第一篇:七年级数学下册 北师大版 第五章《三角形》知识点总结
第五章《三角形》知识点总结(北师大版七年级下)
一、三角形及其有关概念
1、三角形:
由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。
2、三角形的表示:
三角形用符号“△”表示,顶点是A、B、C的三角形记作“△ABC”,读作“三角形ABC”。
3、三角形的三边关系:
(1)三角形的任意两边之和大于第三边。(2)三角形的任意两边之差小于第三边。
(3)作用:
①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。
③证明线段不等关系。
4、三角形的内角的关系:
(1)三角形三个内角和等于180°。
(2)直角三角形的两个锐角互余。
5、三角形的稳定性:
三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。
6、三角形的分类:
(1)三角形按边分类:不等边三角形三角形
等腰三角形底和腰不相等的等腰三角形
等边三角形
(2)三角形按角分类:
直角三角形(有一个角为直角的三角形)
锐角三角形(三个角都是锐角的三角形)
钝角三角形(有一个角为钝角的三角形)
把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。它是两条直角边相等的直角三角形。
7、三角形的三种重要线段:
(1)三角形的角平分线: 定义:在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
性质:三角形的三条角平分线交于一点。交点在三角形的内部。
(2)三角形的中线:
定义:在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。性质:三角形的三条中线交于一点,交点在三角形的内部。
(3)三角形的高线:
定义:从三角形一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。性质:三角形的三条高所在的直线交于一点。锐角三角形的三条高线的交点在它的内部;直角三角形的三条高线的交点在它的直角顶点;钝角三角形的三条高所在的直线的交点在它的外部;
8、三角形的面积:
三角形的面积=
二、全等图形:
定义:能够完全重合的两个图形叫做全等图形。
性质:全等图形的形状和大小都相同。
三、全等三角形
1、全等三角形及有关概念: 能够完全重合的两个三角形叫做全等三角形。两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
2、全等三角形的表示:
全等用符号“≌”表示,读作“全等于”。如△ABC≌△DEF,读作“三角形ABC全等于三角形DEF”。注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。
3、全等三角形的性质:全等三角形的对应边相等,对应角相等。
4、三角形全等的判定:
(1)边边边:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。(2)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)
(3)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“角角边”或“AAS”)
(4)边角边:两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)直角三角形全等的判定: 对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):斜边和一条直角边对 2 1×底×高
2应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)3
第二篇:七年级数学下册_第五章《三角形》知识点总结_北师大版
数学:第五章《三角形》知识点总结(北师大版七年级下)
一、三角形及其有关概念
1、三角形:
由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。2.三角形的表示:
三角形用符号“△”表示,顶点是A、B、C的三角形记作“△ABC”3.三角形的三边关系:
(1)三角形的任意两边之和大于第三边。(2)三角形的任意两边之差小于第三边。①判断三条已知线段能否组成三角形
②当已知两边时,第三边的范围4.三角形的内角的关系:
(1)三角形三个内角和等于180°。(2)直角三角形的两个锐角互余。
5、三角形的稳定性:
三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。6.三角形的分类:
7.三角形的三种重要线段:(1)三角形的角平分线:
定义:在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
性质:三角形的三条角平分线交于一点。交点在三角形的内部。(2)三角形的中线:
定义:在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。性质:三角形的三条中线交于一点,交点在三角形的内部。这点叫做三角形的重心。(3)三角形的高线:
定义:从三角形一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
性质:三角形的三条高所在的直线交于一点。
锐角三角形的三条高线的交点在它的内部; 直角三角形的三条高线的交点在它的直角顶点; 钝角三角形的三条高所在的直线的交点在它的外部; 8.三角形的面积:
三角形的面积=
1×底×高
二、全等图形:
定义:能够完全重合的两个图形叫做全等图形。性质:全等图形的形状和大小都相同。
三、全等三角形
1、全等三角形及有关概念:
能够完全重合的两个三角形叫做全等三角形。两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
2、全等三角形的表示: 全等用符号“≌”表示
注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。
3、全等三角形的性质:
全等三角形的对应边相等,对应角相等。
4、三角形全等的判定:
(1)边边边:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。
(2)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)(3)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“角角边”或“AAS”)(4)边角边:两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)
第三篇:七年级下册数学知识点归纳
七年级下册数学知识点归纳
1.对顶角相等。邻补角互补。
2.垂线的性质:
①在同一平面内,过一点有且只有一条直线与已知直线垂直。
②连接直线外一点与直线上各点的所有线段中,垂线段最短。(②又可称作垂线段的性质 :简称:垂线段最短。)
3.平行线的概念(定义):在同一平面内,不相交的两条直线叫做平行线。
4. 点到直线的距离: 直线外一点到这条直线的垂线段的长度,叫点到直线的距离。
5.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
6.平行公理的推论:平行于同一条直线的两条直线互相平行。
7.平行线的判定:
①同位角相等,两直线平行。
②内错角相等,两直线平行。
③同旁内角互补,两直线平行。
④平行于同一条直线的两条直线互相平行。
⑤在同一平面内,垂直于同一条直线的两条直线互相平行。
8.平行线的性质:
①两直线平行,同位角相等。
②两直线平行,内错角相等。
③两直线平行,同旁内角互补。
周长公式: 长方形周长 = 2(a+b)正方形周长 = 4a
面积公式: 长方形面积 = a·b 正方形面积 = a²
三角形面积 = a·h
体积公式: 长方体体积 = a·b·c 正方体体积 = a³
行程问题: 路程 = 速度×时间 速度 = 时间 =
单位换算: 1平方千米=100公顷 1公顷=10000平方米
1平方千米=1000000平方米
1升=1立方分米 1毫升=1立方厘米
频数和频率的关系,抽样调查,普查,总体.个体.样本.样本数量的关系。?
(1)
为了一定的目的而对考察对象进行的全面调查,称为普查,其中所要考察对象的全体称为总体,而组成总体的每一个考察对象称为个体。
(2)从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体中抽取的一部分个体叫做总体的一个样本。
(3)在调查过程中选择普查还是抽样调查的主要依据:若要求全面了解数据,且总体个数较少时,采用普查的方式;而若总体中个体数目较多,调查时具有危险性、破坏性或受客观条件的限制,采用抽样调查。抽样时要注意样本的代表性和广泛性。
(1)频数:在统计中,每个对象出现的次数叫做频数。
(2)频率:每个对象出现的次数与总次数的比值叫做频率。
频数和频率都能反映一个对象在实验总次数中出现的频繁程度,我认为:
(1)频数和频率间的关系是______
频率=频数/样本数
(2)每个实验结果出现的频数之和等于______.样本总数
(3)每个实验结果出现的频率之和等于______.1
样本容量、频数、频率的关系
1、样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率。
2、通过样本的频数分布、频率分布可以估计总体的概率分布。
3、研究总体概率分布往往可以研究其样本的频数分布、频率分布。在实践中,往往是从总体中抽取一个样本,用样本的频率分布去估计总体分布。
扩展资料:
一、样本容量计算方法
确定样本容量的大小是比较复杂的问题,既要有定性的考虑也要有定量的考虑。从定性的方面考虑样本量的大小,其考虑因素有:决策的重要性,调研的性质,变量个数,数据分析的性质,同类研究中所用的样本量,发生率,完成率,资源限制等。
具体地说,更重要的决策,需要更多的信息和更准确的信息,这就需要较大的样本;探索性研究,样本量一般较小,而结论性研究如描述性的调查,就需要较大的样本;收集有关许多变量的数据,样本量就要大一些,以减少抽样误差的累积效应。
如果需要采用多元统计方法对数据进行复杂的高级分析,样本量就应当较大;如果需要特别详细的分析,如做许多分类等,也需要大样本。针对子样本分析比只限于对总样本分析,所需样本量要大得多。
二、累计频数
累积频数就是将各类别的频数逐级累加起来。其方法有两种:
一是从类别顺序的开始一方向类别顺序的最后一方累加频数(定距数据和定比数据则是从变量值小的一方向变量值大的一方累加频数),称为向上累积。
二是从类别顺序的最后一方向类别顺序的开始一方累加频数(定距数据和定比数据则是从变量值大的一方向变量值小的一方累加频数),称为向下累积。通过累积频数,可以很容易看出某一类别(或数值)以下及某一类别(或数值)以上的频数之和。
三、频率计算
随机事件在n次试验中发生m次的相对频次m/n。一般物理科学中频率指每秒中的振动次数,可以是随机的,也可以是确定性的。
统计总体:是根据一定目的确定的所要研究的事物的全体.它是由客观存在的、具有某种共同性质的许多个别事物构成的整体.同质性是确定统计总体的基本标准,它是根据统计的研究目的而定的.统计总体还应具备大量性.统计总体应该由足够数量的同质性单位构成.总体单位(简称单位)是组成总体的各个个体.根据研究目的的不同,单位可以是人、物、机构等实物单位,也可以是一种现象或活动过程等非实物单位.总体和单位的概念是相对而言的,随研究目的不同,总体范围不同而变化.同一个研究对象,在一种情况下为总体,但在另一种情况下又可能变成单位.由总体的部分单位组成的集合称为样本(又称子样).样本也由一定数量的单位构成的,样本所包含的总体单位数称为样本容量.样本容量与样本个数
1.样本容量.样本是从总体中抽出的部分单位的集合,这个集合的大小称为样本容量,一般用n表示,它表明一个样本中所包含的单位数.一般地,样本单位数大于30个的样本称为大样本,不超过30个的样本称为小样本.2.样本个数.样本个数又称样本可能数目,它是指从一个总体中可能抽取多少个样本.总体单位总量:一个总体内包含的总体单位总数,即总体本身的规模大小。
在全国人口普查中,全国人口数是数量总体。这句话判断是否正确。考试需要,谢谢啦!
要想彻底弄清这一问题,需要弄清这几个统计范畴:总体、总体单位、标志、指标。
统计总体又称“调查总体”,简称“总体”,是指客观存在的、在同一性质基础上结合起来的许多个别单位的整体。构成总体的这些个别单位称为总体单位。
例如,所有的工业企业就是一个总体,这是因为在性质上每个工业企业的经济职能是相同的,即都是从事工业生产活动的基本单位,这就是说,它们是同性质的。这些工业企业的集合就构成了统计总体。对于该总体来说,每一个工业企业就是一个总体单位。确定总体与总体单位,必须注意两个方面:1、构成总体的单位必须是同质的,不能把不同质的单位混在总体之中。2、总体与总体单位具有相对性,随着研究任务的改变而改变。
题中:全国人口普查,调查对象当然是全国人口,即全国人口就是总体。
而对总体的分类,是依据总体单位性质来进行的。如总体单位个数数得清,就称这样的总体叫有限总体,比如全国所有车床;对总体单位个数数不清的就叫无限总体,比如海里的所有鱼。
还有一种对总体的分类,是依据总体单位某种特征来划分的。如人的年龄,年龄是总体单位的数量特征(或叫数量标志)。这时称全国人口这个总体为变量总体。而人的健康情况,这个“健康”标志不能用数量来表示的。只能用好或不好,健康或亚健康或不健康特来描述。这时称全国人口总体为属性总体。(真让人琢磨不透为啥要这么理论一下,呵~~)
所以没有什么“数量总体”或“品质总体”这样的说法。可见,“全国人口数是数量总体。”这句话不正确的。
指标是反映统计总体的数量特征,标志反映的是总体单位的特征。
那么“全国人口数”是在统计叫它啥呢?统计学家叫它总体单位总量,是说明总体特征的,所以也叫它统计指标。某人50岁是总体单位年龄标志值,而全国人口500亿岁就是总体年龄指标值。
第四篇:苏教版七年级下册数学知识点总结
第七章平面图形的认识(二)
一、平行线
1、同位角、内错角、同旁内角的定义
两条线(a,b)被第三条(c)直线所截,在截线的同旁,被截两直线的同一方,把这种位置关系的角称为同位角(corresponding angles)如图:∠1与∠8,∠2与∠7,∠3与∠6,∠4与∠5均为同位角。
两条线(a,b)被第三条(c)直线所截,两个角分别在截线的两侧,且在两条被截直线之间,具有这样位置关系的一对角叫做内错角。如图:∠1与∠6,∠2与∠5均为同位角。
两条线(a,b)被第三条(c)直线所截,两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角(interior angles of thesame side)。如图:∠1与∠5,∠2与∠6均为同位角。
2、平行线的性质
(1)两直线平行,同位角相等。(2)两直线平行,内错角相等。(3)两直线平行,同旁内角互补。
3、平行线的判定
(1)同位角相等,两直线平行。(2)内错角相等,两直线平行。(3)同旁内角互补,两直线平行。(4)平行于同一直线的两直线平行。
4、平移
平移是指在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做图形的平移(translation),简称平移。5、平移的性质
经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等;平移变换不改变图形的形状、大小和方向(平移前后的两个图形是全等形)。(1)图形平移前后的形状和大小没有变化,只是位置发生变化;(2)图形平移后,对应点连成的线段平行且相等(或在同一直线上)(3)多次平移相当于一次平移。
(4)多次对称后的图形等于平移后的图形。(5)平移是由方向,距离决定的。
(6)经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等。二、三角形
1、由三条不在同一直线上的三条线段首尾依次相接组成的图形叫做三角形。
2、三角形的性质
1)三角形的任意两边之和大于第三边(由此得三角形的两边的差一定小于第三边)
2)三角形三个内角的和等于180度(在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度)(一个三角形的3个内角中最少有2个锐角)3)直角三角形的两个锐角互余
4)三角形的一个外角等于与它不相邻的两个内角之和(三角形的一个外角大于任何一个与它不相邻的内角)5)等腰三角形的顶角平分线,底边的中线,底边的高重合,即三线合一
6)三角形的三条角平分线交于一点,三条高线的所在直线交于一点,三条中线交于一点 7)三角形的外角和是360° 8)等底等高的三角形面积相等
9)三角形的任意一条中线将这个三角形分为两个面积相等的三角形。
3、三角形的分类 1)按边分①不等边三角形②等腰三角形(含等腰直角三角形、等边三角形)
2)按角分①锐角三角形②直角三角形③钝角三角形(锐角三角形和钝角三角形可统称为斜三角形)
4、三角形的有关定义
1)三角形的高:在三角形中,从一个顶点向它的对边所在的直线作垂线,顶点和垂足间的线段叫做三角形的高线,简称为高。三角形的三条高交于一点,这一点叫三角形的垂心。垂心到三角形三个顶点的距离相等
2)三角形的角平分线:三角形的一个内角的平分线与它的对边相交,这个角的顶点和交点之间的线段叫三角形的角平分线。(也叫三角形的内角平分线。)三角形的三条角平分线都在三角形的内部,并交于一点,这一点叫三角形的内心。三角形的内心到三边的距离相等。
3)三角形的中线:三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。三角形的三条中线在三角形的内部,并交于一点,这一点叫三角形的重心。每条三角形中线分得的两个三角形面积相等。
三、多边形
1、多边形:由三条或三条以上的线段首位顺次连接所组成的封闭图形叫做多边形。按照不同的标准,多边形可以分为正多边形和非正多边形、凸多边形及凹多边形等。
2、n边形内角和为(n-2)*180° 3、任意多边形的外角和为360° 4、正n边形的一个外角为360°/n 5、n边形具有不稳定性(n>3)
第八章 幂的运算
幂(power)指乘方运算的结果。ɑ指将ɑ自乘n次(n个ɑ相乘)。把ɑ看作乘方的结果,叫做ɑ的n次幂。对于任意底数ɑ,b,当m,n为正整数时,有
mnm+n ɑ•ɑ=ɑ(同底数幂相乘,底数不变,指数相加)mnm-n ɑ÷ɑ=ɑ(同底数幂相除,底数不变,指数相减)mnmn(ɑ)=ɑ(幂的乘方,底数不变,指数相乘)nnn(ɑb)=ɑɑ(积的乘方,把积的每一个因式乘方,再把所得的幂相乘)0ɑ=1(ɑ≠0)(任何不等于0的数的0次幂等于1)-nn ɑ=1/ɑ(ɑ≠0)(任何不等于0 的数的-n次幂等于这个数的n次幂的倒数)
n科学记数法:把一个绝对值大于10(或者小于1)的整数记为a×10的形式(其中1≤|a|<10),这种记数法叫做科学记数法.n
n
第九章 从面积到乘法公式
一、单项式、多项式、整式
1、代数式:由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式。单独一个数或者字母也是代数式。
2、单项式: 由数字与字母或字母与字母的相乘组成的代数式叫做单项式(单独的一个数字或字母也是单项式)。单项式中的数字因数叫做这个单项式的系数。所有字母的指数的和叫做这个单项式的次数。1)分母含有未知数的式子不属于单项式。因为单项式属于整式,而分母含有未知数的式子是分式。例如,1/x不是单项式。
2y2)单独的一个数字或字母也是单项式。例如,1和x也是单项式。如果一个单项式,只含有字母因数,如果是正数的单项式系数为1,如果是负数的单项式系数为-1.3)单项式书写规则:数与字母相乘时,数在字母前;乘号可以省略为点或不写;除法的式子可以写成分数式;带分数与字母相乘,带分数要化为假分数
3、多项式:若干个单项式的和组成的式子叫做多项式(减法中有:减一个数等于加上它的相反数)。多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数。
4、整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除数不能含有字母。单项式和多项式统称为整式。5、同类项:所含字母相同,并且相同字母的次数也分别相同的项叫做同类项。
6、合并同类项:多项式中的同类项可以合并,叫做合并同类项,合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。7、去、添括号法则
1)括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变。2)括号前是“-”号,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变。(改成与原来相反的符号)3)若括号前是数字因数时,应利用乘法分配律先将数与括号内的各项分别相乘再去括号 4)遇到多层括号一般由里到外,逐层去括号,也可由外到里.数“-”的个数.8、单项式乘单项式,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
9、单项式乘多项式,就是根据乘法分配律,用单项式乘多项式的每一项,再把所得的积相加。
10、多项式乘多项式,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。
二、乘法公式
2221、完全平方公式:(a±b)=a±2ab+b 2、平方差公式:(a+b)(a-b)=a-b33223 3、完全立方公式:(a±b)=a±3ab+3ab±b33224、立方和公式:a+b=(a+b)(a+ab+b)3322立方差公式:a-b=(a-b)(a+ab+b)
三、因式分解
1、公因式:各项都含有的公共的因式叫做这个多项式各项的公因式。
2、因式分解(分解因式)Factorization:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式。3、因式分解的方法:
⑴提公因式法:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。
⑵运用公式法:运用乘法公式把一个多项式因式分解的方法叫运用公式法。
⑶分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行.
⑷十字相乘法:有些二次三项式,可以把第一项和第三项的系数分别分解为两个数之积,然后借助画十字交叉线的方法,把二次三项式进行因式分解,这种方法叫十字相乘法. 4、因式分解和整式乘法是互逆的两种运算。
5、通常,把一个多项式分解因式,应先提公因式,再应用公式法,或者其他方法。进行多项式因式分解时,必须把每一个因式都分解到不能再分解为止。
第十章 二元一次方程组
1、含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程(linear equations of two unknowns)。
2、含有两个未知数的两个一次方程所组成的方程组叫做二元一次方程组。3、二元一次方程组中两个方程的公共解叫做二元一次方程组的解。
4、代入消元法:把二元一次方程中一个方程的一个未知数用含另一个未知数的式子表示出来,再带入另一个方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。5、加减消元法:当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法,简称加减法.6、二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即:(1)审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数;
(2)找:找出能够表示题意两个相等关系;
(3)列:根据这两个相等关系列出必需的代数式,从而列出方程组;(4)解:解这个方程组,求出两个未知数的值;
(5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案.十一 一元一次不等式和一元一次不等式组
一、不等式
1、概念:一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。能使不等式成立的未知数的值,叫做不等式的解.不等式的解不唯一,把所有满足不等式的解集合在一起,构成不等式的解集.2、解不等式:求不等式解集的过程叫解不等式。
3、不等式组:由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组
4、不等式组的解集 :一元一次不等式组各个不等式的解集的公共部分。
5、等式基本性质:
(1)在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式。(2)在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式。
6、不等式的基本性质
(1)不等式的两边都加上(或减去)同一个整式,不等号的方向不变。(注:移项要变号,但不等号不变。)
(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。(4)若a>b, 则a+c>b+c;
(2)若a>b, c>0 则ac>bc若c<0, 则ac 7、不等式的其他性质: (1)反射性:若a>b,则b (2)传递性:若a>b,且b>c,则a>c。 8、解不等式步骤:(1)去分母(2)去括号(3)移项合并同类项(4)系数化为1。 9、解不等式组步骤:(1)解出不等式的解集(2)在同一数轴表示不等式的解集。 10、列一元一次不等式组解实际问题步骤:(1)审题(2)设未知数,找关系式(3)设元,根据关系式列不等式(4)解不等式组,检验并作答。 第六章 证明 1、对事情作出判断的句子,就叫做命题。 2、命题结构: (1)条件:条件是已知的事项,结论是由已知事项推断出的事项。(2)结论:由条件所推出的结果。 (3)反例:要说明一个命题是一个假命题,通常可以举出一个例子,使它具备命题的条件,而不具有命题的结论.这种例子称为反例。 3、证明一个命题是真命题的基本步骤:(1)根据题意,画出图形。 (2)根据条件、结论,结合图形,写出已知、求证。 (3)经过分析,找出由已知推出求证的途径,写出证明过程。(在证明时需注意:(1)在一般情况下,分析的过程不要求写出来.(2)证明中的每一步推理都要有根据) 北师大版二年级下册数学知识点总结 第一章————除法 1、除法算式各部分名称 23÷4=5„„3 23是被除数,4是除数,5是商,3是余数 2、用乘法口诀做除法,余数一定要比除数小.例:()÷3=5„„()余数是2或1 3、应用题当中,除数和余数的单位不一样,商的单位和问题的单位相同,余数的单位和被除数的单位相同; 4、解决生活问题,如提的问题是“至少需要几条船?”,用“进一法(用商加1)”; 例:有22个人,每条船限乘4人,至少要租几条船? 22÷4=5(条)„„2(个) 5+1=6(条)答:至少要租6条船。 如提的是问题是“最多做几件衣服?”,商作为最后的答案。 例:做一套衣服要用3米花布,25米花布最多能做几套衣服? 25÷3=8(套)„„1(米)答:最多可以做8套衣服。 第二章————方向与位置(认识方向) 1、地图上的方向,口诀:上北下南,左西右东。 2、辨认方向时,要认准观测点。例:“小猫在小狗的()方”,观测点是小狗 3、太阳早上从东边升起,西边落下;指南针一头指着()方,一头指着()方。 4、知道一个方向,辨别其他三个方向。 例:小明早上面向太阳时,他的前面是东,后面是西,左面是北,右面是南。面向南时,前面是(),后面是(),左面是(),右面是()。 面向北时,前面是(),后面是(),左面是(),右面是()。面向西时,前面是(),后面是(),左面是(),右面是()。 第三章————生活中的大数(认识10000以内的数) 1、计数器上从右边数起第一位是(个)位,第二位是 (十)位,第三位是(百)位,第四位是(千)位,第五位是(万)位;千位的左边是(万)位,右边是(百)位。 2、一个四位数最高位是(千)位;它的千位是5,个位是2,其他的数位是0,它是(5002)。 3、在8536中,8在(千)位上,表示(8个千);5在(百)位上,表示(5个百); 3在()位上,表示();6在()位上,表示()。 3、由3个千,5个一组成的数是(3005),它是一个 (四)位数;由9个一,2个百和1个千组成的数是(),它是一个()位数。 4、读数时,要从高位读起,中间有一个或两个“0”,都只读1个“零”;末尾不管有几个“0”,都不读;写数时,从高位写起,按照数位顺序表写,中间或末尾哪一位上没有数,就写“0”占位。 10个十是(一百),10个一百是(一千),10个一千是(一万),100个一百是(一万),10000里面有(100)个百,1000里面有(100)个十; 5、最大的三位数是(999),最小的三位数是(100),最大的四位数是(9999),最小的四位数是(1000)。 6、比较大小时,先比较位数,位数多的数就大,位数少的数就小;位数相同时,从最高位开始比较,最高位上的数字相同的,就比下一位,直到比出大小。从大到小用“>”,从小到大用“<”。 第四章————测量 1、毫米(mm)、厘米(cm)、分米(dm)、米(m),相邻单位之间的进率是“10”; 2、1米=10分米,1分米=10厘米,1厘米=10毫米,1米=100厘米,1分米=100毫米,1000米=1 千米; 3、长度单位比较大小,首先要观察单位,换成统一的单位之后才能比较; 4、长度单位的加减法,米加米,分米加分米.......就是把相同的单位进行加减 5、准确测量线段的长度 6、画出给定长度的线段。例:画一条比3cm长5mm的线段。第五章————加与减 1、口算整百数加减整百数时,想成几个百加减几个百,加减整十数的算理也相同; 2、计算时要注意:(1)、相同数位要对齐,从个位算起。 (2)、计算加法时,哪一位相加满十,要向前一位“进一”,计算前一位时不要忘加进位1; (3)、计算减法时,哪一位不够减时,要向前一位“借1”,计算前一位时不要忘减借位1; 3、加数+加数=和 一个加数=和—另一个加数 如:()+156=368 280+()=760 4、被减数-减数=差 被减数=减数+差 减数=被减数-差 5、如()-156=368(用156+368计算)980-()=760(用980-760计算) 6、加法的验算方法:(1)交换加数的位置,看和是否相同。(2)用和减去其中一个加数,看差是否等于另一个加数; 减法的验算方法:(1)用被减数减去差,看结果是否等于减数,(2)用减数加上差,看结果是否等于被减数。 注意:运算时不要抄错数,也不要直接把验算结果抄上。 第六章————认识角 1、每个角都是由1个顶点和2条边组成; 2、按角的大小,将角分为锐角、直角、钝角,所有的直角都相等,比直角小的是锐角,比直角大 的是钝角。要知道一个角是什么角,可以用三角板上的直角比一比。 3、比较角的大小时要注意:角的大小与边的长短无关,与角的张口大小有关,张口越大角就越大; 4、正方形有四个直角,四条边都相等;长方形有四条边,四个直角,长方形的对边相等; 5、平行四边形有四条边,有2个锐角,2个钝角,对边相等,对角相等。 6、要会在点子图上画角,平行四边形,长方形,正方形。 第七章————时、分、秒 1、钟面上有12个大格,每个大格里有5个小格,一共有60个小格; 2、秒针走一小格是1秒,走一大格是5秒,走一圈是60秒,就是1分 ; 3、分针走一小格是1分,走一大格是5分,走一圈是60分,和1 时; 4、时针走一大格是1 时,走一圈是12 时; 5、时、分、秒相邻单位的进率是60;1时=60分,1分=60秒 6、比较时间,首先要观察,统一单位之后再比较大小 7、准确的读出表面的时间。 8、时间的加减:分减分,时减时,当分不够减时,要向前一位借1,化成60,再相加减。第五篇:北师大版二年级下册数学知识点总结