 下划线上为12位前缀说明第二字节的前4位在前缀中。给出的四个地址的第二字节的前4位分别为:0010,0100,0011和0100。因此只有(1)是匹配的。

32.以下地址中的哪一个地址2.52.90。140匹配?请说明理由。

(1)0/4;(2)32/4;(3)4/6(4)152.0/11 前缀(1)和地址2.52.90.140匹配 2.52.90.140 ? 0000 0010.52.90.140 0/4 ? 0000 0000 32/4 ? 0010 0000 4/6 ? 0000 0100 80/4 ? 0101 0000 33.下面的前缀中的哪一个和地址152.7.77.159及152.31.47.252都匹配?请说明理由。

(1)152.40/13;(2)153.40/9;(3)152.64/12;(4)152.0/11。前缀(4)和这两个地址都匹配

34.与下列掩码相对应的网络前缀各有多少位?

(1)192.0.0.0;(2)240.0.0.0;(3)255.254.0.0;(4)255.255.255.252。(1)/2;(2)/4;(3)/11;(4)/30。

35.已知地址块中的一个地址是140.120.84.24/20。试求这个地址块中的最小地址和最大地址。地址掩码是什么?地址块中共有多少个地址?相当于多少个C类地址? 140.120.84.24 ? 140.120.(0101 0100).24 最小地址是 140.120.(0101 0000).0/20(80)最大地址是 140.120.(0101 1111).255/20(95)地址数是4096.相当于16个C类地址。

36.已知地址块中的一个地址是190.87.140.202/29。重新计算上题。190.87.140.202/29 ? 190.87.140.(1100 1010)/29 最小地址是 190.87.140.(1100 1000)/29 200 最大地址是 190.87.140.(1100 1111)/29 207 地址数是8.相当于1/32个C类地址。37.某单位分配到一个地址块136.23.12.64/26。现在需要进一步划分为4个一样大的子网。试问:(1)每一个子网的网络前缀有多长?

(2)每一个子网中有多少个地址?

(3)每一个子网的地址是什么?

(4)每一个子网可分配给主机使用的最小地址和最大地址是什么?(1)每个子网前缀28位。

(2)每个子网的地址中有4位留给主机用,因此共有16个地址。(3)四个子网的地址块是:

第一个地址块136.23.12.64/28,可分配给主机使用的最小地址:136.23.12.01000001=136.23.12.65/28 最大地址:136.23.12.01001110=136.23.12.78/28 第二个地址块136.23.12.80/28,可分配给主机使用的最小地址:136.23.12.01010001=136.23.12.81/28 最大地址:136.23.12.01011110=136.23.12.94/28 第三个地址块136.23.12.96/28,可分配给主机使用的最小地址:136.23.12.01100001=136.23.12.97/28 最大地址:136.23.12.01101110=136.23.12.110/28 第四个地址块136.23.12.112/28,可分配给主机使用的最小地址:136.23.12.01110001=136.23.12.113/28 最大地址:136.23.12.01111110=136.23.12.126/28 38.IGP和EGP这两类协议的主要区别是什么?

IGP:在自治系统内部使用的路由协议;力求最佳路由

EGP:在不同自治系统便捷使用的路由协议;力求较好路由(不兜圈子)

EGP必须考虑其他方面的政策,需要多条路由。代价费用方面可能可达性更重要。

IGP:内部网关协议,只关心本自治系统内如何传送数据报,与互联网中其他自治系统使用什么协议无关。

EGP:外部网关协议,在不同的AS边界传递路由信息的协议,不关心AS内部使用何种协议。注:IGP主要考虑AS内部如何高效地工作,绝大多数情况找到最佳路由,对费用和代价的有多种解释。

39.试简述RIP,OSPF和BGP路由选择协议的主要特点。主要特点 RIP OSPF BGP 网关协议 内部 内部 外部

路由表内容 目的网,下一站,距离 目的网,下一站,距离 目的网,完整路径 最优通路依据 跳数 费用 多种策略87 算法 距离矢量 链路状态 距离矢量

传送方式 运输层UDP IP数据报 建立TCP连接

其他 简单、效率低、跳数为16不可达、好消息传的快,坏消息传的慢 效率高、路由器频繁交换信息,难维持一致性

规模大、统一度量为可达性

40.RIP使用UDP,OSPF使用IP,而BGP使用TCP。这样做有何优点?为什么RIP周期性地和临站交换路由器由信息而BGP却不这样做?

RIP只和邻站交换信息,使用UDP无可靠保障,但开销小,可以满足RIP要求; OSPF使用可靠的洪泛法,直接使用IP,灵活、开销小;

BGP需要交换整个路由表和更新信息,TCP提供可靠交付以减少带宽消耗; RIP使用不保证可靠交付的UDP,因此必须不断地(周期性地)和邻站交换信息才能使路由信息及时得到更新。但BGP使用保证可靠交付的TCP因此不需要这样做。

41.假定网络中的路由器B的路由表有如下的项目(这三列分别表示“目的网络”、“距离”和“下一跳路由器”)

N1 7 A N2 2 B N6 8 F N8 4 E N9 4 F 现在B收到从C发来的路由信息(这两列分别表示“目的网络”“距离”): N2 4 N3 8 N6 4 N8 3 N9 5 试求出路由器B更新后的路由表(详细说明每一个步骤)。

路由器B更新后的路由表如下:

N1 A

无新信息,不改变 N2 C

相同的下一跳,更新 N3 C

新的项目,添加进来

N6 C

不同的下一跳,距离更短,更新 N8 E

不同的下一跳,距离一样,不改变 N9 F

不同的下一跳,距离更大,不改变

42.假定网络中的路由器A的路由表有如下的项目(格式同上题): N1 4 B N2 2 C N3 1 F N4 5 G 现将A收到从C发来的路由信息(格式同上题): N1 2 N2 1 N3 3 N4 7 试求出路由器A更新后的路由表(详细说明每一个步骤)。

路由器A更新后的路由表如下:

N1 C

不同的下一跳,距离更短,改变 N2 C

不同的下一跳,距离一样,不变 N3 F

不同的下一跳,距离更大,不改变 N4 G

无新信息,不改变

43.IGMP协议的要点是什么?隧道技术是怎样使用的? IGMP可分为两个阶段:

第一阶段:当某个主机加入新的多播组时,该主机应向多播组的多播地址发送IGMP 报文,声明自己要成为该组的成员。本地的多播路由器收到 IGMP 报文后,将组成员关系转发给因特网上的其他多播路由器。第二阶段:因为组成员关系是动态的,因此本地多播路由器要周期性地探询本地局域网上的主机,以便知道这些主机是否还继续是组的成员。只要对某个组有一个主机响应,那么多播路由器就认为这个组是活跃的。但一个组在经过几次的探询后仍然没有一个主机响应,则不再将该组的成员关系转发给其他的多播路由器。

隧道技术:多播数据报被封装到一个单播IP数据报中,可穿越不支持多播的网络,到达另一个支持多播的网络。

44.什么是VPN?VPN有什么特点和优缺点?VPN有几种类别? P171-173 45.什么是NAT?NAPT有哪些特点?NAT的优点和缺点有哪些?NAT的优点和缺点有哪些? P173-174 第五章 传输层

5—01 试说明运输层在协议栈中的地位和作用,运输层的通信和网络层的通信有什么重要区别?为什么运输层是必不可少的?

答:运输层处于面向通信部分的最高层,同时也是用户功能中的最低层,向它上面的应用层提供服务

运输层为应用进程之间提供端到端的逻辑通信,但网络层是为主机之间提供逻辑通信(面向主机,承担路由功能,即主机寻址及有效的分组交换)。

各种应用进程之间通信需要“可靠或尽力而为”的两类服务质量,必须由运输层以复用和分用的形式加载到网络层。

5—02 网络层提供数据报或虚电路服务对上面的运输层有何影响? 答:网络层提供数据报或虚电路服务不影响上面的运输层的运行机制。

但提供不同的服务质量。

5—03 当应用程序使用面向连接的TCP和无连接的IP时,这种传输是面向连接的还是面向无连接的?

答:都是。这要在不同层次来看,在运输层是面向连接的,在网络层则是无连接的。

5—04 试用画图解释运输层的复用。画图说明许多个运输用户复用到一条运输连接上,而这条运输连接有复用到IP数据报上。

5—05 试举例说明有些应用程序愿意采用不可靠的UDP,而不用采用可靠的TCP。

答:VOIP:由于语音信息具有一定的冗余度,人耳对VOIP数据报损失由一定的承受度,但对传输时延的变化较敏感。

有差错的UDP数据报在接收端被直接抛弃,TCP数据报出错则会引起重传,可能带来较大的时延扰动。

因此VOIP宁可采用不可靠的UDP,而不愿意采用可靠的TCP。5—06 接收方收到有差错的UDP用户数据报时应如何处理? 答:丢弃

5—07 如果应用程序愿意使用UDP来完成可靠的传输,这可能吗?请说明理由 答:可能,但应用程序中必须额外提供与TCP相同的功能。5—08 为什么说UDP是面向报文的,而TCP是面向字节流的?

答:发送方 UDP 对应用程序交下来的报文,在添加首部后就向下交付 IP 层。UDP 对应用层交下来的报文,既不合并,也不拆分,而是保留这些报文的边界。

接收方 UDP 对 IP 层交上来的 UDP 用户数据报,在去除首部后就原封不动地交付上层的应用进程,一次交付一个完整的报文。

发送方TCP对应用程序交下来的报文数据块,视为无结构的字节流(无边界约束,课分拆/合并),但维持各字节

5—09 端口的作用是什么?为什么端口要划分为三种? 答:端口的作用是对TCP/IP体系的应用进程进行统一的标志,使运行不同操作系统的计算机的应用进程能够互相通信。

熟知端口,数值一般为0~1023.标记常规的服务进程;

登记端口号,数值为1024~49151,标记没有熟知端口号的非常规的服务进程; 5—10 试说明运输层中伪首部的作用。

答:用于计算运输层数据报校验和。

5—11 某个应用进程使用运输层的用户数据报UDP,然而继续向下交给IP层后,又封装成IP数据报。既然都是数据报,可否跳过UDP而直接交给IP层?哪些功能UDP提供了但IP没提提供?

答:不可跳过UDP而直接交给IP层

IP数据报IP报承担主机寻址,提供报头检错;只能找到目的主机而无法找到目的进程。

UDP提供对应用进程的复用和分用功能,以及提供对数据差分的差错检验。

5—12 一个应用程序用UDP,到IP层把数据报在划分为4个数据报片发送出去,结果前两个数据报片丢失,后两个到达目的站。过了一段时间应用程序重传UDP,而IP层仍然划分为4个数据报片来传送。结果这次前两个到达目的站而后两个丢失。试问:在目的站能否将这两次传输的4个数据报片组装成完整的数据报?假定目的站第一次收到的后两个数据报片仍然保存在目的站的缓存中。答:不行

重传时,IP数据报的标识字段会有另一个标识符。

仅当标识符相同的IP数据报片才能组装成一个IP数据报。

前两个IP数据报片的标识符与后两个IP数据报片的标识符不同,因此不能组装成一个IP数据报。

5—13 一个UDP用户数据的数据字段为8192季节。在数据链路层要使用以太网来传送。试问应当划分为几个IP数据报片?说明每一个IP数据报字段长度和片偏移字段的值。答:6个

数据字段的长度:前5个是1480字节,最后一个是800字节。

片偏移字段的值分别是:0,1480,2960,4440,5920和7400.5—14 一UDP用户数据报的首部十六进制表示是:06 32 00 45 00 1C E2 17.试求源端口、目的端口、用户数据报的总长度、数据部分长度。这个用户数据报是从客户发送给服务器发送给客户?使用UDP的这个服务器程序是什么?

解:源端口1586,目的端口69,UDP用户数据报总长度28字节,数据部分长度20字节。

此UDP用户数据报是从客户发给服务器(因为目的端口号<1023,是熟知端口)、服务器程序是TFFTP。

5—15 使用TCP对实时话音数据的传输有没有什么问题?使用UDP在传送数据文件时会有什么问题?

答:如果语音数据不是实时播放(边接受边播放)就可以使用TCP,因为TCP传输可靠。接收端用TCP讲话音数据接受完毕后,可以在以后的任何时间进行播放。但假定是实时传输,则必须使用UDP。

UDP不保证可靠交付,但UCP比TCP的开销要小很多。因此只要应用程序接受这样的服务质量就可以使用UDP。

5—16 在停止等待协议中如果不使用编号是否可行?为什么? 答:分组和确认分组都必须进行编号,才能明确哪个分则得到了确认。

5—17 在停止等待协议中,如果收到重复的报文段时不予理睬(即悄悄地丢弃它而其他什么也没做)是否可行?试举出具体的例子说明理由。答:

收到重复帧不确认相当于确认丢失

5—18 假定在运输层使用停止等待协议。发送发在发送报文段M0后再设定的时间内未收到确认,于是重传M0,但M0又迟迟不能到达接收方。不久,发送方收到了迟到的对M0的确认,于是发送下一个报文段M1,不久就收到了对M1的确认。接着发送方发送新的报文段M0,但这个新的M0在传送过程中丢失了。正巧,一开始就滞留在网络中的M0现在到达接收方。接收方无法分辨M0是旧的。于是收下M0,并发送确认。显然,接收方后来收到的M0是重复的,协议失败了。

试画出类似于图5-9所示的双方交换报文段的过程。答:

旧的M0被当成新的M0。

5—19 试证明:当用n比特进行分组的编号时,若接收到窗口等于1(即只能按序接收分组),当仅在发送窗口不超过2n-1时,连接ARQ协议才能正确运行。窗口单位是分组。解:见课后答案。

5—20 在连续ARQ协议中,若发送窗口等于7,则发送端在开始时可连续发送7个分组。因此,在每一分组发送后,都要置一个超时计时器。现在计算机里只有一个硬时钟。设这7个分组发出的时间分别为t0,t1„t6,且tout都一样大。试问如何实现这7个超时计时器(这叫软件时钟法)? 解:见课后答案。

5—21 假定使用连续ARQ协议中,发送窗口大小事3,而序列范围[0,15],而传输媒体保证在接收方能够按序收到分组。在某时刻,接收方,下一个期望收到序号是5.试问:

(1)在发送方的发送窗口中可能有出现的序号组合有哪几种?(2)接收方已经发送出去的、但在网络中(即还未到达发送方)的确认分组可能有哪些?说明这些确认分组是用来确认哪些序号的分组。5—22 主机A向主机B发送一个很长的文件,其长度为L字节。假定TCP使用的MSS有1460字节。

(1)在TCP的序号不重复使用的条件下,L的最大值是多少?

(2)假定使用上面计算出文件长度,而运输层、网络层和数据链路层所使用的首部开销共66字节,链路的数据率为10Mb/s,试求这个文件所需的最短发送时间。

解:(1)L_max的最大值是2^32=4GB,G=2^30.(2)满载分片数Q={L_max/MSS}取整=2941758发送的总报文数

N=Q*(MSS+66)+{(L_max-Q*MSS)+66}=4489122708+682=4489123390 总字节数是N=4489123390字节,发送4489123390字节需时间为:N*8/(10*10^6)=3591.3秒,即59.85分,约1小时。

5—23 主机A向主机B连续发送了两个TCP报文段,其序号分别为70和100。试问:(1)第一个报文段携带了多少个字节的数据?

(2)主机B收到第一个报文段后发回的确认中的确认号应当是多少?

(3)如果主机B收到第二个报文段后发回的确认中的确认号是180,试问A发送的第二个报文段中的数据有多少字节?

(4)如果A发送的第一个报文段丢失了,但第二个报文段到达了B。B在第二个报文段到达后向A发送确认。试问这个确认号应为多少?

解:(1)第一个报文段的数据序号是70到99,共30字节的数据。(2)确认号应为100.(3)80字节。

(4)70 5—24 一个TCP连接下面使用256kb/s的链路,其端到端时延为128ms。经测试,发现吞吐量只有120kb/s。试问发送窗口W是多少?(提示:可以有两种答案,取决于接收等发出确认的时机)。解:

来回路程的时延等于256ms(=128ms×2).设窗口值为X(注意:以字节为单位),假

定一次最大发送量等于窗口值,且发射时间等于256ms,那么,每发送一次都得停下来期待 再次得到下一窗口的确认,以得到新的发送许可.这样,发射时间等于停止等待应答的时间, 结果,测到的平均吞吐率就等于发送速率的一半,即 8X÷(256×1000)=256×0.001 X=8192 所以,窗口值为8192.5—25 为什么在TCP首部中要把TCP端口号放入最开始的4个字节?

答:在ICMP的差错报文中要包含IP首部后面的8个字节的内容,而这里面有TCP首部中的源端口和目的端口。当TCP收到ICMP差错报文时需要用这两个端口来确定是哪条连接出了差错。

5—26 为什么在TCP首部中有一个首部长度字段,而UDP的首部中就没有这个这个字段?

答:TCP首部除固定长度部分外,还有选项,因此TCP首部长度是可变的。UDP首部长度是固定的。

5—27 一个TCP报文段的数据部分最多为多少个字节?为什么?如果用户要传送的数据的字节长度超过TCP报文字段中的序号字段可能编出的最大序号,问还能否用TCP来传送? 答:65495字节,此数据部分加上TCP首部的20字节,再加上IP首部的20字节,正好是IP数据报的最大长度65535.(当然,若IP首部包含了选择,则IP首部长度超过 20字节,这时TCP报文段的数据部分的长度将小于65495字节。)

数据的字节长度超过TCP报文段中的序号字段可能编出的最大序号,通过循环使用序号,仍能用TCP来传送。

5—28 主机A向主机B发送TCP报文段,首部中的源端口是m而目的端口是n。当B向A发送回信时,其TCP报文段的首部中源端口和目的端口分别是什么? 答:分别是n和m。

5—29 在使用TCP传送数据时,如果有一个确认报文段丢失了,也不一定会引起与该确认报文段对应的数据的重传。试说明理由。答:还未重传就收到了对更高序号的确认。

5—30 设TCP使用的最大窗口为65535字节,而传输信道不产生差错,带宽也不受限制。若报文段的平均往返时延为20ms,问所能得到的最大吞吐量是多少? 答:在发送时延可忽略的情况下,最大数据率=最大窗口*8/平均往返时间=26.2Mb/s。5—31 通信信道带宽为1Gb/s,端到端时延为10ms。TCP的发送窗口为65535字节。试问:可能达到的最大吞吐量是多少?信道的利用率是多少? 答:

L=65536×8+40×8=524600 C=109b/s L/C=0.0005246s Td=10×10-3s 0.02104864 Throughput=L/(L/C+2×Td)=524600/0.0205246=25.5Mb/s Efficiency=(L/C)//(L/C+2×D)=0.0255 最大吞吐量为25.5Mb/s。信道利用率为25.5/1000=2.55% 5—32 什么是Karn算法?在TCP的重传机制中,若不采用Karn算法,而是在收到确认时都认为是对重传报文段的确认,那么由此得出的往返时延样本和重传时间都会偏小。试问:重传时间最后会减小到什么程度? 答:Karn算法:在计算平均往返时延RTT时,只要报文段重传了,就不采用其往返时延样本。

设新往返时延样本Ti RTT(1)=a*RTT(i-1)+(1-a)*T(i);

RTT^(i)=a* RTT(i-1)+(1-a)*T(i)/2; RTT(1)=a*0+(1-a)*T(1)=(1-a)*T(1);RTT^(1)=a*0+(1-a)*T(1)/2= RTT(1)/2 RTT(2)= a*RTT(1)+(1-a)*T(2);RTT^(2)= a*RTT(1)+(1-a)*T(2)/2;= a*RTT(1)/2+(1-a)*T(2)/2= RTT(2)/2 RTO=beta*RTT,在统计意义上,重传时间最后会减小到使用karn算法的1/2.5—33 假定TCP在开始建立连接时,发送方设定超时重传时间是RTO=6s。

(1)当发送方接到对方的连接确认报文段时,测量出RTT样本值为1.5s。试计算现在的RTO值。

(2)当发送方发送数据报文段并接收到确认时,测量出RTT样本值为2.5s。试计算现在的RTO值。答:

(1)据RFC2988建议,RTO=RTTs+4*RTTd。其中RTTd是RTTs的偏差加权均值。

初次测量时,RTTd(1)= RTT(1)/2;

后续测量中,RTTd(i)=(1-Beta)* RTTd(i-1)+Beta*{ RTTs-RTT(i)}; Beta=1/4 依题意,RTT(1)样本值为1.5秒,则

RTTs(1)=RTT(1)=1.5s RTTd(1)=RTT(1)/2=0.75s RTO(1)=RTTs(1)+4RTTd(1)=1.5+4*0.75=4.5(s)(2)RTT(2)=2.5 RTTs(1)=1.5s RTTd(1)=0.75s RTTd(2)=(1-Beta)* RTTd(1)+Beta*{ RTTs(1)-RT(2)}=0.75*3/4+{1.5-2.5}/4=13/16 RTO(2)=RTTs(1)+4RTTd(2)=1.5+4*13/16=4.75s 5—34 已知第一次测得TCP的往返时延的当前值是30 ms。现在收到了三个接连的确认报文段,它们比相应的数据报文段的发送时间分别滞后的时间是:26ms,32ms和24ms。设α=0.9。试计算每一次的新的加权平均往返时间值RTTs。讨论所得出的结果。答:a=0.1,RTTO=30 RTT1=RTTO*(1-a)+26*a=29.6 RTT2=RTT1*a+32(1-a)=29.84 RTT3=RTT2*a+24(1-a)=29.256 三次算出加权平均往返时间分别为29.6,29.84和29.256ms。可以看出,RTT的样本值变化多达20%时,加权平均往返

5—35 试计算一个包括5段链路的运输连接的单程端到端时延。5段链路程中有2段是卫星链路,有3段是广域网链路。每条卫星链路又由上行链路和下行链路两部分组成。可以取这两部分的传播时延之和为250ms。每一个广域网的范围为1500km,其传播时延可按150000km/s来计算。各数据链路速率为48kb/s,帧长为960位。

答:5段链路的传播时延=250*2+(1500/150000)*3*1000=530ms 5段链路的发送时延=960/(48*1000)*5*1000=100ms 所以5段链路单程端到端时延=530+100=630ms 5—36 重复5-35题,但假定其中的一个陆地上的广域网的传输时延为150ms。答:760ms 5—37 在TCP的拥塞控制中,什么是慢开始、拥塞避免、快重传和快恢复算法?这里每一种算法各起什么作用? “乘法减小”和“加法增大”各用在什么情况下? 答:慢开始:

在主机刚刚开始发送报文段时可先将拥塞窗口cwnd设置为一个最大报文段MSS的数值。在每收到一个对新的报文段的确认后,将拥塞窗口增加至多一个MSS的数值。用这样的方法逐步增大发送端的拥塞窗口cwnd,可以分组注入到网络的速率更加合理。

拥塞避免:

当拥塞窗口值大于慢开始门限时,停止使用慢开始算法而改用拥塞避免算法。拥塞避免算法使发送的拥塞窗口每经过一个往返时延RTT就增加一个MSS的大小。快重传算法规定:

发送端只要一连收到三个重复的ACK即可断定有分组丢失了,就应该立即重传丢手的报文段而不必继续等待为该报文段设置的重传计时器的超时。快恢复算法:

当发送端收到连续三个重复的ACK时,就重新设置慢开始门限 ssthresh 与慢开始不同之处是拥塞窗口 cwnd 不是设置为 1,而是设置为ssthresh 若收到的重复的AVK为n个(n>3),则将cwnd设置为ssthresh 若发送窗口值还容许发送报文段,就按拥塞避免算法继续发送报文段。若收到了确认新的报文段的ACK,就将cwnd缩小到ssthresh 乘法减小:

是指不论在慢开始阶段还是拥塞避免阶段,只要出现一次超时(即出现一次网络拥塞),就把慢开始门限值 ssthresh 设置为当前的拥塞窗口值乘以 0.5。

当网络频繁出现拥塞时,ssthresh 值就下降得很快,以大大减少注入到网络中的分组数。加法增大:

是指执行拥塞避免算法后,在收到对所有报文段的确认后(即经过一个往返时间),就把拥塞窗口 cwnd增加一个 MSS 大小,使拥塞窗口缓慢增大,以防止网络过早出现拥塞。

5—38 设TCP的ssthresh的初始值为8(单位为报文段)。当拥塞窗口上升到12时网络发生了超时,TCP使用慢开始和拥塞避免。试分别求出第1次到第15次传输的各拥塞窗口大小。你能说明拥塞控制窗口每一次变化的原因吗?

答:拥塞窗口大小分别为:1,2,4,8,9,10,11,12,1,2,4,6,7,8,9.5—39 TCP的拥塞窗口cwnd大小与传输轮次n的关系如下所示: cwnd n 1 1 2 2 4 3 8 4 16 5 32 6 33 7 34 8 35 9 36 10 37 11 38 12 39 13 cwnd n 40 14 41 15 42 16 21 17 22 18 23 19 24 20 25 21 26 22 1 23 2 24 4 25 8 26(1)试画出如图5-25所示的拥塞窗口与传输轮次的关系曲线。(2)指明TCP工作在慢开始阶段的时间间隔。(3)指明TCP工作在拥塞避免阶段的时间间隔。(4)在第16轮次和第22轮次之后发送方是通过收到三个重复的确认还是通过超市检测到丢失了报文段?

(5)在第1轮次,第18轮次和第24轮次发送时,门限ssthresh分别被设置为多大?(6)在第几轮次发送出第70个报文段?

(7)假定在第26轮次之后收到了三个重复的确认,因而检测出了报文段的丢失,那么拥塞窗口cwnd和门限ssthresh应设置为多大? 答:(1)拥塞窗口与传输轮次的关系曲线如图所示(课本后答案):(2)慢开始时间间隔:【1,6】和【23,26】(3)拥塞避免时间间隔:【6,16】和【17,22】

(4)在第16轮次之后发送方通过收到三个重复的确认检测到丢失的报文段。在第22轮次之后发送方是通过超时检测到丢失的报文段。

(5)在第1轮次发送时,门限ssthresh被设置为32 在第18轮次发送时,门限ssthresh被设置为发生拥塞时的一半,即21.在第24轮次发送时,门限ssthresh是第18轮次发送时设置的21(6)第70报文段在第7轮次发送出。

(7)拥塞窗口cwnd和门限ssthresh应设置为8的一半,即4.5—40 TCP在进行流量控制时是以分组的丢失作为产生拥塞的标志。有没有不是因拥塞而引起的分组丢失的情况?如有,请举出三种情况。答:

当Ip数据报在传输过程中需要分片,但其中的一个数据报未能及时到达终点,而终点组装IP数据报已超时,因而只能丢失该数据报;IP数据报已经到达终点,但终点的缓存没有足够的空间存放此数据报;数据报在转发过程中经过一个局域网的网桥,但网桥在转发该数据报的帧没有足够的差错空间而只好丢弃。

5—41 用TCP传送512字节的数据。设窗口为100字节,而TCP报文段每次也是传送100字节的数据。再设发送端和接收端的起始序号分别选为100和200,试画出类似于图5-31的工作示意图。从连接建立阶段到连接释放都要画上。5—42 在图5-32中所示的连接释放过程中,主机B能否先不发送ACK=x+1的确认?(因为后面要发送的连接释放报文段中仍有ACK=x+1这一信息)答:

如果B不再发送数据了,是可以把两个报文段合并成为一个,即只发送FIN+ACK报文段。但如果B还有数据报要发送,而且要发送一段时间,那就不行,因为A迟迟收不到确认,就会以为刚才发送的FIN报文段丢失了,就超时重传这个FIN报文段,浪费网络资源。

5—43 在图(5-33)中,在什么情况下会发生从状态LISTEN到状态SYN_SENT,以及从状态SYN_ENT到状态SYN_RCVD的变迁? 答:当A和B都作为客户,即同时主动打开TCP连接。这时的每一方的状态变迁都是:CLOSED----àSYN-SENT---àSYN-RCVD--àESTABLISHED 5—44 试以具体例子说明为什么一个运输连接可以有多种方式释放。可以设两个互相通信的用户分别连接在网络的两结点上。

答:设A,B建立了运输连接。协议应考虑一下实际可能性:

A或B故障,应设计超时机制,使对方退出,不至于死锁; A主动退出,B被动退出 B主动退出,A被动退出

5—45 解释为什么突然释放运输连接就可能会丢失用户数据,而使用TCP的连接释放方法就可保证不丢失数据。答:

当主机1和主机2之间连接建立后,主机1发送了一个TCP数据段并正确抵达主机2,接着主机1发送另一个TCP数据段,这次很不幸,主机2在收到第二个TCP数据段之前发出了释放连接请求,如果就这样突然释放连接,显然主机1发送的第二个TCP报文段会丢失。而使用TCP的连接释放方法,主机2发出了释放连接的请求,那么即使收到主机1的确认后,只会释放主机2到主机1方向的连接,即主机2不再向主机1发送数据,而仍然可接受主机1发来的数据,所以可保证不丢失数据。

5—46 试用具体例子说明为什么在运输连接建立时要使用三次握手。说明如不这样做可能会出现什么情况。答:

3次握手完成两个重要的功能,既要双方做好发送数据的准备工作(双方都知道彼此已准备好),也要允许双方就初始序列号进行协商,这个序列号在握手过程中被发送和确认。假定B给A发送一个连接请求分组,A收到了这个分组,并发送了确认应答分组。按照两次握手的协定,A认为连接已经成功地建立了,可以开始发送数据分组。可是,B在A的应答分组在传输中被丢失的情况下,将不知道A是否已准备好,不知道A建议什么样的序列号,B甚至怀疑A是否收到自己的连接请求分组,在这种情况下,B认为连接还未建立成功,将忽略A发来的任何数据分组,只等待连接确认应答分组。

而A发出的分组超时后,重复发送同样的分组。这样就形成了死锁。

5—47 一个客户向服务器请求建立TCP连接。客户在TCP连接建立的三次握手中的最后一个报文段中捎带上一些数据,请求服务器发送一个长度为L字节的文件。假定:

(1)客户和服务器之间的数据传输速率是R字节/秒,客户与服务器之间的往返时间是RTT(固定值)。

(2)服务器发送的TCP报文段的长度都是M字节,而发送窗口大小是nM字节。(3)所有传送的报文段都不会出错(无重传),客户收到服务器发来的报文段后就及时发送确认。(4)所有的协议首部开销都可忽略,所有确认报文段和连接建立阶段的报文段的长度都可忽略(即忽略这些报文段的发送时间)。

试证明,从客户开始发起连接建立到接收服务器发送的整个文件多需的时间T是: T=2RTT+L/R 当nM>R(RTT)+M 或 T=2RTT+L/R+(K-1)[M/R+RTT-nM/R] 当nM

发送窗口较小的情况,发送一组nM个字节后必须停顿下来,等收到确认后继续发送。共需K=[L/nM]个周期:其中

前K-1个周期每周期耗时M/R+RTT,共耗时(K-1)(M/R+RTT)

第K周期剩余字节数Q=L-(K-1)*nM,需耗时Q/R 总耗时=2*RTT+(K-1)M/(R+RTT)+Q/R=2*RTT+L/R+(K-1)[(M/R+RTT)-nM/R] 第六章 应用层

6-01 因特网的域名结构是怎么样的?它与目前的电话网的号码结构有何异同之处? 答:

(1)域名的结构由标号序列组成,各标号之间用点隔开: „.三级域名.二级域名.顶级域名 各标号分别代表不同级别的域名。

(2)电话号码分为国家号结构分为(中国 +86)、区号、本机号。

6-02 域名系统的主要功能是什么?域名系统中的本地域名服务器、根域名服务器、顶级域名服务器以及权限域名权服务器有何区别? 答: 域名系统的主要功能:将域名解析为主机能识别的IP地址。

因特网上的域名服务器系统也是按照域名的层次来安排的。每一个域名服务器都只对域名体系中的一部分进行管辖。共有三种不同类型的域名服务器。即本地域名服务器、根域名服务器、授权域名服务器。当一个本地域名服务器不能立即回答某个主机的查询时,该本地域名服务器就以DNS客户的身份向某一个根域名服务器查询。若根域名服务器有被查询主机的信息,就发送DNS回答报文给本地域名服务器,然后本地域名服务器再回答发起查询的主机。但当根域名服务器没有被查询的主机的信息时,它一定知道某个保存有被查询的主机名字映射的授权域名服务器的IP地址。通常根域名服务器用来管辖顶级域。根域名服务器并不直接对顶级域下面所属的所有的域名进行转换,但它一定能够找到下面的所有二级域名的域名服务器。每一个主机都必须在授权域名服务器处注册登记。通常,一个主机的授权域名服务器就是它的主机ISP的一个域名服务器。授权域名服务器总是能够将其管辖的主机名转换为该主机的IP地址。

因特网允许各个单位根据本单位的具体情况将本域名划分为若干个域名服务器管辖区。一般就在各管辖区中设置相应的授权域名服务器。

6-03 举例说明域名转换的过程。域名服务器中的高速缓存的作用是什么? 答:

(1)把不方便记忆的IP地址转换为方便记忆的域名地址。

(2)作用:可大大减轻根域名服务器的负荷,使因特网上的 DNS 查询请求和回答报文的数量大为减少。

6-04 设想有一天整个因特网的DNS系统都瘫痪了(这种情况不大会出现),试问还可以给朋友发送电子邮件吗? 答:不能;

6-05 文件传送协议FTP的主要工作过程是怎样的?为什么说FTP是带外传送控制信息?主进程和从属进程各起什么作用? 答:

(1)FTP使用客户服务器方式。一个FTP服务器进程可同时为多个客户进程提供服务。FTP 的服务器进程由两大部分组成:一个主进程,负责接受新的请求;另外有若干个从属进程,负责处理单个请求。主进程的工作步骤:

1、打开熟知端口(端口号为 21),使客户进程能够连接上。

2、等待客户进程发出连接请求。

3、启动从属进程来处理客户进程发来的请求。从属进程对客户进程的请求处理完毕后即终止,但从属进程在运行期间根据需要还可能创建其他一些子进程。

4、回到等待状态,继续接受其他客户进程发来的请求。主进程与从属进程的处理是并发地进行。

FTP使用两个TCP连接。

控制连接在整个会话期间一直保持打开,FTP 客户发出的传送请求通过控制连接发送给服务器端的控制进程,但控制连接不用来传送文件。实际用于传输文件的是“数据连接”。服务器端的控制进程在接收到 FTP 客户发送来的文件传输请求后就创建“数据传送进程”和“数据连接”,用来连接客户端和服务器端的数据传送进程。

数据传送进程实际完成文件的传送,在传送完毕后关闭“数据传送连接”并结束运行。6-06 简单文件传送协议TFTP与FTP的主要区别是什么?各用在什么场合? 答:

(1)文件传送协议 FTP 只提供文件传送的一些基本的服务,它使用 TCP 可靠的运输服务。FTP 的主要功能是减少或消除在不同操作系统下处理文件的不兼容性。FTP 使用客户服务器方式。一个 FTP 服务器进程可同时为多个客户进程提供服务。FTP 的服务器进程由两大部分组成:一个主进程,负责接受新的请求;另外有若干个从属进程,负责处理单个请求。

TFTP 是一个很小且易于实现的文件传送协议。

TFTP 使用客户服务器方式和使用 UDP 数据报,因此 TFTP 需要有自己的差错改正措施。TFTP 只支持文件传输而不支持交互。

TFTP 没有一个庞大的命令集,没有列目录的功能,也不能对用户进行身份鉴别。6-07 远程登录TELNET的主要特点是什么?什么叫做虚拟终端NVT? 答:(1)用户用 TELNET 就可在其所在地通过 TCP 连接注册(即登录)到远地的另一个主机上(使用主机名或 IP 地址)。

TELNET 能将用户的击键传到远地主机,同时也能将远地主机的输出通过 TCP 连接返回到用户屏幕。这种服务是透明的,因为用户感觉到好像键盘和显示器是直接连在远地主机上。(2)TELNET定义了数据和命令应该怎样通过因特网,这些定义就是所谓的网络虚拟终端NVT。6-08 解释以下名词。各英文缩写词的原文是什么?

www.teniu.cc 6-23 试简述SMTP通信的三个阶段的过程。

答:1.连接建立:连接是在发送主机的 SMTP 客户和接收主机的 SMTP 服务器之间建立的。SMTP不使用中间的邮件服务器。2.邮件传送。

3.连接释放:邮件发送完毕后,SMTP 应释放 TCP 连接。6-24 试述邮局协议POP的工作过程。在电子邮件中,为什么需要使用POP和SMTP这两个协议?IMAP与POP有何区别?

答:POP 使用客户机服务器的工作方式。在接收邮件的用户的PC 机中必须运行POP 客户机程序,而在其ISP 的邮件服务器中则运行POP 服务器程序。POP 服务器只有在用户输入鉴别信息(用户名和口令)后才允许对邮箱进行读取。

POP 是一个脱机协议,所有对邮件的处理都在用户的PC 机上进行;IMAP 是一个联机协议,用户可以操纵ISP 的邮件服务器的邮箱。

6-25 MIME与SMTP的关系是什么的?什么是quoted-printable编码和base64编码? 答:

MIME全称是通用因特网邮件扩充MIME。它并没有改动或取代SMTP。MIME的意图是继续使用目前的RFC 822格式,但增加了邮件主体的结构,并定义了传送非ASCII码的编码规则。也就是说,MIME邮件可以在现有的电子邮件程序和协议下传送。下图表明了MIME和SMTP的关系:

quoted-printable编码:对于所有可打印的ASCII码,除特殊字符等号外,都不改变。等号和不可打印的ASCII码以及非ASCII码的数据的编码方法是:先将每个字节的二进制代码用两个十六进制数字表示,然后在前面再加上一个等号。base64编码是先把二进制代码划分为一个24位长的单元,然后把每个24位单元划分为4个6位组。每一个6位组按以下方法替换成ASCII码。6位的二进制代码共有64种不同的值,从1到63。用A表示0,用B表示1,等等。26个大写字母排列完毕后,接下去再排26个小写字母,再后面是10个数字,最后用+表示62,而用/表示63。再用两个连在一起的等号==和一个等号=分别表示最后一组的代码只有8位或16位。回车和换行都忽略,它们可在任何地方插入。

6-26 一个二进制文件共3072字节长,若使用base64编码,并且每发送完80字节就插入一个回车符CR和一个换行符LF,问一共发送了多少个字节?

解答:

在base64 编码方案中,24 比特的组被分成 4 个6 比特单位,每个单位都作为一

个合法的ASCII 字符发送。编码规则是A 表示0,B 表示l 等等,接着是26 个小写字母表示26 到51,10 个数字(0 到9)表示52 到61,最后,+和/分别表示62 和63。=和= =分别用来指示最后一组仅包含8位或16位。回 车和换行被忽略不计,因 此可以任意插入它们来保持一行足够短。在本题中,base 64 编码将把报文划分成1024 个单元,每个单元3 字节长。每个单元被编码为4 个字节,所以共有4096 个字节。如果把这些字节每80 字节划分为一行,将需要52 行,所以需要加52 个CR 和52 个LF。4096+52×2=4200。综上所述,该二进制文件用base 64 编码将会有4200 字节长。6-27 试将数据 11001100 10000001 00111000进行base64编码,并得到最后传输的ASCII数据。

解:

对应的ASCII数据为zIE4,对应的二进制代码为: 01111010 01001001 01000101 00110100 6-28 试将数据01001100 10011101 00111001进行quoted-printable编码,并得出最后传送的ASCII数据。这样的数据用quoted-printable编码后其编码开销有多大?

解:01001100 00111101 00111001 01000100 00111001 编码开销为66.7% 6-29 电子邮件系统需要将众的电子邮件地址编成目录以便于查找,要建立这种目录应将人名划分为标准部分(例如,姓,名)。若要形成一个国际标准,那么必须解决哪些问题? 答:非常困难。例如,人名的书写方法,很多国家(如英、美等西方国家)是先书写姓。但像中国或日本等国家则是先书写姓再写名。有些国家的一些人还有中间的名。称呼也有非常多种类。还有各式各样的头衔。很难有统一的格式。

6-30 电子邮件系统使用TCP传送邮件。为什么有时我们会遇到邮件发送失败的情况?为什么有时对方会收不到我们发送的邮件? 答:

有时对方的邮件服务器不工作,邮件就发送不出去。对方的邮件服务器出故障也会使邮件丢失。

6-31 基于万维网的电子邮件系统有什么特点?在传送邮电时使用什么协议? 答:

特点:不管在什么地方,只要能上网,在打开万维网浏览器后,就可以收发电子邮件。这时,邮件系统中的用户代理就是普通的万维网。

电子邮件从 A 发送到网易邮件服务器是使用 HTTP 协议。两个邮件服务器之间的传送使用 SMTP。

邮件从新浪邮件服务器传送到 B 是使用 HTTP 协议。

6-32 DHCP协议用在什么情况下?当一台计算机第一次运行引导程序时,其ROP中有没有该IP地址,子网掩码或某个域名服务器的IP地址?

答:

动态主机配置协议 DHCP 提供了即插即用连网的机制。

这种机制允许一台计算机加入新的网络和获取IP地址而不用手工参与。

6-33 什么是网络管理?为什么说网络管理是当今网络领域中的热闹课题?

答:

网络管理即网络的运行、处理、维护(Maintenance)、服务提供等所需要的各种活动。网络管理是控制一个复杂的计算机网络使得它具有最高的效率和生产力的过程。6-34 解释下列术语,网络元素,被管对象,管理进程,代理进程和管理库

答:

网络元素:被管对象有时可称为网络元素。被管对象:在每一个被管设备中有许多被管对象,被管对象可以是被管设备中的某个硬件(例如,一块网络接口卡),也可以是某些硬件或软件(例如,路由选择协议)的配置参数集合。管理进程:管理程序在运行时就成为管理进程。

代理进程:在每一个被管理设备中都要运行一个程序以便和管理站中的管理程序进行通信。这些运行着的程序叫作网络管理代理程序。

管理库:在被管理的实体中创建了命名对象,并规定了其类型。6-35 SNMP使用UDP传送报文,为什么不使用TCP?

答:使用UDP是为了提高网管的效率

6-36 为什么SNMP的管理进程使用轮询掌握全网状态用于正常情况而代理进程用陷阱 向管理进程报告属于较少发生的异常情况?

答:使用轮询以维持对网络资源的实时监视,系统简单并限制通信量。陷阱的中断方式 更灵活、快捷。

第二篇:谢希仁计算机网络原理第五版课后答案

谢希仁计算机网络原理第五版课后习题答案.txt生活是过出来的,不是想出来的。放得下的是曾经,放不下的是记忆。无论我在哪里,我离你都只有一转身的距离。计算机网络(第五版)课后答案 第一章 概述

1-01 计算机网络向用户可以提供那些服务? 答: 连通性和共享 1-02 简述分组交换的要点。答:(1)报文分组,加首部(2)经路由器储存转发(3)在目的地合并

1-03 试从多个方面比较电路交换、报文交换和分组交换的主要优缺点。

答:(1)电路交换:端对端通信质量因约定了通信资源获得可靠保障,对连续传送大量数据效率高。

(2)报文交换:无须预约传输带宽,动态逐段利用传输带宽对突发式数据通信效率高,通信迅速。

(3)分组交换:具有报文交换之高效、迅速的要点,且各分组小,路由灵活,网络生存性能好。

1-04 为什么说因特网是自印刷术以来人类通信方面最大的变革?

答: 融合其他通信网络,在信息化过程中起核心作用,提供最好的连通性和信息共享,第一次提供了各种媒体形式的实时交互能力。

1-05 因特网的发展大致分为哪几个阶段?请指出这几个阶段的主要特点。答:从单个网络APPANET向互联网发展;TCP/IP协议的初步成型

建成三级结构的Internet;分为主干网、地区网和校园网;

形成多层次ISP结构的Internet;ISP首次出现。1-06 简述因特网标准制定的几个阶段?

答:(1)因特网草案(Internet Draft)——在这个阶段还不是 RFC 文档。

(2)建议标准(Proposed Standard)——从这个阶段开始就成为 RFC 文档。(3)草案标准(Draft Standard)(4)因特网标准(Internet Standard)1-07小写和大写开头的英文名字 internet 和Internet在意思上有何重要区别?

答:(1)internet(互联网或互连网):通用名词,它泛指由多个计算机网络互连而成的网络。;协议无特指

(2)Internet(因特网):专用名词,特指采用 TCP/IP 协议的互联网络 区别:后者实际上是前者的双向应用

1-08 计算机网络都有哪些类别?各种类别的网络都有哪些特点? 答:按范围:(1)广域网WAN:远程、高速、是Internet的核心网。(2)城域网:城市范围,链接多个局域网。

(3)局域网:校园、企业、机关、社区。

(4)个域网PAN:个人电子设备 按用户:公用网:面向公共营运。专用网:面向特定机构。1-09 计算机网络中的主干网和本地接入网的主要区别是什么? 答:主干网:提供远程覆盖高速传输和路由器最优化通信 本地接入网:主要支持用户的访问本地,实现散户接入,速率低。

1-10 试在下列条件下比较电路交换和分组交换。要传送的报文共x(bit)。从源点到终点共经过k段链路,每段链路的传播时延为d(s),数据率为b(b/s)。在电路交换时电路的建立时间为s(s)。在分组交换时分组长度为p(bit),且各结点的排队等待时间可忽略不计。问在怎样的条件下,分组交换的时延比电路交换的要小?(提示:画一下草图观察k段链路共有几个结点。)

答:线路交换时延:kd+x/b+s, 分组交换时延:kd+(x/p)*(p/b)+(k-1)*(p/b)其中(k-1)*(p/b)表示K段传输中,有(k-1)次的储存转发延迟,当s>(k-1)*(p/b)时,电路交换的时延比分组交换的时延大,当x>>p,相反。

1-11 在上题的分组交换网中,设报文长度和分组长度分别为x和(p+h)(bit),其中p为分组的数据部分的长度,而h为每个分组所带的控制信息固定长度,与p的大小无关。通信的两端共经过k段链路。链路的数据率为b(b/s),但传播时延和结点的排队时间均可忽略不计。若打算使总的时延为最小,问分组的数据部分长度p应取为多大?(提示:参考图1-12的分组交换部分,观察总的时延是由哪几部分组成。)

答:总时延D表达式,分组交换时延为:D= kd+(x/p)*((p+h)/b)+(k-1)*(p+h)/b D对p求导后,令其值等于0,求得p=[(xh)/(k-1)]^0.5 1-12 因特网的两大组成部分(边缘部分与核心部分)的特点是什么?它们的工作方式各有什么特点?

答:边缘部分:由各主机构成,用户直接进行信息处理和信息共享;低速连入核心网。

核心部分:由各路由器连网,负责为边缘部分提供高速远程分组交换。1-13 客户服务器方式与对等通信方式的主要区别是什么?有没有相同的地方? 答:前者严格区分服务和被服务者,后者无此区别。后者实际上是前者的双向应用。1-14 计算机网络有哪些常用的性能指标?

答:速率,带宽,吞吐量,时延,时延带宽积,往返时间RTT,利用率 1-15 假定网络利用率达到了90%。试估计一下现在的网络时延是它的最小值的多少倍? 解:设网络利用率为U。,网络时延为D,网络时延最小值为D0 U=90%;D=D0/(1-U)---->D/ D0=10

现在的网络时延是最小值的10倍

1-16 计算机通信网有哪些非性能特征?非性能特征与性能特征有什么区别? 答:征:宏观整体评价网络的外在表现。性能指标:具体定量描述网络的技术性能。1-17 收发两端之间的传输距离为1000km,信号在媒体上的传播速率为2×108m/s。试计算以下两种情况的发送时延和传播时延:

(1)数据长度为107bit,数据发送速率为100kb/s。(2)数据长度为103bit,数据发送速率为1Gb/s。从上面的计算中可以得到什么样的结论? 解:(1)发送时延:ts=107/105=100s 传播时延tp=106/(2×108)=0.005s(2)发送时延ts =103/109=1μs 传播时延:tp=106/(2×108)=0.005s 结论:若数据长度大而发送速率低,则在总的时延中,发送时延往往大于传播时延。但若数据长度短而发送速率高,则传播时延就可能是总时延中的主要成分。1-18 假设信号在媒体上的传播速度为2×108m/s.媒体长度L分别为:(1)10cm(网络接口卡)(2)100m(局域网)(3)100km(城域网)(4)5000km(广域网)试计算出当数据率为1Mb/s和10Gb/s时在以上媒体中正在传播的比特数。解:(1)1Mb/s:传播时延=0.1/(2×108)=5×10-10 比特数=5×10-10×1×106=5×10-4 1Gb/s: 比特数=5×10-10×1×109=5×10-1(2)1Mb/s: 传播时延=100/(2×108)=5×10-7 比特数=5×10-7×1×106=5×10-1 1Gb/s: 比特数=5×10-7×1×109=5×102(3)1Mb/s: 传播时延=100000/(2×108)=5×10-4 比特数=5×10-4×1×106=5×102 1Gb/s: 比特数=5×10-4×1×109=5×105(4)1Mb/s: 传播时延=5000000/(2×108)=2.5×10-2 比特数=2.5×10-2×1×106=5×104 1Gb/s: 比特数=2.5×10-2×1×109=5×107 1-19 长度为100字节的应用层数据交给传输层传送,需加上20字节的TCP首部。再交给网络层传送,需加上20字节的IP首部。最后交给数据链路层的以太网传送,加上首部和尾部工18字节。试求数据的传输效率。数据的传输效率是指发送的应用层数据除以所发送的总数据(即应用数据加上各种首部和尾部的额外开销)。若应用层数据长度为1000字节,数据的传输效率是多少? 解:(1)100/(100+20+20+18)=63.3%(2)1000/(1000+20+20+18)=94.5% 1-20 网络体系结构为什么要采用分层次的结构?试举出一些与分层体系结构的思想相似的日常生活。答:分层的好处:

①各层之间是独立的。某一层可以使用其下一层提供的服务而不需要知道服务是如何实现的。②灵活性好。当某一层发生变化时,只要其接口关系不变,则这层以上或以下的各层均不受影响。

③结构上可分割开。各层可以采用最合适的技术来实现 ④易于实现和维护。⑤能促进标准化工作。

与分层体系结构的思想相似的日常生活有邮政系统,物流系统。1-21 协议与服务有何区别?有何关系?

答:网络协议:为进行网络中的数据交换而建立的规则、标准或约定。由以下三个要素组成:(1)语法:即数据与控制信息的结构或格式。

(2)语义:即需要发出何种控制信息,完成何种动作以及做出何种响应。(3)同步:即事件实现顺序的详细说明。

协议是控制两个对等实体进行通信的规则的集合。在协议的控制下,两个对等实体间的通信使得本层能够向上一层提供服务,而要实现本层协议,还需要使用下面一层提供服务。协议和服务的概念的区分:

1、协议的实现保证了能够向上一层提供服务。本层的服务用户只能看见服务而无法看见下面的协议。下面的协议对上面的服务用户是透明的。

2、协议是“水平的”,即协议是控制两个对等实体进行通信的规则。但服务是“垂直的”,即服务是由下层通过层间接口向上层提供的。上层使用所提供的服务必须与下层交换一些命令,这些命令在OSI中称为服务原语。

1-22 网络协议的三个要素是什么?各有什么含义? 答:网络协议:为进行网络中的数据交换而建立的规则、标准或约定。由以下三个要素组成:(1)语法:即数据与控制信息的结构或格式。

(2)语义:即需要发出何种控制信息,完成何种动作以及做出何种响应。(3)同步:即事件实现顺序的详细说明。

1-23 为什么一个网络协议必须把各种不利的情况都考虑到?

答:因为网络协议如果不全面考虑不利情况,当情况发生变化时,协议就会保持理想状况,一直等下去!就如同两个朋友在电话中约会好,下午3点在公园见面,并且约定不见不散。这个协议就是很不科学的,因为任何一方如果有耽搁了而来不了,就无法通知对方,而另一方就必须一直等下去!所以看一个计算机网络是否正确,不能只看在正常情况下是否正确,而且还必须非常仔细的检查协议能否应付各种异常情况。1-24 论述具有五层协议的网络体系结构的要点,包括各层的主要功能。

答:综合OSI 和TCP/IP 的优点,采用一种原理体系结构。各层的主要功能: 物理层 物理层的任务就是透明地传送比特流。(注意:传递信息的物理媒体,如双绞 线、同轴电缆、光缆等,是在物理层的下面,当做第0 层。)物理层还要确定连接电缆插头的定义及连接法。

数据链路层 数据链路层的任务是在两个相邻结点间的线路上无差错地传送以帧(frame)为单位的数据。每一帧包括数据和必要的控制信息。

网络层 网络层的任务就是要选择合适的路由,使 发送站的运输层所传下来的分组能够 正确无误地按照地址找到目的站,并交付给目的站的运输层。

运输层 运输层的任务是向上一层的进行通信的两个进程之间提供一个可靠的端到端 服务,使它们看不见运输层以下的数据通信的细节。应用层 应用层直接为用户的应用进程提供服务。1-25 试举出日常生活中有关“透明”这种名词的例子。

答:电视,计算机视窗操作系统、工农业产品

1-26 试解释以下名词:协议栈、实体、对等层、协议数据单元、服务访问点、客户、服务器、客户-服务器方式。

答:实体(entity)表示任何可发送或接收信息的硬件或软件进程。

协议是控制两个对等实体进行通信的规则的集合。

客户(client)和服务器(server)都是指通信中所涉及的两个应用进程。客户是服务的请求方,服务器是服务的提供方。

客户服务器方式所描述的是进程之间服务和被服务的关系。

协议栈:指计算机网络体系结构采用分层模型后,每层的主要功能由对等层协议的运行来实现,因而每层可用一些主要协议来表征,几个层次画在一起很像一个栈的结构.对等层:在网络体系结构中,通信双方实现同样功能的层.协议数据单元:对等层实体进行信息交换的数据单位.服务访问点:在同一系统中相邻两层的实体进行交互(即交换信息)的地方.服务访问点SAP是一个抽象的概念,它实体上就是一个逻辑接口.1-27 试解释everything over IP 和IP over everthing 的含义。

TCP/IP协议可以为各式各样的应用提供服务(所谓的everything over ip)

答:允许IP协议在各式各样的网络构成的互联网上运行(所谓的ip over everything)第二章 物理层

2-01 物理层要解决哪些问题?物理层的主要特点是什么? 答:物理层要解决的主要问题:

(1)物理层要尽可能地屏蔽掉物理设备和传输媒体,通信手段的不同,使数据链路层感觉不到这些差异,只考虑完成本层的协议和服务。

(2)给其服务用户(数据链路层)在一条物理的传输媒体上传送和接收比特流(一般为串行按顺序传输的比特流)的能力,为此,物理层应该解决物理连接的建立、维持和释放问题。(3)在两个相邻系统之间唯一地标识数据电路 物理层的主要特点:

(1)由于在OSI之前,许多物理规程或协议已经制定出来了,而且在数据通信领域中,这些物理规程已被许多商品化的设备所采用,加之,物理层协议涉及的范围广泛,所以至今没有按OSI的抽象模型制定一套新的物理层协议,而是沿用已存在的物理规程,将物理层确定为描述与传输媒体接口的机械,电气,功能和规程特性。

(2)由于物理连接的方式很多,传输媒体的种类也很多,因此,具体的物理协议相当复杂。2-02 归层与协议有什么区别? 答:规程专指物理层协议

2-03 试给出数据通信系统的模型并说明其主要组成构建的作用。答:源点:源点设备产生要传输的数据。源点又称为源站。

发送器:通常源点生成的数据要通过发送器编码后才能在传输系统中进行传输。接收器:接收传输系统传送过来的信号,并将其转换为能够被目的设备处理的信息。终点:终点设备从接收器获取传送过来的信息。终点又称为目的站 传输系统:信号物理通道

2-04 试解释以下名词:数据,信号,模拟数据,模拟信号,基带信号,带通信号,数字数据,数字信号,码元,单工通信,半双工通信,全双工通信,串行传输,并行传输。答:数据:是运送信息的实体。信号:则是数据的电气的或电磁的表现。模拟数据:运送信息的模拟信号。模拟信号:连续变化的信号。

数字信号:取值为有限的几个离散值的信号。数字数据:取值为不连续数值的数据。

码元(code):在使用时间域(或简称为时域)的波形表示数字信号时,代表不同离散数值的基本波形。

单工通信:即只有一个方向的通信而没有反方向的交互。

半双工通信:即通信和双方都可以发送信息,但不能双方同时发送(当然也不能同时接收)。这种通信方式是一方发送另一方接收,过一段时间再反过来。全双工通信:即通信的双方可以同时发送和接收信息。

基带信号(即基本频带信号)——来自信源的信号。像计算机输出的代表各种文字或图像文件的数据信号都属于基带信号。

带通信号——把基带信号经过载波调制后,把信号的频率范围搬移到较高的频段以便在信道中传输(即仅在一段频率范围内能够通过信道)。

2-05 物理层的接口有哪几个方面的特性?个包含些什么内容? 答:(1)机械特性

明接口所用的接线器的形状和尺寸、引线数目和排列、固定和锁定装置等等。(2)电气特性

指明在接口电缆的各条线上出现的电压的范围。(3)功能特性

指明某条线上出现的某一电平的电压表示何意。(4)规程特性 说明对于不同功能的各种可能事件的出现顺序。

2-06 数据在信道重的传输速率受哪些因素的限制?信噪比能否任意提高?香农公式在数据通信中的意义是什么?“比特/每秒”和“码元/每秒”有何区别? 答:码元传输速率受奈氏准则的限制,信息传输速率受香农公式的限制

香农公式在数据通信中的意义是:只要信息传输速率低于信道的极限传信率,就可实现无差传输。

比特/s是信息传输速率的单位

码元传输速率也称为调制速率、波形速率或符号速率。一个码元不一定对应于一个比特。

2-07 假定某信道受奈氏准则限制的最高码元速率为20000码元/秒。如果采用振幅调制,把码元的振幅划分为16个不同等级来传送,那么可以获得多高的数据率(b/s)? 答:C=R*Log2(16)=20000b/s*4=80000b/s

2-08 假定要用3KHz带宽的电话信道传送64kb/s的数据(无差错传输),试问这个信道应具有多高的信噪比(分别用比值和分贝来表示?这个结果说明什么问题?)答:C=Wlog2(1+S/N)(b/s)W=3khz,C=64khz----àS/N=64.2dB 是个信噪比要求很高的信源

2-09 用香农公式计算一下,假定信道带宽为为3100Hz,最大信道传输速率为35Kb/s,那么若想使最大信道传输速率增加60%,问信噪比S/N应增大到多少倍?如果在刚才计算出的基础上将信噪比S/N应增大到多少倍?如果在刚才计算出的基础上将信噪比S/N再增大到十倍,问最大信息速率能否再增加20%?

答:C = W log2(1+S/N)b/s-àSN1=2*(C1/W)-1=2*(35000/3100)-1 SN2=2*(C2/W)-1=2*(1.6*C1/w)-1=2*(1.6*35000/3100)-1 SN2/SN1=100信噪比应增大到约100倍。C3=Wlong2(1+SN3)=Wlog2(1+10*SN2)C3/C2=18.5% 如果在此基础上将信噪比S/N再增大到10倍,最大信息通率只能再增加18.5%左右 2-10 常用的传输媒体有哪几种?各有何特点? 答:双绞线

屏蔽双绞线 STP(Shielded Twisted Pair)无屏蔽双绞线 UTP(Unshielded Twisted Pair)同轴电缆 50 W 同轴电缆 75 W 同轴电缆 光缆

无线传输:短波通信/微波/卫星通信

2-11假定有一种双绞线的衰减是0.7dB/km(在 1 kHz时),若容许有20dB的衰减,试问使用这种双绞线的链路的工作距离有多长?如果要双绞线的工作距离增大到100公里,试应当使衰减降低到多少?

解:使用这种双绞线的链路的工作距离为=20/0.7=28.6km 衰减应降低到20/100=0.2db 2-12 试计算工作在1200nm到1400nm之间以及工作在1400nm到1600nm之间的光波的频带宽度。假定光在光纤中的传播速率为2*10e8m/s.解: V=L*F-àF=V/L--àB=F2-F1=V/L1-V/L2 1200nm到1400nm:带宽=23.8THZ 1400nm到1600nm:带宽=17.86THZ 2-13 为什么要使用信道复用技术?常用的信道复用技术有哪些? 答:为了通过共享信道、最大限度提高信道利用率。频分、时分、码分、波分。

2-14 试写出下列英文缩写的全文,并做简单的解释。FDM,TDM,STDM,WDM,DWDM,CDMA,SONET,SDH,STM-1 ,OC-48.答:FDM(frequency pision multiplexing)TDM(Time Division Multiplexing)STDM(Statistic Time Division Multiplexing)WDM(Wave Division Multiplexing)DWDM(Dense Wave Division Multiplexing)CDMA(Code Wave Division Multiplexing)SONET(Synchronous Optical Network)同步光纤网 SDH(Synchronous Digital Hierarchy)同步数字系列 STM-1(Synchronous Transfer Module)第1级同步传递模块 OC-48(Optical Carrier)第48级光载波

2-15 码分多址CDMA为什么可以使所有用户在同样的时间使用同样的频带进行通信而不会互相干扰?这种复用方法有何优缺点?

答:各用户使用经过特殊挑选的相互正交的不同码型,因此彼此不会造成干扰。

这种系统发送的信号有很强的抗干扰能力,其频谱类似于白噪声,不易被敌人发现。占用较大的带宽。

2-16 共有4个站进行码分多址通信。4个站的码片序列为

A:(-1-1-1+1+1-1+1+1)B:(-1-1+1-1+1+1+1-1)C:(-1+1-1+1+1+1-1-1)D:(-1+1-1-1-1-1+1-1)

现收到这样的码片序列S:(-1+1-3+1-1-3+1+1)。问哪个站发送数据了?发送数据的站发送的是0还是1?

解:S?A=(+1-1+3+1-1+3+1+1)/8=1,A发送1 S?B=(+1-1-3-1-1-3+1-1)/8=-1,B发送0 S?C=(+1+1+3+1-1-3-1-1)/8=0,C无发送 S?D=(+1+1+3-1+1+3+1-1)/8=1,D发送1 2-17 试比较xDSL、HFC以及FTTx接入技术的优缺点?

答:xDSL 技术就是用数字技术对现有的模拟电话用户线进行改造,使它能够承载宽带业务。成本低,易实现,但带宽和质量差异性大。

HFC网的最大的优点具有很宽的频带,并且能够利用已经有相当大的覆盖面的有线电视网。要将现有的450 MHz 单向传输的有线电视网络改造为 750 MHz 双向传输的 HFC 网需要相当的资金和时间。

FTTx(光纤到„„)这里字母 x 可代表不同意思。可提供最好的带宽和质量、但现阶段线路和工程成本太大。

2-18为什么在ASDL技术中,在不到1MHz的带宽中却可以传送速率高达每秒几个兆比? 答:靠先进的DMT编码,频分多载波并行传输、使得每秒传送一个码元就相当于每秒传送多个比特

第三章 数据链路层 3-01 数据链路(即逻辑链路)与链路(即物理链路)有何区别? “电路接通了”与”数据链路接通了”的区别何在? 答:数据链路与链路的区别在于数据链路出链路外,还必须有一些必要的规程来控制数据的传输,因此,数据链路比链路多了实现通信规程所需要的硬件和软件。

“电路接通了”表示链路两端的结点交换机已经开机,物理连接已经能够传送比特流了,但是,数据传输并不可靠,在物理连接基础上,再建立数据链路连接,才是“数据链路接通了”,此后,由于数据链路连接具有检测、确认和重传功能,才使不太可靠的物理链路变成可靠的数据链路,进行可靠的数据传输当数据链路断开连接时,物理电路连接不一定跟着断开连接。3-02 数据链路层中的链路控制包括哪些功能?试讨论数据链路层做成可靠的链路层有哪些优点和缺点.答:链路管理

帧定界

流量控制

差错控制 将数据和控制信息区分开

透明传输

寻址

可靠的链路层的优点和缺点取决于所应用的环境:对于干扰严重的信道,可靠的链路层可以将重传范围约束在局部链路,防止全网络的传输效率受损;对于优质信道,采用可靠的链路层会增大资源开销,影响传输效率。3-03 网络适配器的作用是什么?网络适配器工作在哪一层? 答:适配器(即网卡)来实现数据链路层和物理层这两层的协议的硬件和软件 网络适配器工作在TCP/IP协议中的网络接口层(OSI中的数据链里层和物理层)3-04 决?

答:帧定界是分组交换的必然要求

透明传输避免消息符号与帧定界符号相混淆

差错检测防止合差错的无效数据帧浪费后续路由上的传输和处理资源 3-05 如果在数据链路层不进行帧定界,会发生什么问题? 数据链路层的三个基本问题(帧定界、透明传输和差错检测)为什么都必须加以解答:无法区分分组与分组

无法确定分组的控制域和数据域 无法将差错更正的范围限定在确切的局部 3-06 PPP协议的主要特点是什么?为什么PPP不使用帧的编号?PPP适用于什么情况?为什么PPP协议不能使数据链路层实现可靠传输? 答:简单,提供不可靠的数据报服务,检错,无纠错

不使用序号和确认机制

地址字段A 只置为 0xFF。地址字段实际上并不起作用。控制字段 C 通常置为 0x03。PPP 是面向字节的

当 PPP 用在同步传输链路时,协议规定采用硬件来完成比特填充(和 HDLC 的做法一样),当 PPP 用在异步传输时,就使用一种特殊的字符填充法 PPP适用于线路质量不太差的情况下、PPP没有编码和确认机制 3-07 要发送的数据为1101011011。采用CRC的生成多项式是P(X)=X4+X+1。试求应添加在数据后面的余数。数据在传输过程中最后一个1变成了0,问接收端能否发现?若数据在传输过程中最后两个1都变成了0,问接收端能否发现?采用CRC检验后,数据链路层的传输是否就变成了可靠的传输?

答:作二进制除法,1101011011 0000 10011 得余数1110,添加的检验序列是1110.作二进制除法,两种错误均可发展

仅仅采用了CRC检验,缺重传机制,数据链路层的传输还不是可靠的传输。3-08 要发送的数据为101110。采用CRCD 生成多项式是P(X)=X3+1。试求应添加在数据后面的余数。

答:作二进制除法,101110 000 10011 添加在数据后面的余数是011 3-09 一个PPP帧的数据部分(用十六进制写出)是7D 5E FE 27 7D 5D 7D 5D 65 7D 5E。试问真正的数据是什么(用十六进制写出)? 答:7D 5E FE 27 7D 5D 7D 5D 65 7D 5E 7E FE 27 7D 7D 65 7D 3-10 PPP协议使用同步传输技术传送比特串***0。试问经过零比特填充后变成怎样的比特串?若接收端收到的PPP帧的数据部分是***1110110,问删除发送端加入的零比特后变成怎样的比特串? 答:011011111 11111 00 ***000 ***1110110 000111011111 11111 110 3-11 试分别讨论一下各种情况在什么条件下是透明传输,在什么条件下不是透明传输。(提示:请弄清什么是“透明传输”,然后考虑能否满足其条件。)(1)普通的电话通信。(2)电信局提供的公用电报通信。(3)因特网提供的电子邮件服务。3-12 PPP协议的工作状态有哪几种?当用户要使用PPP协议和ISP建立连接进行通信需要建立哪几种连接?每一种连接解决什么问题? 3-13 局域网的主要特点是什么?为什么局域网采用广播通信方式而广域网不采用呢?

答:局域网LAN是指在较小的地理范围内,将有限的通信设备互联起来的计算机通信网络 从功能的角度来看,局域网具有以下几个特点:

(1)共享传输信道,在局域网中,多个系统连接到一个共享的通信媒体上。

(2)地理范围有限,用户个数有限。通常局域网仅为一个单位服务,只在一个相对独立的局部范围内连网,如一座楼或集中的建筑群内,一般来说,局域网的覆盖范围越位10m~10km内或更大一些。

从网络的体系结构和传输检测提醒来看,局域网也有自己的特点:(1)低层协议简单

(2)不单独设立网络层,局域网的体系结构仅相当于相当与OSI/RM的最低两层(3)采用两种媒体访问控制技术,由于采用共享广播信道,而信道又可用不同的传输媒体,所以局域网面对的问题是多源,多目的的连连管理,由此引发出多种媒体访问控制技术 在局域网中各站通常共享通信媒体,采用广播通信方式是天然合适的,广域网通常采站点间直接构成格状网。3-14 常用的局域网的网络拓扑有哪些种类?现在最流行的是哪种结构?为什么早期的以太网选择总线拓扑结构而不是星形拓扑结构,但现在却改为使用星形拓扑结构? 答:星形网,总线网,环形网,树形网

当时很可靠的星形拓扑结构较贵,人们都认为无源的总线结构更加可靠,但实践证明,连接有大量站点的总线式以太网很容易出现故障,而现在专用的ASIC芯片的使用可以讲星形结构的集线器做的非常可靠,因此现在的以太网一般都使用星形结构的拓扑。3-15 什么叫做传统以太网?以太网有哪两个主要标准?

答:DIX Ethernet V2 标准的局域网

DIX Ethernet V2 标准与 IEEE 的 802.3 标准 3-16 数据率为10Mb/s的以太网在物理媒体上的码元传输速率是多少码元/秒?

答:码元传输速率即为波特率,以太网使用曼彻斯特编码,这就意味着发送的每一位都有两个信号周期。标准以太网的数据速率是10MB/s,因此波特率是数据率的两倍,即20M波特 3-17 为什么LLC子层的标准已制定出来了但现在却很少使用?

答:由于 TCP/IP 体系经常使用的局域网是 DIX Ethernet V2 而不是 802.3 标准中的几种局域网,因此现在 802 委员会制定的逻辑链路控制子层 LLC(即 802.2 标准)的作用已经不大了。3-18 试说明10BASE-T中的“10”、“BASE”和“T”所代表的意思。

答:10BASE-T中的“10”表示信号在电缆上的传输速率为10MB/s,“BASE”表示电缆上的信号是基带信号,“T”代表双绞线星形网,但10BASE-T的通信距离稍短,每个站到集线器的距离不超过100m。3-19 以太网使用的CSMA/CD协议是以争用方式接入到共享信道。这与传统的时分复用TDM相比优缺点如何?

答:传统的时分复用TDM是静态时隙分配,均匀高负荷时信道利用率高,低负荷或符合不均匀时资源浪费较大,CSMA/CD课动态使用空闲新到资源,低负荷时信道利用率高,但控制复杂,高负荷时信道冲突大。3-20 假定1km长的CSMA/CD网络的数据率为1Gb/s。设信号在网络上的传播速率为200000km/s。求能够使用此协议的最短帧长。

答:对于1km电缆,单程传播时间为1/200000=5为微秒,来回路程传播时间为10微秒,为了能够按照CSMA/CD工作,最小帧的发射时间不能小于10微秒,以Gb/s速率工作,10微秒可以发送的比特数等于10*10^-6/1*10^-9=10000,因此,最短帧是10000位或1250字节长 3-21 什么叫做比特时间?使用这种时间单位有什么好处?100比特时间是多少微秒?

答:比特时间是发送一比特多需的时间,它是传信率的倒数,便于建立信息长度与发送延迟的关系

“比特时间”换算成“微秒”必须先知道数据率是多少,如数据率是10Mb/s,则100比特时间等于10微秒。3-22 假定在使用CSMA/CD协议的10Mb/s以太网中某个站在发送数据时检测到碰撞,执行退避算法时选择了随机数r=100。试问这个站需要等待多长时间后才能再次发送数据?如果是100Mb/s的以太网呢?

答:对于10mb/s的以太网,以太网把争用期定为51.2微秒,要退后100个争用期,等待时间是51.2(微秒)*100=5.12ms 对于100mb/s的以太网,以太网把争用期定为5.12微秒,要退后100个争用期,等待时间是5.12(微秒)*100=512微秒 3-23 公式(3-3)表示,以太网的极限信道利用率与连接在以太网上的站点数无关。能否由此推论出:以太网的利用率也与连接在以太网的站点数无关?请说明你的理由。答:实际的以太网各给发送数据的时刻是随即的,而以太网的极限信道利用率的得出是假定以太网使用了特殊的调度方法(已经不再是CSMA/CD了),使各结点的发送不发生碰撞。3-24 假定站点A和B在同一个10Mb/s以太网网段上。这两个站点之间的传播时延为225比特时间。现假定A开始发送一帧,并且在A发送结束之前B也发送一帧。如果A发送的是以太网所容许的最短的帧,那么A在检测到和B发生碰撞之前能否把自己的数据发送完毕?换言之,如果A在发送完毕之前并没有检测到碰撞,那么能否肯定A所发送的帧不会和B发送的帧发生碰撞?(提示:在计算时应当考虑到每一个以太网帧在发送到信道上时,在MAC帧前面还要增加若干字节的前同步码和帧定界符)

答:设在t=0时A开始发送,在t=(64+8)*8=576比特时间,A应当发送完毕。t=225比特时间,B就检测出A的信号。只要B在t=224比特时间之前发送数据,A在发送完毕之前就一定检测到碰撞,就能够肯定以后也不会再发送碰撞了

如果A在发送完毕之前并没有检测到碰撞,那么就能够肯定A所发送的帧不会和B发送的帧发生碰撞(当然也不会和其他站点发生碰撞)。3-25 在上题中的站点A和B在t=0时同时发送了数据帧。当t=255比特时间,A和B同时检测到发生了碰撞,并且在t=255+48=273比特时间完成了干扰信号的传输。A和B在CSMA/CD算法中选择不同的r值退避。假定A和B选择的随机数分别是rA=0和rB=1。试问A和B各在什么时间开始重传其数据帧?A重传的数据帧在什么时间到达B?A重传的数据会不会和B重传的数据再次发生碰撞?B会不会在预定的重传时间停止发送数据? 答:t=0时,A和B开始发送数据

T1=225比特时间,A和B都检测到碰撞(tau)T2=273比特时间,A和B结束干扰信号的传输(T1+48)T3=594比特时间,A 开始发送(T2+Tau+rA*Tau+96)

T4=785比特时间,B再次检测信道。(T4+T2+Tau+Rb*Tau)如空闲,则B在T5=881比特时间发送数据、否则再退避。(T5=T4+96)

A重传的数据在819比特时间到达B,B先检测到信道忙,因此B在预定的881比特时间停止发送 3-26 以太网上只有两个站,它们同时发送数据,产生了碰撞。于是按截断二进制指数退避算法进行重传。重传次数记为i,i=1,2,3,„..。试计算第1次重传失败的概率、第2次重传的概率、第3次重传失败的概率,以及一个站成功发送数据之前的平均重传次数I。答:将第i次重传成功的概率记为pi。显然

第一次重传失败的概率为0.5,第二次重传失败的概率为0.25,第三次重传失败的概率为0.125.平均重传次数I=1.637 3-27 假定一个以太网上的通信量中的80%是在本局域网上进行的,而其余的20%的通信量是在本局域网和因特网之间进行的。另一个以太网的情况则反过来。这两个以太网一个使用以太网集线器,而另一个使用以太网交换机。你认为以太网交换机应当用在哪一个网络? 答:集线器为物理层设备,模拟了总线这一共享媒介共争用,成为局域网通信容量的瓶颈。

交换机则为链路层设备,可实现透明交换

局域网通过路由器与因特网相连

当本局域网和因特网之间的通信量占主要成份时,形成集中面向路由器的数据流,使用集线器冲突较大,采用交换机能得到改善。

当本局域网内通信量占主要成份时,采用交换机改善对外流量不明显 3-28 有10个站连接到以太网上。试计算一下三种情况下每一个站所能得到的带宽。

(1)10个站都连接到一个10Mb/s以太网集线器;(2)10个站都连接到一个100Mb/s以太网集线器;(3)10个站都连接到一个10Mb/s以太网交换机。答:(1)10个站都连接到一个10Mb/s以太网集线器:10mbs(2)10个站都连接到一个100mb/s以太网集线器:100mbs(3)10个站都连接到一个10mb/s以太网交换机:10mbs 3-29 10Mb/s以太网升级到100Mb/s、1Gb/S和10Gb/s时,都需要解决哪些技术问题?为什么以太网能够在发展的过程中淘汰掉自己的竞争对手,并使自己的应用范围从局域网一直扩展到城域网和广域网?

答:技术问题:使参数a保持为较小的数值,可通过减小最大电缆长度或增大帧的最小长度

在100mb/s的以太网中采用的方法是保持最短帧长不变,但将一个网段的最大电缆的度减小到100m,帧间时间间隔从原来9.6微秒改为现在的0.96微秒

吉比特以太网仍保持一个网段的最大长度为100m,但采用了“载波延伸”的方法,使最短帧长仍为64字节(这样可以保持兼容性)、同时将争用时间增大为512字节。并使用“分组突发”减小开销

10吉比特以太网的帧格式与10mb/s,100mb/s和1Gb/s以太网的帧格式完全相同

吉比特以太网还保留标准规定的以太网最小和最大帧长,这就使用户在将其已有的以太网进行升级时,仍能和较低速率的以太网很方便地通信。

由于数据率很高,吉比特以太网不再使用铜线而只使用光纤作为传输媒体,它使用长距离(超过km)的光收发器与单模光纤接口,以便能够工作在广 3-30 以太网交换机有何特点?用它怎样组成虚拟局域网? 答:以太网交换机则为链路层设备,可实现透明交换

虚拟局域网 VLAN 是由一些局域网网段构成的与物理位置无关的逻辑组。这些网段具有某些共同的需求。

虚拟局域网协议允许在以太网的帧格式中插入一个 4 字节的标识符,称为 VLAN 标记(tag),用来指明发送该帧的工作站属于哪一个虚拟局域网。

3-31 网桥的工作原理和特点是什么?网桥与转发器以及以太网交换机有何异同? 答:网桥工作在数据链路层,它根据 MAC 帧的目的地址对收到的帧进行转发。网桥具有过滤帧的功能。当网桥收到一个帧时,并不是向所有的接口转发此帧,而是先检查此帧的目的 MAC 地址,然后再确定将该帧转发到哪一个接口 转发器工作在物理层,它仅简单地转发信号,没有过滤能力 以太网交换机则为链路层设备,可视为多端口网桥 3-32 图3-35表示有五个站点分别连接在三个局域网上,并且用网桥B1和B2连接起来。每一个网桥都有两个接口(1和2)。在一开始,两个网桥中的转发表都是空的。以后有以下各站向其他的站发送了数据帧:A发送给E,C发送给B,D发送给C,B发送给A。试把有关数据填写在表3-2中。发送的帧 B1的转发表 B2的转发表 B1的处理

(转发?丢弃?登记?)B2的处理(转发?丢弃?登记?)地址 接口 地址

接口

转发,写入转发表 转发,写入转发表 A→E C→B D→C B→A 3-33 A 1 A 1 转发,写入转发表 C 2 C 1 转发,写入转发表

D 2 D 2 写入转发表,丢弃不转发 转发,写入转发表 B 1

写入转发表,丢弃不转发 接收不到这个帧

网桥中的转发表是用自学习算法建立的。如果有的站点总是不发送数据而仅仅接受数据,那么在转发表中是否就没有与这样的站点相对应的项目?如果要向这个站点发送数据帧,那么网桥能够把数据帧正确转发到目的地址吗? 答:没有与这样的站点相对应的项目;网桥能够利用广播把数据帧正确转发到目的地址 第四章 网络层

1.网络层向上提供的服务有哪两种?是比较其优缺点。

网络层向运输层提供 “面向连接”虚电路(Virtual Circuit)服务或“无连接”数据报服务

前者预约了双方通信所需的一切网络资源。优点是能提供服务质量的承诺。即所传送的分组不出错、丢失、重复和失序(不按序列到达终点),也保证分组传送的时限,缺点是路由器复杂,网络成本高;

后者无网络资源障碍,尽力而为,优缺点与前者互易

2.网络互连有何实际意义?进行网络互连时,有哪些共同的问题需要解决?

网络互联可扩大用户共享资源范围和更大的通信区域 进行网络互连时,需要解决共同的问题有: 不同的寻址方案 不同的最大分组长度 不同的网络接入机制 不同的超时控制 不同的差错恢复方法 不同的状态报告方法 不同的路由选择技术 不同的用户接入控制

不同的服务(面向连接服务和无连接服务)不同的管理与控制方式

3.作为中间设备,转发器、网桥、路由器和网关有何区别? 中间设备又称为中间系统或中继(relay)系统。物理层中继系统:转发器(repeater)。数据链路层中继系统:网桥或桥接器(bridge)。网络层中继系统:路由器(router)。网桥和路由器的混合物:桥路器(brouter)。网络层以上的中继系统:网关(gateway)。

4.试简单说明下列协议的作用:IP、ARP、RARP和ICMP。

IP协议:实现网络互连。使参与互连的性能各异的网络从用户看起来好像是一个统一的网络。网际协议IP是TCP/IP体系中两个最主要的协议之一,与IP协议配套使用的还有四个协议。

ARP协议:是解决同一个局域网上的主机或路由器的IP地址和硬件地址的映射问题。RARP:是解决同一个局域网上的主机或路由器的硬件地址和IP地址的映射问题。ICMP:提供差错报告和询问报文,以提高IP数据交付成功的机会 因特网组管理协议IGMP:用于探寻、转发本局域网内的组成员关系。5.IP地址分为几类?各如何表示?IP地址的主要特点是什么? 分为ABCDE 5类;每一类地址都由两个固定长度的字段组成,其中一个字段是网络号 net-id,它标志主机(或路由器)所连接到的网络,而另一个字段则是主机号 host-id,它标志该主机(或路由器)。各类地址的网络号字段net-id分别为1,2,3,0,0字节;主机号字段host-id分别为3字节、2字节、1字节、4字节、4字节。特点:

(1)IP 地址是一种分等级的地址结构。分两个等级的好处是: 第一,IP 地址管理机构在分配 IP 地址时只分配网络号,而剩下的主机号则由得到该网络号的单位自行分配。这样就方便了 IP 地址的管理。

第二,路由器仅根据目的主机所连接的网络号来转发分组(而不考虑目的主机号),这样就可以使路由表中的项目数大幅度减少,从而减小了路由表所占的存储空间。(2)实际上 IP 地址是标志一个主机(或路由器)和一条链路的接口。

当一个主机同时连接到两个网络上时,该主机就必须同时具有两个相应的 IP 地址,其网络号 net-id 必须是不同的。这种主机称为多归属主机(multihomed host)。

由于一个路由器至少应当连接到两个网络(这样它才能将 IP 数据报从一个网络转发到另一个网络),因此一个路由器至少应当有两个不同的 IP 地址。

(3)用转发器或网桥连接起来的若干个局域网仍为一个网络,因此这些局域网都具有同样的网络号 net-id。

(4)所有分配到网络号 net-id 的网络,范围很小的局域网,还是可能覆盖很大地理范围的广域网,都是平等的。

6.试根据IP地址的规定,计算出表4-2中的各项数据。

解:1)A类网中,网络号占七个bit, 则允许用的网络数为2的7次方,为128,但是要 除去0和127的情况,所以能用的最大网络数是126,第一个网络号是1,最后一个网络号是 126。主机号占24个bit, 则允许用的最大主机数为2的24次方,为16777216,但是也要除 去全0和全1的情况,所以能用的最大主机数是16777214。

2)B类网中,网络号占14个bit,则能用的最大网络数为2的14次方,为16384,第 一个网络号是128.0,因为127要用作本地软件回送测试,所以从128开始,其点后的还可以 容纳2的8次方为256,所以以128为开始的网络号为128.0~~128.255,共256个,以此类 推,第16384个网络号的计算方法是:16384/256=64128+64=192,则可推算出为191.255。主机号占16个 bit, 则允许用的最大主机数为2的16次方,为65536,但是也要除去全0和全 1的情况,所以能用的最大主机数是65534。

3)C类网中,网络号占21个bit, 则能用的网络数为2的21次方,为2097152,第一个 网络号是

192.0.0,各个点后的数占一个字节,所以以

192 为开始的网络号为 192.0.0~~192.255.255,共256*256=65536,以此类推,第2097152个网络号的计算方法是: 2097152/65536=32192+32=224,则可推算出为223.255.255。主机号占8个bit, 则允许用的最大主机数为2的8次方,为256,但是也要除去全0和全1的情况,所以能用的最大主机数是254。

7.试说明IP地址与硬件地址的区别,为什么要使用这两种不同的地址?

IP 地址就是给每个连接在因特网上的主机(或路由器)分配一个在全世界范围是唯一的 32 位的标识符。从而把整个因特网看成为一个单一的、抽象的网络 在实际网络的链路上传送数据帧时,最终还是必须使用硬件地址。

MAC地址在一定程度上与硬件一致,基于物理、能够标识具体的链路通信对象、IP地址给予逻辑域的划分、不受硬件限制。

8.IP地址方案与我国的电话号码体制的主要不同点是什么? 于网络的地理分布无关

9.(1)子网掩码为255.255.255.0代表什么意思? 有三种含义

其一是一个A类网的子网掩码,对于A类网络的IP地址,前8位表示网络号,后24位表示主机号,使用子网掩码255.255.255.0表示前8位为网络号,中间16位用于子网段的划分,最后8位为主机号。

第二种情况为一个B类网,对于B类网络的IP地址,前16位表示网络号,后16位表示主机号,使用子网掩码255.255.255.0表示前16位为网络号,中间8位用于子网段的划分,最后8位为主机号。

第三种情况为一个C类网,这个子网掩码为C类网的默认子网掩码。

(2)一网络的现在掩码为255.255.255.248,问该网络能够连接多少个主机? 255.255.255.248即11111111.11111111.11111111.11111000.每一个子网上的主机为(2^3)=6 台

掩码位数29,该网络能够连接8个主机,扣除全1和全0后为6台。

(3)一A类网络和一B网络的子网号subnet-id分别为16个1和8个1,问这两个子网掩码有何不同?

A类网络:11111111 11111111 11111111 00000000 给定子网号(16位“1”)则子网掩码为255.255.255.0 B类网络 11111111 11111111 11111111 00000000 给定子网号(8位“1”)则子网掩码为255.255.255.0但子网数目不同

(4)一个B类地址的子网掩码是255.255.240.0。试问在其中每一个子网上的主机数最多是多少?

(240)10=(128+64+32+16)10=(11110000)2 Host-id的位数为4+8=12,因此,最大主机数为: 2^12-2=4096-2=4094 11111111.11111111.11110000.00000000 主机数2^12-2(5)一A类网络的子网掩码为255.255.0.255;它是否为一个有效的子网掩码? 是 10111111 11111111 00000000 11111111(6)某个IP地址的十六进制表示C2.2F.14.81,试将其转化为点分十进制的形式。这个地址是哪一类IP地址?

C2 2F 14 81--à(12*16+2).(2*16+15).(16+4).(8*16+1)---à194.47.20.129 C2 2F 14 81---à11000010.00101111.00010100.10000001 C类地址

(7)C类网络使用子网掩码有无实际意义?为什么?

有实际意义.C类子网IP地址的32位中,前24位用于确定网络号,后8位用于确定主机号.如果划分子网,可以选择后8位中的高位,这样做可以进一步划分网络,并且不增加路由表的内容,但是代价是主机数相信减少.10.试辨认以下IP地址的网络类别。

(1)128.36.199.3(2)21.12.240.17(3)183.194.76.253(4)192.12.69.248(5)89.3.0.1(6)200.3.6.2(2)和(5)是A类,(1)和(3)是B类,(4)和(6)是C类.11.IP数据报中的首部检验和并不检验数据报中的数据。这样做的最大好处是什么?坏处是什么?

在首部中的错误比在数据中的错误更严重,例如,一个坏的地址可能导致分组被投寄到错误的主机。许多主机并不检查投递给他们的分组是否确实是要投递给它们,它们假定网络从来不会把本来是要前往另一主机的分组投递给它们。

数据不参与检验和的计算,因为这样做代价大,上层协议通常也做这种检验工作,从前,从而引起重复和多余。

因此,这样做可以加快分组的转发,但是数据部分出现差错时不能及早发现。

12.当某个路由器发现一IP数据报的检验和有差错时,为什么采取丢弃的办法而不是要求源站重传此数据报?计算首部检验和为什么不采用CRC检验码? 答:纠错控制由上层(传输层)执行

IP首部中的源站地址也可能出错请错误的源地址重传数据报是没有意义的不采用CRC简化解码计算量,提高路由器的吞吐量

13.设IP数据报使用固定首部,其各字段的具体数值如图所示(除IP地址外,均为十进制表示)。试用二进制运算方法计算应当写入到首部检验和字段中的数值(用二进制表示)。5 0 28 1 0 0 4 17 10.12.14.5 12.6.7.9 01000101 00000000 00000000 00000001 00000100 00010001 xxxxxxxx xxxxxxxx 00001010 00001100 00001100 00000110 00000000 00011100 00000000 00000000 00001110 00000101 00000111 00001001作二进制检验和(XOR)01110100 01001110取反码 10001011 10110001 14.重新计算上题,但使用十六进制运算方法(没16位二进制数字转换为4个十六进制数字,再按十六进制加法规则计算)。比较这两种方法。

01000101 00000000 00000000-00011100 4 5 0 0 0 0 1 C 00000000 00000001 00000000-00000000 0 0 0 1 0 0 0 0 00000100 000010001 xxxxxxxx xxxxxxxx 0 4 1 1 0 0 0 0 00001010 00001100 00001110 00000101 0 A 0 C 0 E 0 5 00001100 00000110 00000111 00001001 0 C 0 6 0 7 0 9 01011111 00100100 00010101 00101010 5 F 2 4 1 5 2 A 5 F 2 4 1 5 2 A 7 4 4 E-à8 B B 1 15.什么是最大传送单元MTU?它和IP数据报的首部中的哪个字段有关系?

答:IP层下面数据链里层所限定的帧格式中数据字段的最大长度,与IP数据报首部中的总长度字段有关系

16.在因特网中将IP数据报分片传送的数据报在最后的目的主机进行组装。还可以有另一种做法,即数据报片通过一个网络就进行一次组装。是比较这两种方法的优劣。在目的站而不是在中间的路由器进行组装是由于:

(1)路由器处理数据报更简单些;效率高,延迟小。

(2)数据报的各分片可能经过各自的路径。因此在每一个中间的路由器进行组装可能总会缺少几个数据报片;

(3)也许分组后面还要经过一个网络,它还要给这些数据报片划分成更小的片。如果在中间的路由器进行组装就可能会组装多次。(为适应路径上不同链路段所能许可的不同分片规模,可能要重新分片或组装)17.一个3200位长的TCP报文传到IP层,加上160位的首部后成为数据报。下面的互联网由两个局域网通过路由器连接起来。但第二个局域网所能传送的最长数据帧中的数据部分只有1200位。因此数据报在路由器必须进行分片。试问第二个局域网向其上层要传送多少比特的数据(这里的“数据”当然指的是局域网看见的数据)? 答:第二个局域网所能传送的最长数据帧中的数据部分只有1200bit,即每个IP数据片的数据部分<1200-160(bit),由于片偏移是以8字节即64bit为单位的,所以IP数据片的数据部分最大不超过1024bit,这样3200bit的报文要分4个数据片,所以第二个局域网向上传送的比特数等于(3200+4×160),共3840bit。

18.(1)有人认为:“ARP协议向网络层提供了转换地址的服务,因此ARP应当属于数据链路层。”这种说法为什么是错误的?

因为ARP本身是网络层的一部分,ARP协议为IP协议提供了转换地址的服务,数据链路层使用硬件地址而不使用IP地址,无需ARP协议数据链路层本身即可正常运行。因此ARP不再数据链路层。

(2)试解释为什么ARP高速缓存每存入一个项目就要设置10~20分钟的超时计时器。这个时间设置的太大或太小会出现什么问题?

答:考虑到IP地址和Mac地址均有可能是变化的(更换网卡,或动态主机配置)10-20分钟更换一块网卡是合理的。超时时间太短会使ARP请求和响应分组的通信量太频繁,而超时时间太长会使更换网卡后的主机迟迟无法和网络上的其他主机通信。

(3)至少举出两种不需要发送ARP请求分组的情况(即不需要请求将某个目的IP地址解析为相应的硬件地址)。

在源主机的ARP高速缓存中已经有了该目的IP地址的项目;源主机发送的是广播分组;源主机和目的主机使用点对点链路。

19.主机A发送IP数据报给主机B,途中经过了5个路由器。试问在IP数据报的发送过程中总共使用了几次ARP?

6次,主机用一次,每个路由器各使用一次。20.设某路由器建立了如下路由表:

目的网络 子网掩码 下一跳 128.96.39.0 255.255.255.128 接口m0 128.96.39.128 255.255.255.128 接口m1 128.96.40.0 255.255.255.128 R2 192.4.153.0 255.255.255.192 R3 *(默认)—— R4 现共收到5个分组,其目的地址分别为:(1)128.96.39.10(2)128.96.40.12(3)128.96.40.151(4)192.153.17(5)192.4.153.90(1)分组的目的站IP地址为:128.96.39.10。先与子网掩码255.255.255.128相与,得128.96.39.0,可见该分组经接口0转发。(2)分组的目的IP地址为:128.96.40.12。

① 与子网掩码255.255.255.128相与得128.96.40.0,不等于128.96.39.0。

② 与子网掩码255.255.255.128相与得128.96.40.0,经查路由表可知,该项分组经R2转发。

(3)分组的目的IP地址为:128.96.40.151,与子网掩码255.255.255.128相与后得128.96.40.128,与子网掩码255.255.255.192相与后得128.96.40.128,经查路由表知,该分组转发选择默认路由,经R4转发。

(4)分组的目的IP地址为:192.4.153.17。与子网掩码255.255.255.128相与后得192.4.153.0。与子网掩码255.255.255.192相与后得192.4.153.0,经查路由表知,该分组经R3转发。

(5)分组的目的IP地址为:192.4.153.90,与子网掩码255.255.255.128相与后得192.4.153.0。与子网掩码255.255.255.192相与后得192.4.153.64,经查路由表知,该分组转发选择默认路由,经R4转发。

21某单位分配到一个B类IP地址,其net-id为129.250.0.0.该单位有4000台机器,分布在16个不同的地点。如选用子网掩码为255.255.255.0,试给每一个地点分配一个子网掩码号,并算出每个地点主机号码的最小值和最大值

4000/16=250,平均每个地点250台机器。如选255.255.255.0为掩码,则每个网络所连主机数=28-2=254>250,共有子网数=28-2=254>16,能满足实际需求。可给每个地点分配如下子网号码

地点: 子网号(subnet-id)子网网络号 主机IP的最小值和最大值 1: 00000001 129.250.1.0 129.250.1.1---129.250.1.254 2: 00000010 129.250.2.0 129.250.2.1---129.250.2.254 3: 00000011 129.250.3.0 129.250.3.1---129.250.3.254 4: 00000100 129.250.4.0 129.250.4.1---129.250.4.254 5: 00000101 129.250.5.0 129.250.5.1---129.250.5.254 6: 00000110 129.250.6.0 129.250.6.1---129.250.6.254 7: 00000111 129.250.7.0 129.250.7.1---129.250.7.254 8: 00001000 129.250.8.0 129.250.8.1---129.250.8.254 9: 00001001 129.250.9.0 129.250.9.1---129.250.9.254 10: 00001010 129.250.10.0 129.250.10.1---129.250.10.254 11: 00001011 129.250.11.0 129.250.11.1---129.250.11.254 12: 00001100 129.250.12.0 129.250.12.1---129.250.12.254 13: 00001101 129.250.13.0 129.250.13.1---129.250.13.254 14: 00001110 129.250.14.0 129.250.14.1---129.250.14.254 15: 00001111 129.250.15.0 129.250.15.1---129.250.15.254 16: 00010000 129.250.16.0 129.250.16.1---129.250.16.254 22..一个数据报长度为4000字节(固定首部长度)。现在经过一个网络传送,但此网络能够

传送的最大数据长度为1500字节。试问应当划分为几个短些的数据报片?各数据报片的数据字段长度、片偏移字段和MF标志应为何数值? IP数据报固定首部长度为20字节 总长度(字节)数据长度(字节)MF 片偏移 3980 1480 1480 1020

0 0 1 0 1 185 0 370 原始数据报 4000 数据报片1 1500 数据报片2 1500 数据报片3 1040 23 分两种情况(使用子网掩码和使用CIDR)写出因特网的IP成查找路由的算法。见课本P134、P139 24.试找出可产生以下数目的A类子网的子网掩码(采用连续掩码)。

(1)2,(2)6,(3)30,(4)62,(5)122,(6)250.(1)255.192.0.0,(2)255.224.0.0,(3)255.248.0.0,(4)255.252.0.0,(5)255.254.0.0,(6)255.255.0.0 25.以下有4个子网掩码。哪些是不推荐使用的?为什么?

(1)176.0.0.0,(2)96.0.0.0,(3)127.192.0.0,(4)255.128.0.0。只有(4)是连续的1和连续的0的掩码,是推荐使用的 26.有如下的4个/24地址块,试进行最大可能性的聚会。212.56.132.0/24 212.56.133.0/24 212.56.134.0/24 212.56.135.0/24 212=(11010100)2,56=(00111000)2 132=(10000100)2,133=(10000101)2 134=(10000110)2,135=(10000111)2 所以共同的前缀有22位,即11010100 00111000 100001,聚合的CIDR地址块是:212.56.132.0/22 27.有两个CIDR地址块208.128/11和208.130.28/22。是否有那一个地址块包含了另一个地址?如果有,请指出,并说明理由。208.128/11的前缀为:11010000 100 208.130.28/22的前缀为:11010000 10000010 000101,它的前11位与208.128/11的前缀是一致的,所以208.128/11地址块包含了208.130.28/22这一地址块。28.已知路由器R1的路由表如表4—12所示。表4-12习题4-28中路由器R1的路由表 地址掩码 目的网络地址

下一跳地址 路由器接口

/26 140.5.12.64 180.15.2.5 m2 /24 130.5.8.0 190.16.6.2 m1 /16 110.71.0.0 „„ /16 180.15.0.0 „„ /16 196.16.0.0 „„ 默认 默认

m0 m2 m1 110.71.4.5 m0 试画出个网络和必要的路由器的连接拓扑,标注出必要的IP地址和接口。对不能确定的情应该指明。

图形见课后答案P380 29.一个自治系统有5个局域网,其连接图如图4-55示。LAN2至LAN5上的主机数分别为:91,150,3和15.该自治系统分配到的IP地址块为30.138.118/23。试给出每一个局域网的地址块(包括前缀)。

30.138.118/23--?30.138.0111 011 分配网络前缀时应先分配地址数较多的前缀

题目没有说LAN1上有几个主机,但至少需要3个地址给三个路由器用。本题的解答有很多种,下面给出两种不同的答案:

第一组答案 第二组答案 LAN1 30.138.119.192/29 30.138.118.192/27 LAN2 30.138.119.0/25 30.138.118.0/25 LAN3 30.138.118.0/24 30.138.119.0/24 LAN4 30.138.119.200/29 30.138.118.224/27 LAN5 30.138.119.128/26 30.138.118.128/27

30.一个大公司有一个总部和三个下属部门。公司分配到的网络前缀是192.77.33/24.公司的网络布局如图4-56示。总部共有五个局域网,其中的LAN1-LAN4都连接到路由器R1上,R1再通过LAN5与路由器R5相连。R5和远地的三个部门的局域网LAN6~LAN8通过广域网相连。每一个局域网旁边标明的数字是局域网上的主机数。试给每一个局域网分配一个合适的网络的前缀。见课后答案P380 31.以下地址中的哪一个和86.32/12匹配:请说明理由。

(1)86.33.224.123:(2)86.79.65.216;(3)86.58.119.74;(4)86.68.206.154。86.32/12 ? 86.00100000 下划线上为12位前缀说明第二字节的前4位在前缀中。给出的四个地址的第二字节的前4位分别为:0010,0100,0011和0100。因此只有(1)是匹配的。

32.以下地址中的哪一个地址2.52.90。140匹配?请说明理由。

(1)0/4;(2)32/4;(3)4/6(4)152.0/11 前缀(1)和地址2.52.90.140匹配 2.52.90.140 ? 0000 0010.52.90.140 0/4 ? 0000 0000 32/4 ? 0010 0000 4/6 ? 0000 0100 80/4 ? 0101 0000 33.下面的前缀中的哪一个和地址152.7.77.159及152.31.47.252都匹配?请说明理由。

(1)152.40/13;(2)153.40/9;(3)152.64/12;(4)152.0/11。前缀(4)和这两个地址都匹配

34.与下列掩码相对应的网络前缀各有多少位?

(1)192.0.0.0;(2)240.0.0.0;(3)255.254.0.0;(4)255.255.255.252。(1)/2;(2)/4;(3)/11;(4)/30。

35.已知地址块中的一个地址是140.120.84.24/20。试求这个地址块中的最小地址和最大地址。地址掩码是什么?地址块中共有多少个地址?相当于多少个C类地址? 140.120.84.24 ? 140.120.(0101 0100).24 最小地址是 140.120.(0101 0000).0/20(80)最大地址是 140.120.(0101 1111).255/20(95)地址数是4096.相当于16个C类地址。

36.已知地址块中的一个地址是190.87.140.202/29。重新计算上题。190.87.140.202/29 ? 190.87.140.(1100 1010)/29 最小地址是 190.87.140.(1100 1000)/29 200 最大地址是 190.87.140.(1100 1111)/29 207 地址数是8.相当于1/32个C类地址。

37.某单位分配到一个地址块136.23.12.64/26。现在需要进一步划分为4个一样大的子网。试问:(1)每一个子网的网络前缀有多长?

(2)每一个子网中有多少个地址?

(3)每一个子网的地址是什么?

(4)每一个子网可分配给主机使用的最小地址和最大地址是什么?(1)每个子网前缀28位。

(2)每个子网的地址中有4位留给主机用,因此共有16个地址。(3)四个子网的地址块是:

第一个地址块136.23.12.64/28,可分配给主机使用的最小地址:136.23.12.01000001=136.23.12.65/28 最大地址:136.23.12.01001110=136.23.12.78/28 第二个地址块136.23.12.80/28,可分配给主机使用的最小地址:136.23.12.01010001=136.23.12.81/28 最大地址:136.23.12.01011110=136.23.12.94/28 第三个地址块136.23.12.96/28,可分配给主机使用的最小地址:136.23.12.01100001=136.23.12.97/28 最大地址:136.23.12.01101110=136.23.12.110/28 第四个地址块136.23.12.112/28,可分配给主机使用的最小地址:136.23.12.01110001=136.23.12.113/28 最大地址:136.23.12.01111110=136.23.12.126/28 38.IGP和EGP这两类协议的主要区别是什么? IGP:在自治系统内部使用的路由协议;力求最佳路由

EGP:在不同自治系统便捷使用的路由协议;力求较好路由(不兜圈子)EGP必须考虑其他方面的政策,需要多条路由。代价费用方面可能可达性更重要。IGP:内部网关协议,只关心本自治系统内如何传送数据报,与互联网中其他自治系统使用什么协议无关。

EGP:外部网关协议,在不同的AS边界传递路由信息的协议,不关心AS内部使用何种协议。注:IGP主要考虑AS内部如何高效地工作,绝大多数情况找到最佳路由,对费用和代价的有多种解释。

39.试简述RIP,OSPF和BGP路由选择协议的主要特点。主要特点 网关协议 RIP OSPF 内部

BGP

外部

目的网,下一站,距离

目的网,完整路径 内部

路由表内容 目的网,下一站,距离 最优通路依据 算法 跳数

费用

多种策略87 距离矢量

建立TCP连接 距离矢量 链路状态

传送方式 其他 运输层UDP IP数据报

简单、效率低、跳数为16不可达、好消息传的快,坏消息传的慢 效率高、路由器频繁交换信息,难维持一致性

40.RIP使用UDP,OSPF使用IP,而BGP使用TCP。这样做有何优点?为什么RIP周期性地和临站交换路由器由信息而BGP却不这样做?

RIP只和邻站交换信息,使用UDP无可靠保障,但开销小,可以满足RIP要求; OSPF使用可靠的洪泛法,直接使用IP,灵活、开销小;

BGP需要交换整个路由表和更新信息,TCP提供可靠交付以减少带宽消耗; 规模大、统一度量为可达性 RIP使用不保证可靠交付的UDP,因此必须不断地(周期性地)和邻站交换信息才能使路由信息及时得到更新。但BGP使用保证可靠交付的TCP因此不需要这样做。

41.假定网络中的路由器B的路由表有如下的项目(这三列分别表示“目的网络”、“距离”和“下一跳路由器”)

N1 7 A N2 2 c N6 8 F N8 4 E N9 4 F 现在B收到从C发来的路由信息(这两列分别表示“目的网络”“距离”): N2 4 N3 8 N6 4 N8 3 N9 5 试求出路由器B更新后的路由表(详细说明每一个步骤)。

路由器B更新后的路由表如下: N1 A

无新信息,不改变 N2 C

相同的下一跳,更新 N3 C

新的项目,添加进来

N6 C

不同的下一跳,距离更短,更新 N8 E

不同的下一跳,距离一样,不改变 N9 F

不同的下一跳,距离更大,不改变 42.假定网络中的路由器A的路由表有如下的项目(格式同上题): N1 4 B N2 2 C N3 1 F N4 5 G 现将A收到从C发来的路由信息(格式同上题): N1 2 N2 1 N3 3 N4 7 试求出路由器A更新后的路由表(详细说明每一个步骤)。

路由器A更新后的路由表如下:

N1 C

不同的下一跳,距离更短,改变 N2 C

不同的下一跳,距离一样,不变 N3 F

不同的下一跳,距离更大,不改变 N4 G

无新信息,不改变

43.IGMP协议的要点是什么?隧道技术是怎样使用的? IGMP可分为两个阶段:

第一阶段:当某个主机加入新的多播组时,该主机应向多播组的多播地址发送IGMP 报文,声明自己要成为该组的成员。本地的多播路由器收到 IGMP 报文后,将组成员关系转发给因特网上的其他多播路由器。第二阶段:因为组成员关系是动态的,因此本地多播路由器要周期性地探询本地局域网上的主机,以便知道这些主机是否还继续是组的成员。只要对某个组有一个主机响应,那么多播路由器就认为这个组是活跃的。但一个组在经过几次的探询后仍然没有一个主机响应,则不再将该组的成员关系转发给其他的多播路由器。

隧道技术:多播数据报被封装到一个单播IP数据报中,可穿越不支持多播的网络,到达另一个支持多播的网络。

44.什么是VPN?VPN有什么特点和优缺点?VPN有几种类别? P171-173 45.什么是NAT?NAPT有哪些特点?NAT的优点和缺点有哪些?NAT的优点和缺点有哪些? P173-174 第五章 传输层

5—01 试说明运输层在协议栈中的地位和作用,运输层的通信和网络层的通信有什么重要区别?为什么运输层是必不可少的?

答:运输层处于面向通信部分的最高层,同时也是用户功能中的最低层,向它上面的应用层提供服务

运输层为应用进程之间提供端到端的逻辑通信,但网络层是为主机之间提供逻辑通信(面向主机,承担路由功能,即主机寻址及有效的分组交换)。

各种应用进程之间通信需要“可靠或尽力而为”的两类服务质量,必须由运输层以复用和分用的形式加载到网络层。

5—02 网络层提供数据报或虚电路服务对上面的运输层有何影响? 答:网络层提供数据报或虚电路服务不影响上面的运输层的运行机制。

但提供不同的服务质量。5—03 当应用程序使用面向连接的TCP和无连接的IP时,这种传输是面向连接的还是面向无连接的?

答:都是。这要在不同层次来看,在运输层是面向连接的,在网络层则是无连接的。5—04 试用画图解释运输层的复用。画图说明许多个运输用户复用到一条运输连接上,而这条运输连接有复用到IP数据报上。

5—05 试举例说明有些应用程序愿意采用不可靠的UDP,而不用采用可靠的TCP。答:VOIP:由于语音信息具有一定的冗余度,人耳对VOIP数据报损失由一定的承受度,但对传输时延的变化较敏感。

有差错的UDP数据报在接收端被直接抛弃,TCP数据报出错则会引起重传,可能带来较大的时延扰动。

因此VOIP宁可采用不可靠的UDP,而不愿意采用可靠的TCP。5—06 接收方收到有差错的UDP用户数据报时应如何处理? 答:丢弃

5—07 如果应用程序愿意使用UDP来完成可靠的传输,这可能吗?请说明理由 答:可能,但应用程序中必须额外提供与TCP相同的功能。5—08 为什么说UDP是面向报文的,而TCP是面向字节流的?

答:发送方 UDP 对应用程序交下来的报文,在添加首部后就向下交付 IP 层。UDP 对应用层交下来的报文,既不合并,也不拆分,而是保留这些报文的边界。

接收方 UDP 对 IP 层交上来的 UDP 用户数据报,在去除首部后就原封不动地交付上层的应用进程,一次交付一个完整的报文。

发送方TCP对应用程序交下来的报文数据块,视为无结构的字节流(无边界约束,课分拆/合并),但维持各字节

5—09 端口的作用是什么?为什么端口要划分为三种?

答:端口的作用是对TCP/IP体系的应用进程进行统一的标志,使运行不同操作系统的计算机的应用进程能够互相通信。

熟知端口,数值一般为0~1023.标记常规的服务进程;

登记端口号,数值为1024~49151,标记没有熟知端口号的非常规的服务进程; 5—10 试说明运输层中伪首部的作用。答:用于计算运输层数据报校验和。

5—11 某个应用进程使用运输层的用户数据报UDP,然而继续向下交给IP层后,又封装成IP数据报。既然都是数据报,可否跳过UDP而直接交给IP层?哪些功能UDP提供了但IP没提提供?

答:不可跳过UDP而直接交给IP层

IP数据报IP报承担主机寻址,提供报头检错;只能找到目的主机而无法找到目的进程。

UDP提供对应用进程的复用和分用功能,以及提供对数据差分的差错检验。5—12 一个应用程序用UDP,到IP层把数据报在划分为4个数据报片发送出去,结果前两个数据报片丢失,后两个到达目的站。过了一段时间应用程序重传UDP,而IP层仍然划分为4个数据报片来传送。结果这次前两个到达目的站而后两个丢失。试问:在目的站能否将这两次传输的4个数据报片组装成完整的数据报?假定目的站第一次收到的后两个数据报片仍然保存在目的站的缓存中。答:不行

重传时,IP数据报的标识字段会有另一个标识符。仅当标识符相同的IP数据报片才能组装成一个IP数据报。

前两个IP数据报片的标识符与后两个IP数据报片的标识符不同,因此不能组装成一个IP数据报。

5—13 一个UDP用户数据的数据字段为8192季节。在数据链路层要使用以太网来传送。试问应当划分为几个IP数据报片?说明每一个IP数据报字段长度和片偏移字段的值。答:6个

数据字段的长度:前5个是1480字节,最后一个是800字节。

片偏移字段的值分别是:0,1480,2960,4440,5920和7400.5—14 一UDP用户数据报的首部十六进制表示是:06 32 00 45 00 1C E2 17.试求源端口、目的端口、用户数据报的总长度、数据部分长度。这个用户数据报是从客户发送给服务器发送给客户?使用UDP的这个服务器程序是什么?

解:源端口1586,目的端口69,UDP用户数据报总长度28字节,数据部分长度20字节。

此UDP用户数据报是从客户发给服务器(因为目的端口号<1023,是熟知端口)、服务器程序是TFFTP。

5—15 使用TCP对实时话音数据的传输有没有什么问题?使用UDP在传送数据文件时会有什么问题?

答:如果语音数据不是实时播放(边接受边播放)就可以使用TCP,因为TCP传输可靠。接收端用TCP讲话音数据接受完毕后,可以在以后的任何时间进行播放。但假定是实时传输,则必须使用UDP。

UDP不保证可靠交付,但UCP比TCP的开销要小很多。因此只要应用程序接受这样的服务质量就可以使用UDP。

5—16 在停止等待协议中如果不使用编号是否可行?为什么? 答:分组和确认分组都必须进行编号,才能明确哪个分则得到了确认。

5—17 在停止等待协议中,如果收到重复的报文段时不予理睬(即悄悄地丢弃它而其他什么也没做)是否可行?试举出具体的例子说明理由。答:

收到重复帧不确认相当于确认丢失

5—18 假定在运输层使用停止等待协议。发送发在发送报文段M0后再设定的时间内未收到确认,于是重传M0,但M0又迟迟不能到达接收方。不久,发送方收到了迟到的对M0的确认,于是发送下一个报文段M1,不久就收到了对M1的确认。接着发送方发送新的报文段M0,但这个新的M0在传送过程中丢失了。正巧,一开始就滞留在网络中的M0现在到达接收方。接收方无法分辨M0是旧的。于是收下M0,并发送确认。显然,接收方后来收到的M0是重复的,协议失败了。

试画出类似于图5-9所示的双方交换报文段的过程。答:

旧的M0被当成新的M0。

5—19 试证明:当用n比特进行分组的编号时,若接收到窗口等于1(即只能按序接收分组),当仅在发送窗口不超过2n-1时,连接ARQ协议才能正确运行。窗口单位是分组。解:见课后答案。

5—20 在连续ARQ协议中,若发送窗口等于7,则发送端在开始时可连续发送7个分组。因此,在每一分组发送后,都要置一个超时计时器。现在计算机里只有一个硬时钟。设这7个分组发出的时间分别为t0,t1„t6,且tout都一样大。试问如何实现这7个超时计时器(这叫软件时钟法)? 解:见课后答案。5—21 假定使用连续ARQ协议中,发送窗口大小事3,而序列范围[0,15],而传输媒体保证在接收方能够按序收到分组。在某时刻,接收方,下一个期望收到序号是5.试问:

(1)在发送方的发送窗口中可能有出现的序号组合有哪几种?

(2)接收方已经发送出去的、但在网络中(即还未到达发送方)的确认分组可能有哪些?说明这些确认分组是用来确认哪些序号的分组。

5—22 主机A向主机B发送一个很长的文件,其长度为L字节。假定TCP使用的MSS有1460字节。

(1)在TCP的序号不重复使用的条件下,L的最大值是多少?

(2)假定使用上面计算出文件长度,而运输层、网络层和数据链路层所使用的首部开销共66字节,链路的数据率为10Mb/s,试求这个文件所需的最短发送时间。

解:(1)L_max的最大值是2^32=4GB,G=2^30.(2)满载分片数Q={L_max/MSS}取整=2941758发送的总报文数 N=Q*(MSS+66)+{(L_max-Q*MSS)+66}=4489122708+682=4489123390 总字节数是N=4489123390字节,发送4489123390字节需时间为:N*8/(10*10^6)=3591.3秒,即59.85分,约1小时。

5—23 主机A向主机B连续发送了两个TCP报文段,其序号分别为70和100。试问:(1)第一个报文段携带了多少个字节的数据?

(2)主机B收到第一个报文段后发回的确认中的确认号应当是多少?

(3)如果主机B收到第二个报文段后发回的确认中的确认号是180,试问A发送的第二个报文段中的数据有多少字节?

(4)如果A发送的第一个报文段丢失了,但第二个报文段到达了B。B在第二个报文段到

第三篇:计算机网络第五版谢希仁 缩写总结

ADSL非对称数字用户线路Asymmetric Digital Subscriber Line

API应用程序编程接口 Application Programming Interface

ARP地址解析协议Address Resolution Protocol ATM异步传输模式Asynchronous Transfer Mode BGP边界网关协议Border Gateway Protocol CATV有线电视Community Antenna Television CDM码分复用Code Division Multiplexing CDMA码分多址Code Division Multiple Access)CIDR无类域内路由选择Classless Inter-Domain Routing)

CRC循环冗余码校验Cyclic Redundancy Check CSMA/CD载波监听多点接入/冲突检测 CSMA/CA载波监听多点接入/冲突避免 DES数据加密标准data encryption standard DHCP动态主机配置协议Dynamic host configuration protocol)

DNS域名服务器Domain Name Server DSSS直接序列扩频Direct Sequence Spread Spectrum

DWDM密集波分复用Dense Wavelength Division Multiplexing

EGP外部网关协议Exterior Gateway Protocol FDDI光纤分布式数据接口Fiber Distributed Data Interface)

FDM频分多路复用Frequency Division Multiplexing

FHSS跳频扩频技术Frequency Hopping Spread Sprectrum)

FIFO先入先出First In First Out FTP文件传输协议File Transfer Protocol HDSL高速数字用户线High Speed Digital Subscriber Line

HFC光纤同轴电缆混合网Hybrid Fiber Coaxial HTML超文本标记语言Hypertext Markup Language HTTP超文本传输协议Hyper Text Transport Protocol

ICMP网间控制报文协议Internet Control Messages Protocol

IEEE电气与电子工程师协会Institute of Electrical and Electronic Engineers)IGMP因特网组管理协议Internet Group Management Protocol

IMAP因特网报文存取协议(Internet Message Access Protocol)

IP互联网协议Internet Protocol

IPsec网际协议安全Internet Protocol Security ISO国际标准化组织International Standardization Organization LAN 局域网local area network

LCP链路控制协议link control protocol)MAC介质访问控制

MPLS多协定标签交换Multi Protocol Label Switch

NAT网络地址转换Network Address Translation)NCP网络控制协议Network Control Protocol)NVT网络虚拟终端Network Virtual Terminal)OSPF最短路径优先Open Shortest Path First P2P点对点技术peer-to-peer

PCM脉冲编码调制pulseto-Point Protocol PPPoE以太网点对点协议Point-to-Point Protocol over Ethernet)

RARP逆地址解析协议Reverse Address Resolution Protocol

RIP路由信息协议Routing Information Protocol RSVP资源预留协议Respondezsilvous plait RTSP实时流式协议Real Time Streaming Protocol SDH同步数据系列Synchronous Digital Hierarchy SET安全电子交易Secure Electronic Transaction SIP会话发起协议Session Initiation Protocol SMTP简单邮件传输协议Simple Message Transfer Protocol

SNMP简单网络管理协议Simple Network Management Protocol)

SONET同步光纤网Synchronous Optical Network SSID服务集标识符Service Set Identifier SSL安全插口层(Secure Sockets Layer STDM统计时分复用Synchronous Time-Division Multiplexing)

STP屏蔽双绞线Shielded Twisted Pair

TCP传输控制协议Transmission Control Protocol TDM时分复用Time Division Multiplex TELNET远程终端协议

TFTP简单文件传输协议Trivial File Transfer Protocol URL统一资源定位符Uniform Resource Locator VLAN虚拟局域网Virtual Local Area Network VPN虚拟专用网Virtual Private Network WAN广域网Wide Area Network

WDM波分复用Wavelength Division Multiplexing WLAN无限局域网Wireless Metropolitan Area Network

WMAN无限城域网Wireless Metropolitan Area Network

WPAN 无线个人区域网Wireless Personal Area Network

WWW 万维网World Wide Web 无新信息,不改变 相同下一跳,更新 新项目,添加进来

相同下一跳,距离变短,更新 不同下一跳,距离变短,更新 不同下一跳,距离一样,不改变 不同下一跳,距离变大,不改变

第四篇:计算机网络(谢希仁版)读书笔记

计算机网络(谢希仁版)读书笔记

杨林翰

第 1 章 概述

计算机网络在信息时代的作用:世纪的一些重要特征就是数字化、网络化和信息化,它是一个以网络为核心的信息时代。

网络现已成为信息社会的命脉和发展知识经济的重要基础。

网络是指“三网”,即电信网络、有线电视网络和计算机网络。

发展最快的并起到核心作用的是计算机网络。

新型网络的基本特点:

网络用于计算机之间的数据传送,而不是为了打电话。

网络能够连接不同类型的计算机,不局限于单一类型的计算机。

所有的网络结点都同等重要,因而大大提高网络的生存性。

计算机在进行通信时,必须有冗余的路由。

网络的结构应当尽可能地简单,同时还能够非常可靠地传送数据。

电路交换的特点:

电路交换必定是面向连接的。

电路交换的三个阶段:建立连接、通信、释放连接

电路交换传送计算机数据效率低:计算机数据具有突发性,这导致通信线路的利用率很低。

分组交换的原理:

一、在发送端,先把较长的报文划分成较短的、固定长度的数据段。

二、每一个数据段前面添加上首部构成分组。

三、分组交换网以“分组”作为数据传输单元。

依次把各分组发送到接收端。

分组首部的重要性:

每一个分组的首部都含有地址等控制信息。

分组交换网中的结点交换机根据收到的分组的首部中的地址信息,把分组转发到下一个结点交换机。用这样的存储转发方式,分组就能传送到最终目的地。

四、接收端收到分组后剥去首部还原成报文。

五、最后,在接收端把收到的数据恢复成为原来的报文。

这里我们假定分组在传输过程中没有出现差错,在转发时也没有被丢弃。

结点交换机

在结点交换机中的输入和输出端口之间没有直接连线。

结点交换机处理分组的过程是:

把收到的分组先放入缓存(暂时存储);

查找转发表,找出到某个目的地址应从哪个端口转发;

把分组送到适当的端口转发出去。

主机和结点交换机的作用不同:

主机是为用户进行信息处理的,并向网络发送分组,从网络接收分组。

结点交换机对分组进行存储转发,最后把分组交付给目的主机。

分组交换的优点:

高效动态分配传输带宽,对通信链路是逐段占用。

灵活以分组为传送单位和查找路由。

迅速不必先建立连接就能向其他主机发送分组;充分使用链路的带宽。

可靠完善的网络协议;自适应的路由选择协议使网络有很好的生存性。

分组交换带来的问题:

分组在各结点存储转发时需要排队,这就会造成一定的时延。

分组必须携带的首部(里面有必不可少的控制信息)也造成了一定的开销。

因特网时代:

因特网的基础结构大体上经历了三个阶段的演进。

但这三个阶段在时间划分上并非截然分开而是有部分重叠的,这是因为网络的演进是逐渐的而不是突然的。因特网发展的第一阶段:

第一个分组交换网 ARPANET 最初只是一个单个的分组交换网。

ARPA 研究多种网络互连的技术。

1983 年 TCP/IP 协议成为标准协议。

同年,ARPANET分解成两个网络:

ARPANET——进行实验研究用的科研网

MILNET——军用计算机网络

1983~1984 年,形成了因特网 Internet。

1990 年 ARPANET 正式宣布关闭。

因特网发展的第二阶段:

1986 年,NSF 建立了国家科学基金网。NSFNET。它是一个三级计算机网络:

主干网

地区网

校园网

1991 年,美国政府决定将因特网的主干网转交给私人公司来经营,并开始对接入因特网的单位收费。

1993 年因特网主干网的速率提高到 45 Mb/s(T3 速率)。

因特网发展的第三阶段:

从1993年开始,由美国政府资助的 NSFNET逐渐被若干个商用的 ISP 网络所代替。

1994 年开始创建了 4 个网络接入点 NAP(Network Access Point),分别由 4 个电信公司经营。

NAP 就是用来交换因特网上流量的结点。在NAP 中安装有性能很好的交换设施。到本世纪初,美国的 NAP 的数量已达到十几个。

从 1994 年到现在,因特网逐渐演变成多级结构网络。

计算机网络的不同定义

最简单的定义:计算机网络是一些互相连接的、自治的计算机的集合。

因特网(Internet)是“网络的网络”。

计算机网络的分类——几种不同的分类方法:

一、从网络的交换功能分类

电路交换

报文交换

分组交换

混合交换

二、从网络的作用范围进行分类

广域网 WAN(Wide Area Network)

局域网 LAN(Local Area Network)

城域网 MAN(Metropolitan Area Network)

接入网 AN(Access Network)

三、从网络的使用者进行分类

公用网(public network)

专用网(private network)

带宽

“带宽”(bandwidth)本来是指信号具有的频带宽度,单位是赫(或千赫、兆赫、吉赫等)。

现在“带宽”是数字信道所能传送的“最高数据率”的同义语,单位是“比特每秒”,或 b/s(bit/s)。

更常用的带宽单位是

千比每秒,即 kb/s(103 b/s)

兆比每秒,即 Mb/s(106 b/s)

吉比每秒,即 Gb/s(109 b/s)

太比每秒,即 Tb/s(1012 b/s)

请注意:在计算机界,K = 210 = 1024

M = 220, G = 230, T = 240。

数字信号流随时间的变化

在时间轴上信号的宽度随带宽的增大而变窄。

时延(delay 或 latency)

发送时延(传输时延)发送数据时,数据块从结点进入到传输媒体所需要的时间。

信道带宽数据在信道上的发送速率。常称为数据在信道上的传输速率。

发送时延=数据块长度(比特)/信道带宽(比特/秒)

传播时延电磁波在信道中需要传播一定的距离而花费的时间。

信号传输速率(即发送速率)和信号在信道上的传播速率是完全不同的概念。

传播时延=信道长度(米)/信号在信道上的传播速率(米/秒)

处理时延交换结点为存储转发而进行一些必要的处理所花费的时间。

结点缓存队列中分组排队所经历的时延是处理时延中的重要组成部分。

处理时延的长短往往取决于网络中当时的通信量。

有时可用排队时延作为处理时延。

数据经历的总时延就是发送时延、传播时延和处理时延之和:

总时延 = 发送时延 + 传播时延 + 处理时延

容易产生的错误概念

对于高速网络链路,我们提高的仅仅是数据的发送速率而不是比特在链路上的传播速率。

提高链路带宽减小了数据的发送时延。

计算机网络体系结构的形成相互通信的两个计算机系统必须高度协调工作才行,而这种“协调”是相当复杂的。

“分层”可将庞大而复杂的问题,转化为若干较小的局部问题,而这些较小的局部问题就比较易于研究和处理。关于开放系统互连参考模型 OSI/RM

只要遵循 OSI 标准,一个系统就可以和位于世界上任何地方的、也遵循这同一标准的其他任何系统进行通信。在市场化方面 OSI 却失败了。

OSI 的专家们在完成 OSI 标准时没有商业驱动力;

OSI 的协议实现起来过分复杂,且运行效率很低;

OSI 标准的制定周期太长,因而使得按 OSI 标准生产的设备无法及时进入市场;

OSI 的层次划分并也不太合理,有些功能在多个层次中重复出现。

两种国际标准

法律上的(be jure)国际标准 OSI 并没有得到市场的认可。

是非国际标准 TCP/IP 现在获得了最广泛的应用。

TCP/IP 常被称为事实上的(be facto)国际标准。

划分层次的必要性

计算机网络中的数据交换必须遵守事先约定好的规则。

这些规则明确规定了所交换的数据的格式以及有关的同步问题(同步含有时序的意思)。

为进行网络中的数据交换而建立的规则、标准或约定即网络协议(network protocol),简称为协议。

b]网络协议的组成要素 :

语法数据与控制信息的结构或格式。

语义需要发出何种控制信息,完成何种动作以及做出何种响应。

同步事件实现顺序的详细说明。

分层的好处 :

各层之间是独立的。

灵活性好。

结构上可分割开。

易于实现和维护。

能促进标准化工作。

层数多少要适当

若层数太少,就会使每一层的协议太复杂。

层数太多又会在描述和综合各层功能的系统工程任务时遇到较多的困难。

计算机网络的体系结构

计算机网络的体系结构(architecture)是计算机网络的各层及其协议的集合。

体系结构就是这个计算机网络及其部件所应完成的功能的精确定义。

实现(implementation)是遵循这种体系结构的前提下用何种硬件或软件完成这些功能的问题。

体系结构是抽象的,而实现则是具体的,是真正在运行的计算机硬件和软件。

具有层协议的体系结构

TCP/IP 是四层的体系结构:应用层、运输层、网际层和网络接口层。

最下面的网络接口层并没有具体内容。

因此往往采取折中的办法,即综合 OSI 和 TCP/IP 的优点,采用一种只有五层协议的体系结构。

五层协议的体系结构:

应用层(application layer)

运输层(transport layer)

网络层(network layer)

数据链路层(data link layer)

物理层(physical layer)

实体、协议、服务 和服务访问点

实体(entity)表示任何可发送或接收信息的硬件或软件进程。

协议是控制两个对等实体进行通信的规则的集合。

在协议的控制下,两个对等实体间的通信使得本层能够向上一层提供服务。

要实现本层协议,还需要使用下层所提供的服务。

本层的服务用户只能看见服务而无法看见下面的协议。

下面的协议对上面的服务用户是透明的。

协议是“水平的”,即协议是控制对等实体之间通信的规则。

服务是“垂直的”,即服务是由下层向上层通过层间接口提供的。

同一系统相邻两层的实体进行交互的地方,称为服务访问点 SAP(Service Access Point)。

协议很复杂

协议必须将各种不利的条件事先都估计到,而不能假定一切情况都是很理想和很顺利的。

必须非常仔细地检查所设计协议能否应付所有的不利情况。

应当注意:事实上难免有极个别的不利情况在设计协议时并没有预计到。在出现这种情况时,协议就会失败。因此实际上协议往往只能应付绝大多数的不利情况。

面向连接服务与 无连接服务

面向连接服务(connection-oriented)

面向连接服务具有连接建立、数据传输和连接释放这三个阶段。

无连接服务(connectionless)

两个实体之间的通信不需要先建立好连接。

是一种不可靠的服务。这种服务常被描述为“尽最大努力交付”(best effort delivery)或“尽力而为”。

应用层的客户-服务器方式

在 TCP/IP 的应用层协议使用的是

客户-服务器方式

计算机的进程(process)就是运行着的计算机程序。

为解决具体应用问题而彼此通信的进程称为“应用进程”。

应用层的具体内容就是规定应用进程在通信时所遵循的协议。

客户和服务器

客户(client)和服务器(server)都是指通信中所涉及的两个应用进程。

客户-服务器方式所描述的是进程之间服务和被服务的关系。

客户是服务请求方,服务器是服务提供方。

客户软件的特点:

在进行通信时临时成为客户,但它也可在本地进行其他的计算。

被用户调用并在用户计算机上运行,在打算通信时主动向远地服务器发起通信。

可与多个服务器进行通信。

不需要特殊的硬件和很复杂的操作系统。

服务器软件的特点:

专门用来提供某种服务的程序,可同时处理多个远地或本地客户的请求。

在共享计算机上运行。当系统启动时即自动调用并一直不断地运行着。

被动等待并接受来自多个客户的通信请求。

一般需要强大的硬件和高级的操作系统支持。

第7章网络互连

一、TCP/IP体系中的运输层

UDP在传送数据之前不需要先建立连接。远地主机的运输层在收到UDP报文后,不需要给出任何确认。

TCP则提供面向连接的服务。在传送数据之前必须先建立连接,数据传送结束后要释放连接。TCP不提供广播或多播服务。

强调两点:

(1)运输层的UDP用户数据报和网际层的IP数据报有很大的区别。IP数据报要经过互连网中许多路由器的存储转发,但UDP用户数据报是在运输层的端到端抽象的逻辑信道中传送的,但运输层的这个逻辑信道并不经过路由器(运输层看不见路由器)。IP数据报虽然经过路由器进行转发,但用户数据报只是IP数据报中的数据,因此路由器看不见有用户数据报经过它。

(2)TCP是运输层的连接,TCP报文段是在运输层抽象的的端到瑞逻辑信道中传送,这种信道是可靠的全双工信道。但这样的信道却不知道究竞经过了哪些路由器,而这些路山器也根本不知道上面的运输层是否建立了TCP连接。当IP数据报的传输路径中增加或减少了路由器时,上层的TCP连接都不会发生变化,出为上层的TCP根本不知道下层所发生的事情。

端口:

UDP和TCP都使用了与应用层接口处的端口(port)与上层的应用进程进行通信。端口的作用就是让应用层的各种应用进程都能将其数据通过端口向下交付给运输层,以及让运输层知道应当将其报文段中的数据向上通过端口交付给应用层相应的进程。从这个意义上讲,端口是用来标志应用层的进程。

端口用一个16bit端口号进行标志。对于不同的计算机,端口的具体实现方法可能有很大的差别,因为这取决于计算机的操作系统。

端口号分为两类:一类熟知端口(well-known port),TCP/IP体系确定并公布的。一种新的应用程序出现时,必须为它指派一个熟知端口,否则其他的应用进程就无法和它进行交互。在应用层中的各种不同的服务器进程不断地检测分配给它们的熟知端口,以便发现是否有某个客户进程要和它通信。另一类则是一般端口,用来随时分配给请求通信的客户进程。

TCP连接的端点称为插口(socket),或套接字、套接口。

关于socket的几个意思:

(1)允许应用程序访问连网协议的应用编程接口API,也就是在运输层和应用层之间的一种接口,称为socket API,并简称为socket。

(2)在socket API中使用的一个函数名也叫作socket。

(3)调用socket函数的端点称为socket,如“创建一个数据报socket”。

(4)调用socket函数时其返回值称为socket描述符,可简称为socket。

(5)在操作系统内核中连网协议的Berkely实现,称为socket实现。

上面的这些socket的意思都和TCP连接的端点(指IP地址和端口号的组合)不同。

二、用户数据报协议UDP

用户数据报协议由于没有拥塞控制,因此网络出现的拥塞不会使源主机的发送速率降低。这对某些实时应用是很重要的。很多的实时应用(如IP电话、实时视频会议等)要求源主机以恒定的速率发送数据,并且允许在网络发生拥塞时丢失一些数据,但却不允许数据有太大的时延。

UDP与应用层之间的端口都是用报文队列来实现的。当出队列发生溢出时,操作系统就通知客户进程暂停发送;入队列发生溢出时,UDP就丢弃收到的报文,但不通知对方。在服务端,UDP用户数据报的首部格式:

用户数据报UDP有两个字段:数据字段和首部字段。首部字段由4个字段组成,每个字段都是两个字节。各字段意义如下:

(1)源端口源端口号。

(2)目的端口目的端口号。

(3)长度UDP用户数据报的长度。

(4)检验和防止UDP用户数据报在传输中出错。

三、传输控制协议TCP

TCP报文段首部的前20个字节是固定的,后面有4N字节是根据需要而增加的选项(N必须是整数)。因此TCP首部的最小长度是20字节。

首部固定部分各字段的意义如下:

(1、2)源端口和目的端口各占2个字节。

(3)序号占4字节。TCP把在一个TCP连接中传送的数据流中的每一个字节都编上一个序号,整个数据的起始序号在连接建立时设置。首部中的序号字段的值则指的是本报文段所发送的数据的第一个字节的序号。例如,—报文段的序号字段的值是301,而携带的数据共有100字节。这就表明:本报文段的数据的最后—个字节的序号应当是400。下一个报文段的数据序号应当从40l开姑,因而下一个报文段的序号字段值应为401。

(4)确认号占4字节,是期望收到对方的下一个报文段的数据的第一个字节的序号。例如,A正确收到了B发送过来的一个报文段,其序号字段的值是50l,而数据长度是200字节,因此,A期望收到B的下一个报文段的首部中的序号字段值为701。

(5)数据偏移占4bit,它指出TCP报文段的数据起始处距离TCP报文段的起始处有多远。这实际就是TCP报文段首部的长度。注意,“数据偏移”的单位不是字节而是32bit字(即以4字节长的字为计算单位)。由于4bit能够表示的最大十进制数字是15,因此数据偏移的最大值是60字节,这也是TCP首部的最大长度。

(6)保留占6bit。

(7)紧急比特URG当URG=1时,表明紧急指针字段有效,相当于高优先级。例如,已经发送了很长的一个程序要在远地的主机上运行。但后来发现了问题要取消,因此用户发出中断命令。如果不使用紧急数据,那将浪费很多时间。

(8)确认比特ACK只有当ACK=l时确认号字段才有效。当ACK=0时,确认号无效。

(9)推送比特PSH(PUSH)相当于高优先级的一个玩意。

(10)复位比特RST

(11)同步比特SYN

(12)终止比特FIN

(13)窗口占2字节。窗口字段用来控制对方发送的数据量,单位为字节。即用接收端的接收能力的大小来控制发送端的数据发送量。

(14)检验和占2字节。

(15)选项长度可变。TCP只规定了一种选项,即最大报文段长度MSS。MSS告诉对方TCP:“我的缓存所能接收的报文段的数据字段的最大长度是MSS个字节”。当没有使用选项时,TCP首部长度是20字节。

TCP传输的可靠是由于使用了序号和确认。当TCP发送—报文段时,它同时也在自己的重传队列中存放一个副本。若收到确认,则删除此副本。若在计时器时间到之前没有收到确认,则重传此报文段的副本。TCP的确认并不保证数据己由应用层交付给了端用户,而只是表明在接收端的TCP收到了对方所发送的报文段。

TCP有三种基本机制来控制报文段的发送。第一种机制是TCP维持一个变量,它等于最大报文段长度MSS。只要发送缓存从发送进程得到的数据达到MSS字节时,就组装成一个TCP报文段。第二种机制是发送端的应用进程指明要求发送报文段,即TCP支持的推送(push)操作。第三种机制是发送端的一个计时器时间到了,这时就把当前已有的缓存数据装入报文段发送出去。

慢开始和拥塞避免

对于每一个TCP连接,需要有以下两个状态变量:

(1)接收端窗口rwnd这是接收端根据其目前的接收缓存大小所许诺的最新的窗口值,是来自接收端的流量控制。

(2)拥塞窗口cwnd这是发送端根据自己估计的网络拥塞程度而设置的窃口值,是来自发送端的流量控制。

慢开始算法的原理是这样的。当主机开始发送数据时,如果立即将较大的发送窗口中的全部数据字节都注入到网络,那么由于这时还不清楚网络的状况,因而就有可能引起网络拥塞。经验证明,较好的方法是试探一下,即由小到大逐渐增大发送端的拥塞窗口数值。通常在刚刚开始发送报文段时可先将拥塞窗口cwnd设置为一个最大报文段MSS的数值。而在每收到一个对新的报文段的确认后,将拥塞窗口增加至多一个MSS的数值。用这样的方法逐步增大发送端的拥塞窗口cwnd,可以使分组注入到网络的速率更加合理。

例如,在一开始.发送端先设置cwnd=1,发送第一个报文段Mo,收到确认后将cwnd从1增大到2,于是发送端可以接着发送M1和M2两个报文段。再收到确认后cwnd又从2增大到4,并可发送M3到M6共4个报文段。为了防止拥塞窗口cwnd的增长引起网络拥塞,还需要另一个状态变量慢开始门限ssthresh。用法如下:

当cwnd

当cwnd>ssthresh时,停止使用慢开始算法而改用拥塞避免算法。

当cwnd=ssthresh时,既可使用慢开始算法.也可使用拥塞避免算法。

具体的做法是:

拥塞避免算法使发送端的拥塞窗口cwnd每经过—个往返时延RTT就增加一个MSS的大小(而不管在时间RTT内收到了几个ACK)。这样,拥塞窗口cwnd按线性规律缓慢增长,比慢开始算法的拥塞窗口增长速率缓慢得多。

快重传和快恢复

快重传的工作原理:即使不能收到某个ACK,也先传后面的报文段,等到收到3个重复的ACK才认为分组丢失(不必等待超时)。

快恢复算法:当不使用快恢复算法时,发送端若发现网络拥塞就将拥塞窗口降低为1,然后执行慢开始算法。但这样做的缺点是网络不能很快地到正常工作状态。快恢复算法可以较好地解决这一问题,其具体步骤如下:

(1)当发送端收到连续三个重复的ACK时,就开始慢开始算法。

(2)与慢开始不向之处是拥塞窗口cwnd不是设置为l,而是设置为ssthresh+3*MSS。理由是:发送端收到三个重复的ACK表明有三个分组已经离开了网络,它们不会再消耗网络的资源。这三个分组是停留在接收端的缓存中的。可见现在网络中并不是堆积了分组而是减少了三个分组。因此,将拥塞窗口扩大些并不会加剧网络的拥塞。

(3)若收到的重复的ACK为n个(n>3),则将cwnd设置为ssthresh+n*MSS。

(4)若发送窗口值还容许发送报文段.就按拥塞避免算法继续发送报文段。

(5)若收到了确认新的报文段的ACK,就将cwnd缩小到ssthresh。

在采用快恢复算法时,慢开始算法只是在TCP连接建立时才使用。

TCP的重传机制

将各个报文段的往返时延样本加权平均,就得出报文段的平均往返时延RTT。每测量到一个新的往返时延样本,就按下式重新计算一次RTT:

RTT=a×(旧的RTT)+(1-a)×(新的往返时延样本)(7—2)

0<=a<1,典型的a值为7/8。

显然,计时器设置的超时重传时间RTO应略大于RTT,即:RTO=p×RTT

这里p是个大于1的系数。实际上,系数p是很难确定的。例如:发送出一个TCP报文段l,设定的重传时间到了,还没有收到确认,于是重传此报文段,即报文段2,经过了一段时间后,收到了确认报文段ACK。问题是:无法判定此确认报文段是对原来的报文段1的确认,还是对重传的报文段2的确认。

根据以上所述,Karn提出了一个算法:在计算平均往返时延RTT时,只要报文段重传了,就不采用其往返时延样本。

这样得出的RTT就和重传时间就较准确。

但是,这又引起新的问题。设想出现这样的情况:报文段的时延突然增大了很多。因此在原来得出的重传时间内,不会收到确认报文段。于是就重传报文段。但根据Karn算法,不考虑重传的报文段的往返时延样本。这样,重传时间就无法更新。

对Karn算法进行修正:报文段每重传—次,就将重传时间增大一些:

新的重传时间=Y×(旧的重传时间)

系数Y的典型值是2。当不再发生报文段的重传时,才根据报文段的往返时延更新平均往返时延RTT和重传时间的数值。采用随机早期丢弃RED进行拥塞控制

上面的TCP拥塞控制并没有和网络层采取的策略联系起来。

路由器采取尾部丢弃策略丢弃队列尾部的数据报时,会导致上层的TCP进入拥塞控制的慢开始状态,使TCP连接的发送端突然将数据的发送速率降低到很小的数值。更为严重的是,在网络中通常有很多的TCP连接(它们有不同的源点和终点),这些连接中的报文段通常是复用在网络层的IP数据报中传送。在这种情况下,就可能会同时影响到很多条TCP连接,结果使这许多TCP连接在同一时间突然都进入到慢开始状态。这在TCP的术语中称为全局同步。全局同步使得全网的通信量突然下降了很多,而在网络恢复正常后,其通信量又突然增大很多。

实现随机早期丢弃(RED)的要点如下:

使路由器的队列维持两个参数,即队列长度最小门限THmin和最大门限THmax。对每一个到达的数据报都先计算平均队列长度LAV。若LAVTHmax,则丢弃;若THmin < LAV< THmax,则按照某一概率P将新到达的数据报丢弃。

随机就是先以概率P丢弃个别的数据报,让拥塞控制只在个别的TCP连接上进行,因而避免发生全局性的拥塞控制。TCP的运输连接管理

运输连接的三个阶段:连接建立、数据传送和连接释放。

在连接建立过程中要解决以下问题:

(1)要使每一方能够确知对方的存在。

(2)要允许双方协商一些参数(如最大报文段长度,最大窗口大小,服务质量等)。

(3)能够对运输实体资源(如缓存大小,连接表中的项目等)进行分配。

TCP的连接和建立都是采用客户服务器方式。主动发起连接建立的应用过程叫做客户(client),而被动等待连接建立的应用进程叫做服务器(server)。设主机B中运行一个服务器进程,它先发出—个被动打开(passive open)命令,告诉它的TCP要准备接受客户过程的连接请求。然后服务器进程就处于“听”(listen)的状态,不断检测是否有客户进程要发起连接请求。如有,即作出响应。设客户进程远行在主机A中。它先向其TCP发出主动打开(active open)命令,表明要向某个IP地址的某个端口建立运输连接。

连接建立采用三次握手:A发送一个报文给B,B发回确认,然后A再加以确认。

为什么要发送这第三个报文段呢?这主要是为了防止已失效的连接请求报文段突然又传送到了主机B,因而产生错误。所谓协议是指通信双方关于如何进行通信的一种约定。协议的三要素:语法,语义和时序(指数据应传诵或被接收机许找的时间,信息的排序,速率匹配等)。体系结构是指计算机通信网的分层,各层协议和层间接口的集合。OSI模型下三层为并联,上四曾为串联。传输数据的格式分别为:比特->帧->分组->TPDU->SPDU->PPDU->APDU。

面向连接的网络:1.X.25和帧中继:20世纪80年代,帧中继frame relay的本质是一个无错误控制的,无流控制的,面向连接的网络,因为是面向连接的,所以分组会按照发送的顺序被递交,非常类似于一个广域的LAN,最重要的应用是能将公司的多个办公区域的LAN互相连接起来。2.ATM(Asynchronous Transfer Mode异步传输模式):ATM已在电话系统中被广泛使用,通常用于传输IP分组,现在主要被乘运商用于内部传输。

802.1 LAN的总体介绍和体系结构

802.2 逻辑链路控制

802.3 以太网

802.4 令牌总线(在制造业暂时用过一段时间)

802.5 令牌环(IBM进入LAN领域的一项技术)

802.6 双队列总线(早期的城域网)

802.7 关于宽带技术的技术咨询组

802.8 关于光纤技术的技术咨询组

802.9 同步LAN(针对实时应用)

802.10 虚拟LAN和安全性

802.12 需求的优先级(Hewlett-Packard的AnyLAN)

802.13 不吉利的数字,没人愿意使用。

802.14 有线调制器(已废除)

802.15 个人区域网络(蓝牙)

802.16 宽带无线

802.17 弹性的分组环

第五篇:计算机网络原理课后答案

以单计算机为中心的远程联机系统,通过通信线路将信息汇集到一台中心计算机进行集中处理,从

而开创了把计算机技术和通信技术相结合的尝试,这类简单的“终端—通信线路—计算机”系统,形成

了计算机网络的雏形。

ARPANET 在概念、结构和网络设计方面都为后继的计算机网络技术的发展起到了重要的作用,并为

internet 的形成奠定一定基础。

OSI/RM 的提出,开创了一个具有统一的网络体系结构、遵循国际标准化协议的计算机网络新时代,OSI 标准不仅确保了各厂商生产的计算机间的互连,同时也促进了企业的竞争,大大加速了计算机网络 的发展。

7. 计算机网络的功能

硬件资源共享:可以在全国范围内提供对处理资源、存储资源、输入输出资源等昂贵设备的共享。

软件资源共享:允许互联网上的用户远程访问各类大型数据库,可以得到网络文件传送服务、远地

进程管理服务和远程文件访问服务,从而避免软件研制上的重复劳动以及数据资源的重复存贮,也便于 集中管理。

用户间信息交换:计算机网络为分布在各地的用户提供了强有力的通信手段。8. 缩写名词解释:

PSE:分组交换设备 PAD:分组装配/拆卸设备 NCC:网络控制中心 FEP:前端处理机 IMP:接口信息处理机 PSTN:电话交换网 ADSL:非对称用户环路 DDN:数字数据网 FR:帧中继网 ATM:自动取款机

ISDN:综合服务数字网 VOD:点播电视 WAN:广域网 LAN:局域网

MAN:城域网 OSI:开放系统互连

ITU:国际电信联盟 IETF:因特网工程特别任务组

第 2 章节 计算机网络体系结构

1. 说明协议的基本含义,三要素的含义与关系。为计算机网络中进行数据交换而建立的规则,标准或约定的集合就称为网络协议。主要由下列三个 要素组成:

语义(Semantics):涉及用于协调与差错处理的控制信息。

语法(Syntax):涉及数据及控制信息的格式、编码及信号电平等。定时(Timing):涉及速度匹配和排序等。2. 协议与服务有何区别?又有何关系?

网络协议是计算机网络中进行数据交换而建立的规则、标准或约定的集合。二者的区别在于: 首先协议的实现保证了能够向上一层提供服务。本层的服务用户只能看到服务而无法看到下面的协 议,下面的协议对上面的服务用户是透明的,其次,协议是控制对等实体之间的通信的规则,而服务是

由下层向上层通过层间接口提供的。二者的关系在于:在协议的控制下,两个对等实体间的通信使得本层能够向上一层提供服务。要

实现本层协议,还需要使用下面一层所提供的服务。

3. 计算机网络采用层次结构模型的理由是什么?有何好外?

计算机网络系统是一个十分复杂的系统。将一个复杂系统分解为若干个容易处理的子系统,然后

“分而治之”逐个加以解决,这种结构化设计方法是工程设计中常用的手段。分层就是系统的最好方 法之一。

不同之处有两点:首先,OSI 模型有七层,而TCP/IP 只有四层,它们都有网络层(或者称互连网层)、传输层和应用层,但其它的层并不相同。其次,在于无连接的和面向连接的通信范围有所有同,OSI 模型的网络层同时支持无连接和面向连接 的通信,但是传输层上只支持面向连接的通信。TCP/IP 模型的网络层只有一种模式即无连接通信,但是

在传输层上同时支持两种通信模式。

第 3 章节 物理层

1. 物理层协议包括哪些内容?

包括:EIA RS232C 接口标准、EIA RS 449 及RS-422 与 RS-423 接口标准、100 系列和200 系

列接口标准、X.21 和X.21bis 建议四种。

RS232C 标准接口只控制DTE 与DCE 之间的通信。

RS-449 有二个标准的电子标准:RS-422(采用差动接收器的平衡方式)与 RS-423(非平衡方式)这些标准重新定义了信号电平,并改进了电路方式,以达到较高的传输速率和较大的传输距离。

系列接口标准的机械特性采用两种规定,当传输速率为:200bps~9600bps 时,采有V.28 建

议;当传输速率为 48Kbps 时,采用34 芯标准连接器。200 系列接口标准则采用25 芯标准连接器。

X.21 是一个用户计算机的DTE 如何与数字化的DCE 交换信号的数字接口标准,以相对来说比较简

单的形式提供了点-点的信息传输,通过它能够实现完全自动的过程操作,并有助于消除传输差错。

2. 比较 RS-232 与RS-449 的电气特性。

RS-232 规定逻辑“1”的电平为:-15 ~-5,逻辑“0”的电平为 +5 ~+15。两设备的最大距离也仅

为 15 米,而且由于电平较高,通信速率反而影响。接口通信速率小于等于20Kbps。RS-422 由于采用完全独立的双线平衡传输,抗串扰能力大大增强。又由于信号电平定义为正负6 伏,当传输距离为 10m 时,速率可达10Mbps;当传输距离为 1000m 时,速率可达100Kbps。RS-423,电气标准是非平衡标准。它采用单端发送器和差动接收器。当传输距离为 10m 时,速率可

达 100Kbps;当传输距离为 1000m 时,速率可达10Kbps。

3. 请说明和比较双绞线、同轴电缆与光纤3 种常用传输价质的特点。

双绞线是最常用的传输介质。双绞线芯一般是铜质的,能提供良好的传导率。既可以用于传输模拟信

号也可以用于传输数字信号。双绞线分为两种:无屏幕和屏蔽。无屏蔽双绞线使用方便,价格便宜,但

易受外部电磁场的干扰。屏蔽双绞线是用铝箔将双绞线屏蔽起来,以减少受干扰,但价格贵。同轴电缆分基带同轴电缆(50)和宽带同轴电缆(75)。基带同轴电缆可分为粗缆和细缆二种,都

用于直接传输数字信号;宽带同轴电缆用于频分多路复用的模拟信号传输,也可用于不使用频分多路复用 的高数字信号和模拟信号传输。同轴电缆适用于点到点和多点连接,传输距离取决于传输的信号形式和

传输的速度,同轴电缆的抗干扰性能比双绞线强,安装同轴电缆的费用比双绞线贵,但比光纤便宜。

光纤是光导纤维的简称,它由能传导光波的超细石英玻璃纤维外加保护层构成。光纤适合于在几个建

筑物之间通过点到点的链路连接局域网络。光纤具有有不受电磁干扰或噪声影响的特征,适宜有长距离

内保持高数据传输率,而且能够提供很好的安全性。

4. 控制字符 SYN 的ASCII 码编码为0010110,请画出SYN 的FSK、NRZ、曼彻斯特编码与差分曼彻斯

特编码等四种编码方法的信号波形。

10、计算下列情况的时延(从第一个比特发送到最后一个比特接收):

11、假设在地球和一个火星探测车之间架设了一条128Kbps 的点到点的链路,从火星到地球的距离(当它们

离得最近时)大约是55gm,而且数据在链路上以光速传播,即3*108m/s。

12、下列情况下假定不对数据进行压缩,对于(a)~(d),计算实时传输所需要的带宽: 第 4 章节 数据链路层

1.数据链路层的主要功能包括哪几个方面的内容? 帧同步功能:为了使传输中发生差错后只将出错的有限数据进行重发,数据链路层将比特流组织成为

帧为单位传送。常用的帧同步方法有:使用字符填充的首尾定界符法、使用比特填充的首尾标志法、违法

编码法、字节计数法。

差错控制功能:通信系统必须具备发现(即检测)差错的能力,并采取措施纠正之,使差错控制在所

能允许的尽可能小的范围内,这就是差错控制的过程,也是数据链路层的主要功能之一。流量控制功能:由于收发双方各自使用的设备工作速率和缓冲存储空间的差异,可能出现发送方发送

7.若BSC帧数据中出现下列字符串:

“ABCDE” 问字符填充后的输出是什么?

答: “ABCDE

8、若 HDLC 帧数据段中出现下列比特串:”***011111110” 问比特填充后的输出是什么? 答:

9.用BSC规程传输一批汉字(双字节),若已知采用不带报头的分块传输,且最大报文块长为129 字节,共传输了 5 帧,其中最后一块报文长为101 字节。问每个报文最多能传多少汉字?该批数据共有多少汉字?

(假设采用单字节的块检验字符。)

10.用HDLC 传输12个汉字(双字节)时,帧中的信息字段占多少字节?总的帧长占多少字节?

答: HDLC 的帧格式如下:

它的信息字段的数据为:12*2=24 字节 总的帧长为:24+6=30 字节。

11.简述HDLC 帧中控制字段各分段的作用。

HDLC 帧中控制字段的第1 位或第2 位表示传输帧的类型。第5 位是P/F 位,即轮询/终止位。当

P/F 位用于命令帧(由主站发出)时,起轮询的作用,即不该位为1 时,要求被轮询的从站给出响应,所

以此时 P/F 位可被称为轮询位(或者说P位);当P/F位用于响应帧(由从站发出)时,称为终止位(或

选择包括两个基本操作,即最佳路径的判定和网间信息包的传送(交换)。两者之间,路径的判定相对 复杂。拥塞控制:拥塞控制是指到达通信子网中某一部分的分组数量过多,使得该部分网络来不及处理,以

致引起这部分乃至整个网络性能下降的现象,严重时甚至会导致网络通信业务陷入停顿,即出现死锁现象。网际互连:网际互连的目的是使用一个网络上的用户能访问其它网络上的资源,使不同网络上的用户

互相通信和交换信息。这不仅有利于资源共享,也可以从整体上提高网络的可靠性。

2、虚电路中的“虚”是什么含义?如何区分一个网络节点所处理的多个虚电路? 在虚电路操作方式中,为了进行数据传输,网络的源节点和目的节点之间先要建立一条逻辑通路,因为这条逻辑通路不是专用的,所以称之为“虚”电路。

为使节点能区分一个分组属于哪条虚电路,每个分组必须携带一个逻辑信道号;同样,同一条虚电路 的分组在各段逻辑信道上的逻辑信道号可能也不相同,传输中,当一个分组到达节点时,节点根据其携带 的逻辑信道号查找虚电路表,以确定该分组应该应发往的下一个节点及其下一段信道上所占用的逻辑信道

号,用该逻辑信道号替换分组中原先的逻辑信道号后,再将该分组发往下一个节点。

3、简述虚电路操作与数据报操作的特点、虚电路服务与数据报服务的特点。

虚电路操作的特点:在虚电路操作方式中,为了进行数据传输,网络的源节点和目的节点之间先要建 立一条逻辑通路,因为这条逻辑通路不是专用的,所以称之为“虚”电路。每个节点到其它任一节点之间

可能有若干条虚电路支持特定的两个端系统之间的数据传输。两个端系统之间也可以有多条虚电路为不同 的进程服务,这些虚电路的实际路径可能相同也可能不相同,各节点的虚电路表是在虚电路建立过程中建

立的。各节点的虚电路表空间和逻辑信道号都是网络资源,当虚电路拆除时必须回收。数据报操作的特点:在数据报操作方式中,每个分组被称为一个数据报,若干个数据报构成一次要传

送的报文或数据报。每个数据报自身携带有足够的信息,它的传送是被单独处理的。整个数据报传送过种

中,不需要建立虚电路,但网络节点要为每个数据报做路由选择。虚电路服务的特点:虚电路服务是网络层向传输层提供的一种使所有分组按顺序到达目的可靠的数据 传送方式。进行数据交换的两个端系统之间存在着一条为它们服务的虚电路。提供这种虚电路服务的通信

子网内部既可以是虚电路方式的,也可以是数据报方式的。数据报服务的特点:数据报服务一般仅由数据报交换网来提供。端系统的网络层同网络节点中网络层

之间,一致地按照数据报操作方式交换数据。当端系统要发送数据时,网络层给该数据附加上地址、序号

等信息,然后作为数据报发送给网络节点。目的端系统收到的数据报可能不是按序到达的,也可能有数据 报的丢失。

4、考虑下面虚电路服务实现涉及的设计问题。如果虚电路用在子网内部,每个数据报文必须有一个3 字节 的含义,每个路由器必须留有8 个字节的空间来标识虚电路。如果内部使用数据报,则需要使用一个15 字节的分组头。假定每站段传输带宽的费用为第106 字节1 元人民币;路由器存储器的价格为每字节0.1 元人民币,并且在未来两年会下降。平均每次会话长度为1000 秒,传输200 分组;分组平均需传4 个站

段。试问子网内部采用虚电路或数据报哪个便宜?便宜多少?

5、考虑图5-5(a)中的子网。该子网使用了距离矢量路由算法,下面的矢量刚刚到达路由器C,来自B 的矢量

为(5,0,8,12,6,2);来自D 的矢量为(16,12,6,0,9,10);来自E 的矢量为(7,6,3,9,0,4)经

测量,到B、D 和E 的延迟分别为6、3、5。请问C 新路由表将会怎么样?请给出将使用的输出线路及

期望(预计)的延迟。

18、计算如图5-8(a)所示子网中的路由器的一个多点播送生成树。

3源路由选择的缺点是:使用它的前提是互联网中的每台机器都知道所有其它机器的最佳路径。获取

路由算法的基本思想是:如果不知道目的地地址的位置,源机器就发一个广播帧,询问它在哪里。每个

网桥都会转发此帧,这样查找帧就可以到达互连网的第一个LAN。当应答回来时,途径的网桥将它们自

己的标识记录在应答帧中,于是广播帧的发送者就可得到确切的路由,并从中选取最佳者。

14、一台主机的RIP 协议可以是主动方式吗?说明理由。不可以。主机中实现的RIP工作在被动状态,它不会传递自己的路由表的信息给别的路由器,它

只是接收其它RIP路由器广播的路由信息,并且根据收到的路由信息更新自己的路由表。

15、简述ARP协议和RARP协议的要点。为了正确地向目的站传送报文,必须把目的站的32 位IP地址转换成48 位以太网目的地址DA。

这就需要在互连层有一组服务将IP地址转换为相应物理网络地址。这组协议即是ARP。在进行报文

发送时,如果源互连层所给的报文只有IP地址,而没有对应的以太网地址,则互连层广播ARP请求

以获取目的站信息,而目的站必须回答该ARP请求。地址转换协议ARP使主机可以找出同一物理网

络中任一个物理主机的物理地址,只需给出目的主机的 IP 地址即可。如果站点初始化以后,只有自己的物理网络地址而没有IP地址,则它可以通过RARP协议,发

出广播请求,征求自己的IP地址,而RARP服务器负责回答。这样,无IP地址的站点可以通过

RARP协议取得自己的IP地址,这个地址在下一次系统重新开始以前都是有效的,不用连续广播请

求,RARP广泛用于无盘工作站的IP地址。

16、多播和广播有何异同?若要路由器支持多播,还需要添加哪些功能? 局域网中可以实现对所有网络节点的广播,但对于有些应用,需要同时向大量接收者发送信息,这

些应用的共同特点就是一个发送方对应多个接收方,接收方可能不是网络中的所有主机,也可能没有位

于同一子网。这种通信方式介于单播和广播之间,被称为组播或多播。多播需要特殊的多播路由器支持,多播路由器可以兼有普通路由器的功能。因为组内主机的关系是 动态的,因此本地的多播路由器要周期性地对本地网络中的主机进行轮询(发送一个目的地址为

224.0.0.1 的多播报文),要求网内主机报告其进程当前所属的组,各方机会将其感兴趣的D类地址返回,多播路由器以此决定哪些主机留在哪个组内。若经过几次轮询在一个组内已经没有主机是其中的成员,多播路由器就认为该网络中已经没有主机属于该组,以后就不再向其它的多播路由器通告组成员的状况。

17、与IPv4 相比,IPv6 有哪些改进?

A、IPv6 把IP 地址长度增加到128 比特,使地址空间增长296 倍

B、灵活的IP报文头部格式。IPv6 采用一种新的报文格式,使用一系列固定格式的扩展头部取代了

IPv4 中可变长度的选项字段。C、简化协议,加快报文转发。IPv6 简化了报文头部格式。将字段从IPv4 的13 个减少到7 个,报文分

段也只是在源主机进行,这些简单化使路由器可以更快地完成对报文的处理和转发,提高了吞吐量。

D、提高安全性。

E、支持更多的服务类型。

F、允许协议继续演变,增加新的功能,使之适应未来的发展。

18、IPv6 有哪些特点?下一代网络为什么要使用IPv6 ? 无论从计算机技术的发展还是从因特网的规律和网络的传输速率来看,IPv4 都已经不适用了,主要

原因就是 32 比特的IP地址空间已经无法满足迅速膨胀的因特网规模。IPv6 的主要目标包括:

A、扩大IP地址空间,即使地址利用率不高,也能支持上百亿台主机。B、减小路由选择表的长充,提供路由选择速度。

C、简化协议,使路由器处理分组更迅速。D、提供更好的安全性。E、增加对服务类型的支持,特别是实时的多媒体数据。F、通过定义范围来支持多点播送的实现。

G、主机可以在不改变IP地址的情况下实现漫游。

5A、面向连接的传输。B、端到端通信,不支持广播通信。C、高可靠性,确保传输数据的正确性,不出现丢失或乱序。

D、全双工方式传输。E、采用字节流方式,即以字节为单位传输字节序列。F、提供紧急数据的传送功能。

(二)端口号分配具体细节参考第4 题(2)。(三)socket 通常也称作“套接字”,用于描述IP地址和端口是一个通信链的句柄。应用程序通常

通过“套接字”向网络发出请求或者应答网络请求。一个完整的 socket 有一个本地唯一的socket 号,由 操作系统分配。

(四)TCP/IP 的主要应用场合:TCP 是应用于大数据量传输的情况。

7、TCP 的连接建立与释放分别采用几次握手?为何要这样的步骤? TCP 的连接建立与释放采用三次握手。

这主要是为了防止已失效的连接请求报文段突然又传送到目标主机,因而产生错误.。源主机发出连接 请求,但因在某些网络结点滞留的时间太长,源主机未收到确认,再次重传一次请求报文段。第一个已

经失效的报文段达到目标主机,目标主机误认为源主机又一次发出新的连接请求,于是就向源主机发送

确认报文段,同意建立连接。这样许多资源就白白浪费。

8、TCP 的重传策略是什么?

TCP 协议用于控制数据段是否需要重传的依据是设立重发定时器。在发送一个数据段的同时启动一

个重发定时器,如果在定时器超时前收到确认,就关闭该定时器,如果定时器超时前没有收到确认,则

重传该数据段。这种重传策略的关键是对定时器初值的设定。

9、TCP 与UDP 有什么不同之处? 传输数据前TCP 服务需要建立连接,UDP 无须建立连接;TCP 应用于大数据量的传输,UDP 运用

于一次只传输少量数据的情况下;TCP 具有高可靠性;UDP 服务中应用程序需要负责传输的可靠性。

10、简述TCP 与UDP 的服务模型。TCP 提供的服务具有以下主要特征:

a)面向连接的传输,传输数据前需要先建立连接,数据传输完毕要释放连接。b)端到端通信,不支持广播通信。

c)高可靠性,确保传输数据的正确性,不出现丢失或乱序。d)全双工方式传输。

e)采用字节流方式,即以字节为单位传输字节序列。如果字节流太长,将其分段。

f)提供紧急数据的传送功能,即当有紧急数据需要发送时,发送进程会立即发送,接收方收到后会

暂停当前工作,读取紧急数据并做相应处理。UDP 提供的服务具有以下主要特征:

(1)传输数据前无须建立连接,一个应用进程如果有数据报要发送就直接发送,属于一种无连接的数 据传输服务。

(2)不对数据报进行检查与修改。(3)无须等待对方的回答。

(4)正因为以上的特征,使其具有较好的实时性,效率高。

11、TCP 与UDP 对于端口号的使用有什么规定? UDP的端口分配规则与TCP相同。段结构中端口地址是16 比特,可以有在0~65535 范围

内的端口号,对于这 65535 个端口号有以下的使用规定:

1、端口号小于256 的定义为常用端口,服务器一般都是通过常用端口来识别的。2、客户端通常对他所选用的端口号并不关心,只需保证该端口号在本机上是唯一的就可以了。客

户端口号因存在时间很短暂又称作监时端口号。

3、大多数TCP/IP 实现给临时端口分配1024~5000 之间的端口号。大于5000 的端口号是为其它服

72)客户端向服务器发送 hello 命令以标识发件人自己的身份,然后客户端发送mail 命令。3)服务器端以 ok 作为响应,表明准备接受。

4)客户端发送 RCPT 命令(标识单个的邮件接收人,常在mail 命令后面),以标识该电子邮件的计

划接收入,可以有多个 RCPT 行。

5)服务器端则表示是否愿意为收件人接受邮件。

6)协商结束,发送邮件,用命令DATA(在单个或多个RCPT 命令后,表示所有的邮件接收人已标

识,并初始化数据传输)发送输入内容。

7)结束此次发送,用QUIT(结束会话)命令退出。

8、简单说明 POP3 的工作原理

POP3 操作开始时,服务器通过侦听TCP 端口110 开始服务。当客户主机需要使用服务时,它将与

服务器主机建立连接。当TCP 连接建立后,POP3 发送确认消息。客户和POP3 服务器相互(分别)交换

命令和响应,这一过程一直要持续到连接终止。

POP3 遵循存储转发机制,用户可按需要在客户级与保存邮件的服务器之间建立连接。

9、说明IMAP4 的特点。

Internet 消息访问协议(IMAP4)是一个功能更强大的电子邮件协议。常的版本4。用户可以通过

浏览信件头来决定是否要下载、删除或检索信件的特定部分,还可以在服务器上创建或更改文件夹或

邮箱。它除支持POP3 协议的脱机操作模式外,还支持联机操作和断连接操作。它为用户提供了有选择

地从邮件服务器接收邮件的功能、基于服务器的信息处理功能和共享信箱功能。IMAP4 提供离线、在线

和断开连接的 3 种工作方式。

选择使用IMP4 协议提供邮件服务的代价是要提供大量的邮件存储空间。与POP3 协议类似,IMAP4 协议仅提供面向用户的邮件收发服务,邮件在Internet 上的收发借助SMTP 协议的计算机完成的。

10、POP 协议与IMAP 协议有何区别?

POP 协议是离线式工作协议,POP3 为邮件系统提供了一种接收邮件的方式,使用可以直接将邮件下

载到本地计算机,在自己的客户端阅读邮件。IMPA 协议除了支持POP3 协议的脱机操作模式外,还支持联机操作和断连接操作。它为用户提供了

有选择的从邮件服务器接收邮件的功能、基于服务器的信息处理功能和共享信箱功能。IMAP 协议提供

了离线、在线和断开连接 3 种工作方式。

11、说明文件传输协议的原理

FTP 实际上是一套文件传输服务软件,它以文件传输为界面,使用简单的get 或put 命令进行文件 的下载或上传,如同在 Internet 上执行文件复制命令一样。

12、访问一个FTP 服务器,下载软件或文献。(略)

13、什么是域名服务?

Internet 上的域名由域名系统DNS 统一管理。DNS 是一个分布式数据系统,由域名空间、域名服

务器和地址转换请求程序三部分组成。

它是一种用来实现域名和IP 地址直接转换的映射机制,域名采用层次机构的基于“域”的命名方

案,任何一个连在因特网上的主机或路由器,都有一个唯一的层次结构的名字,即域名,域名是一个逻

辑概念,并不反映出计算机所在的物理地点。

14、目前有哪些国际能用域名? 现在顶级域名有3 类:

1)国家顶级域名,如 cn(中国)、us(美国)、uk(英国)等。有一些地区也有顶级域名,如hk(香港)、tw(台湾)。95、1 万个站点正在竟争使用一时分ALOHA 信道,信道时隙为125us。如果每个站点平均每小时发出18 次

请求,试计算机总的信道载荷G。

6、N 个站点共享56Kbps 纯ALOHA 信道,各站点平均每100 秒送出一个长度为1000 比特的数据帧,而不

管前一个数据帧是否已经发送出去(假设站点有发送缓冲区)。试计算机N 的最大值。

7、某个局域网采用二进制计数法的信道分配策略,在某一时刻,10 个站点的虚站号为8,2,4,5,1,7,3,6,9,0。接下来要进行数据发送的是4,3,9 三个站点。当三个站点全部完成发送后,各站点的新的 虚站号是什么?

8、2N 个站点采用适应树搜索协议来仲裁对一条共享信道的访问。在某一时刻,其中两个站点准备发送。

设,试分别计算搜索该树的最小、最大和平均时隙。

9、一栋7 层的办公楼,每层有15 间办公室,每间办公室的墙上设有一个终端插座,所有的插座在一个垂

直面上构成一个正方形栅格,相邻插座间的垂直和水平距离均为4 米。假定任意两个插座间都允许连上电

缆(垂直、水平、斜线连接均可)。试计算在下面3 种情况下连接所有插座所需的电缆长度:(1)采用集线器的星形网;(2)采用总线以太网;(3)采用令牌环网(不设线路中心)

114、长1km、10Mbps 的基带总线LAN,信号传播速度为200m/us,计算一个1000 比特的帧从发送开始到

接收结束的最大时间是多少?若两相距最远的站点在同一时刻发送数据,则经过多长时间两站发现冲 突。15、100 个站点的时槽环,任意两站间的平均距离为10m,数据传输速率为10Mmps,信号传播速度为200m /us,若每个站引入1 位延迟,试计算:(1)两站点间链路的位长度为多少位?(2)整个环路的有效位

长度为多少位?(3)此环上最多允许有几个37 位长的时槽?

16、当数据传输速率为5Mbps,传播速度为200m/us 时,令牌环接口中的一个比特时延等价于多少米的电缆?

17、长1km、10Mbps、50 个站点的令牌环,每个站点引入1 位延迟,信号传播速度为200m/us。令牌长8 位,数据帧长度为256 位(包括32 位开销),确认在数据帧捎带,问该环不包括开销的有效数据速率为 多少?

18、长10Km、16Mbps、100 个站点的令牌环,每个站引入1 位延迟,信号传播速度为200m/us。问:(1)该

环上 1 位的延迟相当于多少米长度的电缆?(2)该环的有效位长度为多少位?

19、长1Km、4Mbps、50 个站点的令牌环,每个站引入1 位延迟,信号传播速度为200m/us。设数据帧最大

3FDDI 协议规定发送站发送完帧后,可立即发送新的令牌帧,而802.5 规定当发送出去的帧的前沿回

送至发送站时,才发送新的令牌帧。因此,FDDI 协议具有较高的利用率的特点,特别在大的环网中显得 更为明显。

24、简述FDDI 与Token Ring 的异同点。

FDDI MAC帧与802.5 的MAC帧十分相似,二者都采用令牌传递的协议。

不同之处是FDDI 帧含有前导码,这对高数据速率下的时钟同步十分重要;允许在网内使用16 位和48位地址,比802.5 更灵活;令牌帧也有不同,没有优先位和预约位,而用别的方法分配信道 使用权。

FDDI 协议规定发送站发送完帧后,可立即发送新的令牌帧,而802.5 规定当发送出去的帧的前

沿回送至发送站时,才发送新的令牌帧。因此,FDDI 协议具有较高利用率的特点,特别在大的环网

中显得更为明显。

25、FDDI 采用何种编码技术?该编码技术有何特点?

FDDI 采用一种称为4B/5B 编码技术,在这种编码技术中每次对4位数据进行编码,每4位数据编码

成5位符号,用光的存在和不存在表示5位符号中每一位是1还是0。

为了得到信号同步,可以采用二级编码的方法。即先按4B/5B 编码,然后再利用一种称为倒相的不归

零制NRZI编码。该编码确保无论4比特符号为何组合(包括全“0”),其对应的5比特编码中至少有 位”1”,从而保证在光纤传输的光信号至少发生两次跳变,以利于接收端的时钟提取。按NRZI编码原理,信号中至少有两次跳变,因此接收端可得到足够的同步信息。26、10Mbps 的传统以太网升级到100Mbps、1Gbps 甚至10Gbps 时,需要解决哪些技术问题?试说明10Mbps、100Mbps、1Gbps 和10Gbps 以太网的异同。

5(5)FR 具有按需分配带宽的特点,用户支付了一定的费用购买“承诺信息率”,当突发数据发生时,在网

络允许的范围内,可以使用更高的速率;(6)使用FR,用户接入费用相应减少。

帧中继既可作为公用网络的接口,也可作为专门网络的接口。这两类网络中,连接用户设备和网络

装置的电缆可以用不同速率传输数据。一般速率在56Kbps 到E1 的速率(2.048Mbps)间。帧中继的常见应用简介如下: 局域网的互连。语音传输 文件传输

4、简述帧中继的工作原理。为什么帧中继的层次结构中只有物理层和数据链路层? 帧中继的工作原理:帧中继技术首先是淡化了交换设备上的层次概念,将数据链路层进行了融合。

融合的目的一方面减少了层次之间接口处理;另一方面,也可以通过对融合的功能进行分析,发现

冗余项,并进行简化。“优化”交换设备性能的另一方面是简化流量控制的功能。上述的优化使得帧

中继成为一种极为精简的协议,仅仅需要提供帧、路由选择和高速传输的功能,从而可以获得较高 的性能和有效性。

帧中继保留了X.25 链路层的HDLC 帧格式,但不采用HDLC 的平衡链路接入规程LAPB,而采用D 通道接入规程LAPD。LAPD 规程能在链路层实现链路的复用和转接,而X.25 只能在网络层实现该功能

由于帧中继可以不用网络层而只使用链路层来实现复用不和转接,所以帧中继的层次结构中只有物理层 和链路层。

5、简述 ATM 的工作原理及其信元的结构。并说明信元头部各字段的作用和意义。

ATM的工作原理:ATM 是一种转换模式(即前面所说的传输方式),在这一模式中信息被组织成信

元(Cell),包含一段信息的信元并不需要周期性地出现在信道上,从这个意义上来说,这种转换模式是 异步的。

ATM的信元结构:ATM 的信元具有固定长度,即总是53 个字节。其中5 个字节是信头,48 个字节

是信息段。信头包含各种控制信息,主要是表示信元去向的逻辑地址,另外还有一些维护信息、优先级

及信头的纠错码,信息段中包含来自各种不同业务的用户数据,这些数据透明地穿越网络。信头各字段的含义及功能:

GFC:一般流量控制字段,用以确定发送顺序的优先级。VPI: 虚路径标识字段/虚通道标识字段,用作路由选择。

PT:负荷类型字段,用以标识信元头部数据字段所携带的数据的类型。

CLP:信元丢失优先级字段,用于拥塞控制。当网络出现拥塞时,首先丢弃CLP 最小值的信元。

HEC:信头差错控制字段,用以检测信头中的差错,并可纠正其中的1 比特错。HEC 的功能在物

理层实现。

6、简要说明 ATM 的传输过程。ATM采用异步时分复用方式工作,来自不同信息源的信元汇集到一起,在一个缓冲器内排队,队

列中的信元逐个输出到传输线路,在传输线路上形成首尾相连的信元流。信元的信头中写有信息的标志

(如 A 和B),说明该信元去往的地址,网络根据信头中的标志来转移信元。

7、传统的网络互连设备如网桥、路由器和交换机存在什么样的局限性?

网桥工作在数据链路层,网桥没有路由功能,无法实现流量控制,广播包的转发容易导致广播风暴,在某些情况下,因网桥拥塞而丢失帧,使得网络不稳定,不可靠。

路由器的功能主要是通过软件来实现的,处理延迟过高,容易成为网络“瓶颈”;路由器的复杂性

还对网络的维护工作造成了沉重的负担。

交换机工作在数据链路层,可以看作是对多端口桥扩展。交换机可以用来分割LAN,连接不同的

LAN,或扩展LAN 的覆盖范围。它同网桥一样,也不具有隔离广播包的能力。

7缺点是其性能问题,对报文中的网络地址进行检查将比对帧中的MAC 地址进行检查开销更大。

15、简述虚拟局域网的互连方式。

1)边界路由:指的是将路由功能包含在位于主干网络边界的每一个 LAN 交换设备中。2)“独臂”路由器:这种路由器一般接在主干网的一个交换设备上,以使得网络中的大部分报文

在通过主干网时无须通过路由器进行处理,而且配置和管理起来也比较方便。

3)MPOA 路由:MPOA 的目的是给可能属于不同路由子网的多个用ATM 网络连接的设备提供直接 的虚拟连接,也就是说,MPOA 将使得多个属于不同VLAN 的站点通过ATM 网络直接进行通 信,而用不着经过一个中间的路由器。

4)第三层交换:具有智能可编程ASIC 的第三层交换机,它既包括第二层和第三层的交换功能,而

且还具备路由寻址功能。

16、什么是 VPN?它有哪些特点?如何保证安全?在哪些场合应用?

VPN 指的是依靠ISP 和其它NSP,在公共网络中建立专用的数据通信网络的技术。VPN 的特点包括安全保障、服务质量保证(QOS)、可扩充性和灵活性、可管理性。

目前VPN 主要采用如下四项技术来保证安全:隧道技术、加解密技术、密钥管理技术、使用者与

设备身份认证技术。

VPN 技术将称为当前广域网建设的最佳解决方案之一,它不仅大大节省了广域网的建设和运行维护

费用,而且增强了网络的可靠性和安全性。同时,VPN 将加快企业网的建设步伐,使得集团公司不仅只

是建设内部局域网,而且能够很快的把全国各地分公司的局域网连起来,从而真正发挥整个网络的作用。

VPN 对推动整个电子商务、电子贸易也将起到无可低估的作用。

17、网络管理包含如些基本功能?

ISO 建议网络管理包含以下基本功能:故障管理、计费管理、配置管理、性能管理和安全管理

故障管理:必须具备快速和可靠的故障诊断、监测和恢复功能。计费管理:计费管理的根本依据是网络用户资源的情况。

配置管理:配置管理功能至少应包括识别被管理网络的拓扑结构、识别网络中的各种现象、自

动修改指定设备的配置、动态维护网络配置数据库等内容。性能管理:性能管理有监测和控制两大功能。

安全管理:目的是确保网络资源不被非法使用,防止网络资源由于入侵者攻击而遭受破坏。

18、简述网络安全的概念。

从广义上讲,术语“网络安全”和“信息安全”是指确保网络上的信息和资源不被非授权用户所使

用,通常把为了保护数据及反黑客而设计的工具的集合称为计算机安全。网络安全是为了在数据传输期间保护这些数据并且保证数据的传输是可信的,它强调是网络中信息

或数据的完整性、可用性以及保密性。

19、简述对称数据加密技术和非对称数据加密技术的工作原理。

对称加密技术的加密码和解密过程采用同一把密钥,即加密密钥和解密密钥相同。非对称数据加密技术的加密和解密过程采用不同的密钥,即加密密钥和解密密钥不同。发送方只

知道加密密钥,而解密密钥只有接收方自己知道。20、简述认证和数字签名的工作原理和应用。

要保护数据不受主动攻击(数据的伪造和变动)则有不同的要求。防止此类攻击的保护措施称为报 文认证。

报文的认证过程使通信各方面能够证实接收到的报文是可信的。有两个重要的内容需要证实,一方

面是报文的内容没有被改变,另一方面报文的来源是可信的。

所谓数字签名,就是附加在数据单元上的一些数据,或是对数据单元作的密码变换,也就是信息的

发送者使用公开密钥算法的主要技术产生的别人无法伪造的一段数据串。发送者用自己的私有密钥将数

9-据加密后传送给接收者,接收者用发送者的公钥解开数据后,就可确定消息来自于谁,这也是对发送者

发送消息真实性的一个证明,发送者对所发的信息不能反悔。在电子商务安全保密系统中,数字签名技术有着特别重要的地位,在电子商务安全服务中的源认

证、完整性服务、不可否认服务中都要用到数字签名技术。

应用广泛的数字签名方法有三种,即RSA 签名、DSS 签名、Hash 签名。Wuxiaoyan99 制作 4/14/202_ 由于时间短,文本中有一些文字错误,请大家自行纠正__

谢希仁计算机网络原理第五版课后习题答案
TOP