首页 > 精品范文库 > 13号文库
17 三角形内角和定理 三角形三个内角的和等于180
编辑:繁花落寂 识别码:22-1033753 13号文库 发布时间: 2024-06-13 12:55:12 来源:网络

第一篇:17 三角形内角和定理 三角形三个内角的和等于180

三角形内角和定理 三角形三个内角的和等于180°推论1 直角三角形的两个锐角互余推论2 三角形的一个外角等于和它不相邻的两个内角的和推论3 三角形的一个外角大于任何一个和它不相邻的内角全等三角形的对应边、对应角相等

22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等边边边公理(SSS)有三边对应相等的两个三角形全等斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等定理2 到一个角的两边的距离相同的点,在这个角的平分线上角的平分线是到角的两边距离相等的所有点的集合等腰三角形的性质定理 等腰三角形的两个底角相等(即等边对等角)

推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°

等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

推论1 三个角都相等的三角形是等边三角形

推论 2 有一个角等于60°的等腰三角形是等边三角形

第二篇:三角形内角平分线定理

三角形内角平分线定理:三角形任意两边之比等于它们夹角的平分线分对边之比。已知:如图8-4甲所示,AD是△ABC的内角∠BAC的平分线。

求证: BA/AC=BD/DC;

思路1:过C作角平分线AD的平行线,用平行线分线段成比例定理证明。

证明1:过C作CE∥DA与BA的延长线交于E。

则: BA/AE=BD/DC;

∵∠BAD=∠AEC;(两线平行,同位角相等)

∠CAD=∠ACE;(两线平行,内错角相等)

∠BAD=∠CAD;(已知)

∴∠AEC=∠ACE;(等量代换)

∴AE=AC;

∴BA/AC=BD/DC。

结论1:该证法具有普遍的意义。

思路2:利用面积法来证明。

已知:如图8-4乙所示,AD是△ABC的内角∠BAC的平分线。

求证: BA/AC=BD/DC

证明2:过D作DE⊥AB于E,DF⊥AC于F;

∵∠BAD=∠CAD;(已知)

∴DE=DF;

∵BA/AC=S△BAD/S△DAC;(等高时,三角形面积之比等于底之比)

BD/DC=S△BAD/S△ABCDAC;(同高时,三角形面积之比等于底之比)

∴BA/AC=BD/DC

结论2:遇到角平分线,首先要想到往角的两边作平行线,构造等腰三角形或菱形,其次要想到往角的两边作垂线,构造翻转的直角三角形全等,第三,要想到长截短补法,第四,你能想到用该定理解决问题吗?

第三篇:三角形内角和定理 说课稿

《三角形内角和定理》说课稿

内丘县内丘镇中学 乔素霞

尊敬的各位评委、各位老师,大家好:

我是内丘县内丘镇中学的教师乔素霞,今天我说课的内容是《三角形内角和定理》。下面我将围绕本节课“教什么?”“怎么教?”“为什么这么教?”三个问题从教材分析、学情分析、教学设计、教学过程、教学反思等几个方面逐一分析说明。

一.教材分析

1.本节课所处的地位和作用

本节课是冀教版数学八年级下册第二十四章第五节《三角形内角和定理》的第一课时。其教学内容为三角形内角和定理的证明和简单运用。它是在学生对一些几何结论有了直观认识,并会简单说理的基础上,进一步认识几何图形以及规范证明过程的重要内容之一。三角形的内角和定理揭示了组成三角形的三个内角之间的数量关系,是求角的度数的有力工具,在实际生产生活中有着广泛的应用。此外,它的证明中引入了辅助线,这些都为后继学习奠定了基础。因此,本节课起着承上启下的作用。

2.教学目标

本着教学目标应科学简明,体现全面性、综合性和发展性的原则,制定目标如下:

(1)知识与技能

掌握三角形内角和定理的证明和简单运用;初步体会辅助线在证明中的作用。

(2)过程与方法

经历利用剪拼三角形验证三角形内角和定理,探索其证明思路的过程,使学生掌握一定的探索方法;通过渗透“化归”的数学思想,使学生体会解决数学问题的基本思路。(3)情感态度与价值观

培养学生合作交流意识和探索精神;培养学生有条理的思考问题和合乎情理的表达问题的能力。3.教学重点和难点

教学重点:三角形内角和定理的证明与简单运用。

教学难点:引导学生添加辅助线解决问题,并进行有条理的表达。二.学情分析

初二学生已具备了一定的学习能力,操作、归纳、推理能力。他们思维活跃,对新知识有较强的探求欲望,但是对于严密的推理论证,在知识结构和能力上都有所欠缺。

三. 教学设计 1.教法

本节课主要采用“情境创设”、“设疑诱导”等教学方法,同时利用多媒体课件作为辅助教学手段。

2.学法(1)动手操作(2)合作交流(3)自主学习3.设计思路

《新课标》指出:“教师要成为学生数学活动的组织者、引导者、合作者;要善于激发学生的学习潜能,鼓励学生大胆创新与实践。”因此我设计了以学生活动为主线,以突出重点、突破难点,发展学生素养为目的教学过程。采用创设情境、启发诱导、动手操作、合作交流等方法,在教师的引导下,通过同学间的互相探讨、启发,在自主探索中发现新知、发展能力。

四.教学过程

情境引入→活动探究→实践运用→小结反思 1.创设情境,引入新课

新课标下的数学课程倡导从学生实际出发,发挥学科自身优势,激发学生的学习兴趣,促使学生主动地学习。因此我通过一段动画引入课题,由动画中三个小动物的争论引出三角形内角和大小的问题,让学生作出评判:到底谁的内角和大?在学生评理说理中自然导入三角形内角和的学习探究。由此引入新课,既提出了数学问题,又激发了学生学习数学的兴趣。

2.活动探究,获取新知

要求学生把事先准备好的三角形纸板的三个内角剪下,然后将剪下的三个内角随意的拼接在一起,使三者顶点重合,问能发现怎样的现象。学生分组动手操作,在探讨各种拼图的方法后派代表展示拼接的图形,教师借助多媒体展示其中的具有代表性的拼接方法。通过学生的观察、猜想、度量得到结论:三角形三个内角的和是180°。但是有的学生提出质疑:有时候量出三角形三个内角的度数和要高于或低于180°。此时,教师适时说明:通过观察剪拼得到的结论虽然有一定的合理性,但是会存在误差,命题的正确性必须经过严密的推理来验证。通过实际操作让学生体会到证明的必要性。

由剪拼三角形得到三角形内角和为180°,到添加辅助线证明这个定理,对学生来说有一定的难度,因此在教学时,我对教材做了铺设台阶,化解难点的处理。先让学生指出这个命题的条件和结论,并画出图形,结合图形写出已知、求证。目的是让学生逐步学会用符号表示命题,发展他们的数学符号表达能力。然后对照刚才的拼图过程,尝试用几何图形来表示出所拼接的实物图。此环节应留给学生充分的思考、讨论、体验的时间,让学生在交流中互取所长。

几何图形描绘出来之后,师生一起探究证明思路,先引导学生观察在刚才的拼接过程中∠1和哪个角相等?这两个角具有怎样的位置关系?由它们的位置关系与等量关系我们可以得到射线CE与线段AB具有怎样的位置关系?通过学生的思考、交流引导他们说出探究1中添加辅助线的方法:延长BC到点D,过点C作射线CE∥AB.这样就可以借助平行线的性质将∠A移到∠1的位置,将∠B移到∠2的位置。(此时,教师即可给出学生辅助线的定义、作用,以及作辅助线的注意事项),然后由学生尝试写出证明过程,教师巡回指导。有一部分学生写证明过程有困难,可给予有针对性的帮助。完成之后让多名学生口答自己的证明过程,培养他们说理有据,有条理的表达自己想法的良好意识。师生共同评议,订正,在交流中发现问题、解决问题,共同提高。(学生的证明过程出现了两种不同的方法:有的学生把三个内角凑成一个平角来证明,而有的学生则借助“两直线平行,同旁内角互补”来证明)。对学生的独到的见解,不同的证题方式,我及时进行肯定与鼓励,3 使学生感受成功的喜悦。最后教师规范证明过程,给出证明的书写格式,使学生学习有章可依。

探究2的思路分析和添加辅助线的方法,由学生类比于探究1的步骤合作交流后独立完成证明过程。通过教师的正确引导,使学生掌握三角形内角和定理的证明方法,从而突出本节课的重点。对证明的格式、方法和步骤,要在学生亲身经历、体验的过程中去逐步理解和掌握。

对于探究3,引导学生观察拼接的图形,说出添加辅助线的方法,证明过程让学生课下独立完成。

探究完成之后,师生共同进行归纳得到三角形内角和定理:三角形三个内角的和等于180°。然后教师引导学生总结辅助线的添加方法,即通过添加平行线,把三角形的三个内角转化成一个平角或者转化为一组同旁内角来证明。让学生交流自己发现的其他证题思路,并进行适当的比较和讨论,努力给他们创造一个“海阔凭鱼跃,天高任鸟飞”的课堂氛围,使学生的求异思维和创新意识得到及时的表现。

通过学生的思考、争论达到思想上的碰撞,激发新思维。本节课的难点也会趁此而突破。

3.实践运用,巩固新知

新课标提倡发展应用数学知识的意识与能力。因此在推理证明完成之后,我设计了一组题目来巩固所学定理。首先是例题1的学习,教师进行适当的引导和点拨后,由学生独立完成。然后师生一起理顺思路,规范格式。

其次是基础练习。通过试一试、练一练、做一做,让学生经历运用所学知识解决问题的过程,使学生对初步感知的结论有更加深刻的认识,进一步发展他们的推理论证能力。

为了提升学生的应用能力,我还设计了两个实际问题。通过解决问题让学生体会到数学来源于生活,又服务于生活,从而激发他们学习数学的积极性,建立学好数学的自信心。4.小结反思,提高认识

回顾本节知识脉络,请学生谈谈自己学习过程中的收获,并整理自己参与数学活动的经验,回味成功的喜悦,形成良好的学习习惯,同时也是给我 4 们教者本身一个反思提高的机会。

5.布置作业

分层次留作业,尊重学生的个性差异,让不同的学生在数学学习上都有收获和进步。

6.板书设计

采用提纲式板书,突出重点,一目了然。五.教学反思

本节课教师主导作用的发挥是比较好的,主要体现在让学生的主体地位得到充分展示。例如:证明方法的发现和小结等。同时使学生感受到了学习的快乐,体会到了探究与发现带来的乐趣。教学中,我遵循的基本教学原则是激励学生展开积极的思维活动,不断的表扬学生,使学生感到自身的价值存在,给学生一个展示个性、尝试成功的机会。

总之,本节课力求从学生实际出发,通过他们的实践、思考、探索、交流获得知识,形成技能,发展思维。存在的不足之处还恳请各位评委老师批评指正。

第四篇:三角形内角和定理教案

9.2三角形内角和 教学案例

学校:野鸡坨镇丁庄子初级中学

学科:数 学

姓名:田 明 时间:202_年5月

9.2 三角形内角和定理 教学案例

一、地位和作用

《三角形内角和》是冀教版义务教育课程标准实验教科书七年级下册第九章第二节第一课时的内容。在这之前,学生已经学习过平行线的性质,平角的定义,为这节课中三角形内角和的推理起了铺垫的作用,这节课也为后边学习多边形的内角和起了一定的奠基作用。三角形内角和在整个初中的教学过程中有重要的作用。

二、教学目标

知识与技能:掌握三角形内角和定理,并初步学会利用辅助线证题,同时培养学生观察、猜想和验证能力。

过程与方法:

1、在评价学生的“说理”过程和水平时不应要求形式化的推理格式,应鼓励学生运用自己的方式说明理由,只要清楚、正确即可。

2、经历实验活动过程,得出三角形内角和定理。

情感态度与价值观:通过对几何问题的演绎推理,体会证明的必要性,培养学生的逻辑推理能力。

教学重点:三角形内角和定理的证明及应用。教学难点:三角内角和的证明方法。

三、教学过程:

(一)引入新课

问题一:三角形一共有几个内角

问题二:老师手有两个三角形,一个是锐角三角形,一个钝角三角形,那么是不是钝角三角形的内角和大于锐角三角形的内角和呢? 问题三:三角形的三个内角有什么关系?

设计意图:,从学生已经掌握的知识出发,明确本节课要研究的内容。

(二)自主探究,验证新知

1、探索

(1)小学我们是如何验证这个结论的?

(2)实物展示台展示,三角形发生变化,但是内角和总是180。

设计意图:让学生动手操作,一方面锻炼动手操作能力,另一方面为下一环节的推理作好准备。

2、引导

(1)前面我们已经学过命题的结构,知道命题由条件和结论组成,并且知道要说明一个命题的正确性需要说理,那么怎么说明三角形的内角和是180呢?(2)

已知:如图,ΔABC.A+∠B+∠C=180

求证:∠

(引导学生思考:那些地方存在着180的角?①平角或邻补角;②平行线间的同旁内角)

(说明理由的过程完全可以由学生自己书写。)

(3)合作交流

是否还有其他的说明理由的方法?

(平角)

(平行线间的同旁内角)

(过边上一点非顶点作)

(从三角形内部一点作)

(三条平行线也可)

设计意图:用多种方法说明三角形的内角和定理。用多种方法说明这一命题的正确性,一方面让学生初步认识说明一个命题正确性可能有多种方法,另一方面让学生确信该命题的正确性。

(4)经过说理,“三角形内角和为180”作为定理得到了充分的证明。几何语言:

(三)例题讲解

例一:如图:

在ΔABC中,∠A=30,∠B=65,求∠C的度数。(让学生尝试解决,教师再规范书写格式)

(四)课堂练习

B=62°24′,∠C=28°52′,求∠A的度数。

1、在ΔABC中,∠

C=36°,∠A与∠B的比是1:2,求∠A,∠B的度数。

2、在ΔABC中,∠ C=42°,∠A=∠B,求∠B的度数。

3、在ΔABC中,∠

(五)课堂小结

1.学习了三角形内角和及其证明方法 2.转化的思想 3.运动的观点

(六)布置作业

教材第105页A组1/2/3.四、板书设计:

9.2三角形的内角和外角

1、三角形内角和定理:三角形的内角和是180。

2、说明理由: 延长BC到点D,作CE∥BA CE∥BA ∴∠1=∠4(两直线平行,内错角相等)

∠2=∠(两直线平行,同位角5相等)∠ 3+∠4+∠5=180°(平角的定义)∴ ∠1+∠2+∠3=180°(等量代换)

3、几何语言: 在ΔABC中

∠A+∠B+∠C=180°

第五篇:《三角形内角和定理》教学设计

人教版七年级下册7.2.1《三角形的内角》教学设计说明

淄博市高青县实验中学

邢春林

人教版七年级下册7.2.1《三角形的内角》教学设计说明

淄博市高青县实验中学

邢春林

一、教材分析

(一)教材的地位和作用 《三角形的内角》内容选自人教实验版九年义务教育七年级下册第七章第二节第一课时。“三角形的内角和等于180°”是三角形的一个重要性质,它揭示了组成三角形的三个角的数量关系,学好它有助于学生理解三角形内角之间的关系,也是进一步学习《多边形内角和》及其它几何知识的基础。此外,“三角形的内角和等于180°”在前两个学段已经知道了,但这个结论在当时是通过实验得出的,本节要用平行线的性质来说明它,说理中引入了辅助线,这些都为后继学习奠定了基础,三角形的内角和定理也是几何问题代数化的体现。

(二)教学目标

基于对教材以上的认识及课程标准的要求,我拟定本节课的教学目标为: 1.知识技能:发现“三角形内角和等于180°”,并能进行简单应用;体会方程的思想;寻求解决问题的方法,获得解决问题的经验。

2.数学思考:通过拼图实践、合作探索、交流,培养学生的逻辑推理、大胆猜想、动手实践等能力。

3.解决问题:会用三角形内角和解决一些实际问题。

4.情感、态度、价值观:在良好的师生关系下,建立轻松的学习氛围,使学生乐于学数学,在数学活动中获得成功的体验,增强自信心,在合作学习中增强集体责任感。通过添置辅助线教学,渗透美的思想和方法教育。

(三)重难点的确立:

1.重点:“三角形的内角和等于180°”结论的探究与应用。

2.难点:三角形的内角和定理的证明方法(添加辅助线)的讨论

二、学情分析

处于这个年龄阶段的学生有能力自己动手,他们乐于尝试、探索、思考、交流与合作,具有分析、归纳、总结的能力,他们渴望体验成功感和自豪感。因而老师有必要给学生充分的自由和空间,同时注意问题的开放性与可扩展性。

基于以上的情况,我确立了本节课的教法和学法:

三、教法、学法

(一)教法

基于本节课内容的特点和七年级学生的心理特征,我采用了“问题情境-建立模型-解释、应用与拓展”的模式展开教学。本节课采用多媒体辅助教学,旨在呈现更直观的形象,提高学生的积极性和主动性,并提高课堂效率。

(二)学法

通过学生分组拼图得出结论,小组分析寻求说理思路,从不同角度去分析、解决新问题,通过基础练习、提高练习和拓展练习发掘不同层次学生的不同能力,从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。

四、教学过程

我是以6个活动的形式展开教学的,活动1是为了创设情境引入课题,激发学生的学习兴趣,活动2是探讨三角形内角和定理的证明,证明的思路与方法是本节的难点,活动3到5是新知识的应用,活动6是整节课的小结提高。

具体过程如下:活动1:首先用多媒体展示情境提出问题1,设计意图是:创设情境,引起学生注意,调动学生学习的积极性,激发学生的学习兴趣,导入新课。在此基础上由学生分组,用事先准备好的三角形拼图发现三角形的内角和等于180°。设计意图是:从丰富的拼图活动中发展学生思维的灵活性,创造性,从活动中获得成功的体验,增强自信心,通过小组合作培养学生合作、交流能力。在合作学习中增强集体责任感。再用多媒体演示两个动画拼图的过程。设计意图:让学生更加形象直观的理解拼图实际上只有两种,一种是折叠,一种是角的拼合,这为下一环节说理中添加辅助线打好基础,从而达到突破难点的目的。

前面通过动手大家都知道了三角形的内角和等于180°这个结论,那么你们是否能利用我们前面所学的有关知识来说明一下道理呢?请看问题2,请各小组互相讨论一下,讨论完后请派一个代表上来说明你们小组的思路[学生的说理方法可能有四种(板书添辅助线的四种可能并用多媒体演示证明方法)]设计的目的:通过添置辅助线教学,渗透美的思想和方法教育,突破本节的难点,了解辅助线也为后继学习打下基础。在说理过程中,更加深刻地理解多种拼图方法。同时让学生上板分析说理过程是为了培养学生的语言表达能力,逻辑思维能力,多种思路的分析是为了培养学生的发散性思维。

通过活动3中问题的解决加深学生对三角形内角和的理解,初步应用新知识,解决一些简单的问题,培养学生运用方程思想解几何问题的能力。

活动4向学生展示分析问题的基本方法,培养学生思维的广阔性、数学语言的表达能力。把问题中的条件进一步简化为学生用辅助线解决问题作好铺垫。同时培养学生建模能力。

活动5通过两上实际问题的解决加深学生对所学知识的理解、应用。培养学生建模的思想及能力。

活动6的设计目的发挥学生主体意识,培养学生语言概括能力。【教学设计说明】

1、《数学课程标准》指出:“本学段(7~9年级)的数学应结合具体的数学内容,采用„问题情境——建立模型——解释、应用与拓展‟的模式展开,让学生经历知识的形成与应用的过程…… ”因此,在本节课的教学中,我不断的创造自主探究与合作交流的学习环境,让学生有充分的时间和空间去动手操作,去观察分析,去得出结论,并体验成功,共享成功.

2、体现自主学习、合作交流的新课程理念.无论是例题还是习题的教学均采用“尝试—交流—讨论”的方式,充分发挥学生的主体性,教师起引导、点拨的作用.

3、结合评价表,对学生的课堂表现进行激励性的评价,一方面有利于调动学生的积极性,另一方面有利于学生进行自我反思。

17 三角形内角和定理 三角形三个内角的和等于180
TOP