首页 > 精品范文库 > 15号文库
《数与形》教案6
编辑:独影花开 识别码:24-949612 15号文库 发布时间: 2024-03-16 12:56:43 来源:网络

第一篇:《数与形》教案6

六年级数学上册《数学广角——数与形》

教 学 设 计

执讲教师:高凤琴

教学内容:新人教版六年级数学上册107页第八单元《数学广角——数与形》例1及相关习题。

教学目标:

1.使学生通过自主探究发现图形中隐藏着的数的规律,并会应用所发现的规律解决问题。

2.体会数与形的联系,进一步积累数形结合解决问题的活动经验,培养学生数形结合的数学思想意识。

3.体验数形结合方法的价值,激发学生用数形结合的方法去解决问题,感受数学的魅力。

教学重点:体会数与形的联系,培养学生数形结合的数学思想意识。

教学难点:借助数形之间的联系发现解决问题的方法 教、学具准备:多媒体课件、正方形卡片若干 教学过程:

一、课前游戏,调节气氛,缓解紧张

师:同学们,大家早上好!新的一周开始了,很高兴看到精神焕发的你们。你们喜欢做游戏吗?(喜欢)那我们来玩个游戏,游戏的名字叫“说反话”。什么意思呢?比如,我说“我看天”,你就回答“我看地”;我说“我朝左”,你就回答“我朝右”。听懂了吗?谁想来试一试?(请一名男生)准备好了吗?

① 我看天②我朝左③我张嘴④我越活越年轻⑤我是大美女

师:谁还想试一试。

① 我站着②我举左手③我是女生④我越来越漂亮

师:有的同学可能觉得不公平了,刚才游戏中有个人总占便宜,谁呀?(老师)想不想反过来?你们先说,我再说。(想)说来试一试。

二、探究新知 1.过渡导入

师:同学们开心吗?(开心)快乐吗?(快乐)带着开心、放松的心情,我们开始上课好吗?(好。上课!)今天这节课,让我们一起走进数与形的世界。请看。(播放课件,课件出示松果螺线排列图、玫瑰花、海螺)植物果实顺时针、逆时针两条螺线的交错排列,让我们感叹大自然中数与形的完美结合,玫瑰花瓣的排列绽放着数与形合璧的美丽,海螺平滑的弧线中蕴藏着数与形结合的神奇与奥妙。在数学学习之旅中,数与形的结合是我们的好助手。一年级学习“100以内数的认识”,小棒和计数器给了我们很多帮助。三年级分数的初步认识以及我们刚刚学习的分数乘除法,直观的形使抽象的分数问题变得一目了然。线段图的使用让复杂的数量关系清晰可见。无论是生活中还是学习中,数与形总是一对形影不离的好朋友、好搭档!那在今天的数学课堂,数与形又将进行怎样的对话?我们去一同去探究。(板书:数与形)2.探究例1。

① 师:老师带来几幅图形。依次出示:

图1 图2 图3 师:根据颜色,你能用数或算式表示出各图中小正方形总个数吗?

生:

1、1+3=4、1+3+5=9。(要求学生边指边说,从形中抽象出数)

② 师:如果老师继续往下摆,(师在黑板板依次摆出1、3、5的小正方形)猜一猜,第4个图形至少再添上几个这样的小正方形就能拼成更大的正方形? 生:至少再填7个。问:为什么是7个。

生可能:因为我看到前面几幅图,后一个加数总比前一个多2,比5多2是7,所以至少添7个小正方形。生也可能:我发现前面的加数都是1、3、5连续的奇数,所以这次应该添7个。

师:我们摆摆看(教师依次摆出7个绿色的),的确是这样。你们真善于观察!好样的!

师:根据颜色,你能像刚才一样用算式表示这幅图中小正方形的总个数吗?等于多少? 生:1+3+5+7=16 ③ 师:想一想,接着往下摆,下一幅图一共需要多少个这样的小正方形?也能列个算式吗? 生:1+3+5+7+9= 问:再下一个呢?(+11)再下一个呢?(+13,教师一直写到黑板边)写不下了,就写到这儿。这一列数,他们的和事多少?敢不敢和老师比一比,看谁算得快?(敢)3 好,开始!老师算出来了。(老师说得数)唉?老师为什么算得这么快呢?想不想知道为什么?(想)直接告诉你们就没意思了,但我可以告诉你们我是图和算式结合起来观察,发现的方法。可这一列数对应的图形摆起来很?(麻烦)大家研究起来也很不方便,怎么办呢?(可提示:我们能不能利用化繁为简的数学思想从前面简单的图和算式中发现方法呢?能)想不想试一试?(想)生可能:1+3+5+7+9+11+13+15+17+19+21+23= ④请听要求:4人一组,小组合作,交流讨论,观察左边的图和右边的算式有什么关系?把你们的发现写在记录单上。

小组合作,教师巡视。⑤全班交流

师:找到计算的方法了吗?哪个组来汇报?请派代表到黑板前边指图边讲解。其他组的同学,请带着三个问题来听汇报,一他们的想法你听懂了吗?二他们的想法你赞同吗?三你还有补充吗?准备好了吗?请开始讲吧。生:我们发现图2中,按颜色看1个红色加3个黄色共有4个小正方形;按行列看,每行每列都有2个,可以用2×2=4,也能算出一共用了4个小正方形。(如果学生说不到,提示:这个乘法算式也是算得这个图中小正方形的总个数,所以它和前面的加法算式是?想等到,板书等号)图3也是如此,按颜色1+3+5=9,还可以按行列看,每行每列3个小正方形,所以3×3=9。图4,按颜色1+3+5+7=16,按行列看,每行每列有4个,4×4=16,也算 4 出一共有16个小正方形。(如果学生说道边长×边长,教师顺势引导“也就是每行每列都有2个小正方形,所以用2×2”。)

师:这里第一个图形,1=1×1。

师:他们的想法你听懂了吗?同意吗?(同意)还有补充吗?(再请一名学生叙述方法,能说出平方最好,说不出教师引导。2×2还可以写成什么形式?2。依次板书3、4)

师:从刚才你们的发现中,你们找到快速计算的方法了吗?

生1:我们发现,有几个数相加的和就等于几乘几。生2:有几个数相加的和就等于几的平方。(教师板书)问:还有补充吗?(如果说不到,提示:什么样的一列数能用这个方法解决?任意几个数相加都能用这个规律吗?同桌讨论一下。)

师:谁来说说你是怎么想的?为什么?

生1:不能,必须是连续奇数相加。这几个算式都是连续的奇数相加。

师:嗯,很好!还有补充吗?

生2:不能,还必须是从1开始的连续奇数相加,如果没有从1开始就不能拼成正方形,就不能等于每行每列小正方形个数的平方了。(教师可以结合图指一指)

师:看来必须是从1开始的连续奇数相加的数列才适用这条规律。(板书:从1开始,连续奇数)综合以上发现,你能用一句话总结我们的快速计算的方法吗? 25 生:从1开始,几个连续的奇数相加就等于几的平方。(板书)⑥验证方法

问:接下来的图中都有这样的规律吗?我们在大屏上摆摆看。(课件出示)这是之前1+3+5+7,4个从1开始的连续奇数相加等于4;接着摆,又摆了几个小正方形?(9个)几个加数相加?(5个)每行每列有几个小正方形?(5个)小正方形的总个数就等于5。以此类推往下看。接着往下摆,也同样具有这个规律吗?(有,课件出示规律)。全班读一读。

师:如果有n个数从1开始的连续奇数相加就等于? 生:n。

师:说得太好了,同学们真善于观察和总结!

⑥师:由几的平方得到的数,像1、4、9、16等等这样的数,数学上把它们叫做平方数,或正方形数。

二、练习提升

1.师:这回我们可以解决这道题了。(手指之前列出的那一场列数。)利用规律算一算,检验老师做对了吗?(学生在练习本上完成)

师:谁来说说你是怎么算得?老师做对了吗?

2.利用规律试着填填这道题。出示:()9

(学生独立完成在练习本上后全班交流)师:为什么这样列式,你是怎么想的?

生:看到9,我就想到了是从1开始的7个连续奇数相加。(如果学生说不到,提示:看到9,你想到的是怎样

2226 的一列数?)

2.完成108页“做一做”第1题。

师:算一算这道题。(出示:1+3+5+7+5+3+1=,先独立完成,教师巡视,再全班交流。)

(如出现1+3+5+7+5+3+1,把5+3+1写成9,1+3+5+7+9就是5个从1开始连续的奇数相加,等于5,等于25。教师要予以表扬,真有想法,一变通仍然使用了规律。真棒!)

小结:刚才我们结合形解决了数的复杂计算,也就是在以形助数。(板书:以形助数)反过来,我们也借助数的计算求出了各图中小正方形的总个数,这是“借数解形”。(板书)

3.①过渡:下面这道题书异性的结合又会给我们带来什么帮助呢?请看。(课件出示:教材108页“做一做”第2题)请一位同学读一读要求。(学生开始数,课件出示数量,再出示第一个问题)

② 打开数学书108页,“做一做” 第2题,仔细观察,想一想,也可以写一写、算一算。你有什么发现?做完后和你的同桌交流一下。(学生独立试做)

③全班交流:

生1:我发现第几个图形就有几个红色正方形,蓝色正方形从8开始依次多2个。所以第6个图形有6个红色的小正方形,有14+2+2=18个蓝色小正方形。问:听懂了吗?还有其他方法吗? 7 生2:我也发现第几个图形就有几个红色的小正方形,还发现每增加1个红色小正方形就会增加2个蓝色小正方形,左右各3个蓝色的小正方形始终不变。也就是红色的小正方形个数×2+6=蓝色的小正方形。师:能举个例子吗?(学生举例)

师:如果第n个图,有几个红色小正方形?(n个)有几个蓝色小正方形?(2n+6)真聪敏!拥有大智慧啊!

四、课堂小结

1.师:同学们,通过这节课的学习,你有什么收获? 可能:

生1:遇到难解的计算问题可以借助形,画画图。生2:以后学习数学我会看数想形,见形想数。2.师:和同学们一起学习,高老师也在收获,在成长。我国著名数学家华罗庚对“数”与“形”有很深的研究,他用一首词对数与形的结合进行了形象的论述。请看!(课件出示)在以后的数学学习中数与形的结合给我们带来的帮助会更多!今天的学习就到这里,下课。

第二篇:数与形教案

《数与形》教案

教学内容:

人教版《义务教育教科书 数学》六年级上册第107页例1 教材分析:

《数与形》是本册教材第八单元《数学广角》的内容。它是教材新增的内容,按照传统的教学,是供学有余力的学生学习的,而对普通学生来说要求偏高。现在教材作为例题编写,其意图是让学生通过数与形的对照,探究发现图形中隐藏的数的规律,进一步体会数与形之间的内在联系,感受用形来解决数的有关问题的直观性与简捷性。并能把数形结合的思想迁移到解决其他一些实际问题,帮助学生积累经验。教学目标:

1、学生通过自主探究发现图形中隐藏着数的规律,并会应用所发现的规律。

2、学生利用图形解决一些有关数的问题。

3、学生在解决数学问题的过程中,体会和掌握数形结合的数学思想。培养学生用“数形结合”的思想解决问题。教学重难点:

借助“形”感受与“数”之间的关系,培养学生用“数形结合”的思想解决问题。

教具学具准备:课件,方格纸,彩笔。教学过程:

一、创设情境,生成问题

师:同学们,我们学过了哪些有关数的知识? 生:分数乘法。

生:我们学过小数乘法。师:,我们学过了哪些有关形的知识? 生:我们学过长方体正方体的体积。生:我们学过三角形

(将以前学过的知识进行整理,都可以分为“数”和“形”两类)我们再一块来回顾一下,这是我们学过的分数乘法的问题,我们通过借助图形弄清了分数乘法的原理;这是整数的减法,也是通过图形来解决的;这是我们刚学过不久的植树问题,也是通过画图的方式来帮助我们理解的。你们看,数和形的联系多么紧密,通过图形,我们可以把抽象的数的问题形象化。华罗庚曾经也说过一句话:数形结合百般好。

数与形之间还有没有其他的奥秘呢,这节课,就让我们继续走进数与形的世界,进一步探究他们之间的奥秘。

二、探索交流,解决问题

1、探究例1,发现规律 出示例1 提出问题:

1、观察图片,用算式表示三幅图中分别有多少个小正方形?

2、将算式补充完整,并思考上面的图和算式有什么关系。

3、如果继续这样画下去,第4个、第5个大正方形各需要几个小正方形?画在方格纸上。

4、观察上面图形和算式,想一想,你能发现什么规律?

小组合作,完成问题。小组代表汇报:(小主持人主持汇报过程)

问题1:观察图片,用算式表示三幅图中分别有多少个小正方形?

(预设:我发现第一幅图一个小正方形,第二幅图有2X2个小正方形,第三幅图有3X3个小正方形/我发现第一幅图有1的平方个小正方形,第二幅图有2的平方个小正方形,第三幅图有3的平方个小正方形。)

问题2:将算式补充完整,并思考上面的图和算式有什么关系。?

(预设:我发现,算式左边的加数是每个正方形图左下角的小正方形和其他“┐”形图中所包含的小正方形个数之和,正好等于每个正方形图中每列小正方形个数的平方。)

把算式补充完整:11,1342,13593

问题3:如果继续摆下去,第4个、第5个大正方形各需要几个小正方形?画在方格纸上。

(第4个需要1+3+5+7=16个),主持人:那对不对呢?我们一块来验证一下,对吗?

主持人:那第5个需要多少了?(1+3+5+7+9=25个)主持人和全体学生一起验证。

问题4:观察上面图形和算式,想一想,你能发现什么规律?

(预设:从1开始的几个连续奇数的和正好是几的平方。)

2、知识运用:(主持人:学到这里同学们对新知识掌握了吗?现在我就出题目来考考大家吧!)

(1)你能利用规律直接写一写吗?

22213574213579111372135791113151792

213579nn个(2)根据例1的结论算一算。

①1357531

说一说你是怎么做到?

(可以看成两部分:135742,53132,所以423225)②1357911131197531

3.介绍“正方形数”: 由于数量为1、4、9、16、25„„的小正方形可以组成一个大正方形,这些数也叫做“正方形数”。

三、巩固应用,内化提升(设计意图:将例题中涉及的数形结合思想进行内化、提升)

小主持人:(播放PPT)下面同桌互相讨论,解决这一问题。主持人主持完学生汇报解题思路之后回位,照这样画下去,第10个图形下面的数字是少? 自己动手尝试,然后和同桌交流自己的想法。同桌代表汇报: 发现:①后一个图比前一个图下方多一行圆片,个数比前一个图中最后一行的圆片数多1;

②第1个图有1个,第2个图比第1个图多2个,第3个图比第2个图多三个,第4个图比第3个图多4个。

所以第10个数应该是1+2+3+4+5+6+7+8+9+10=11010255。

3、介绍“三角形数”

由于数量为1、3、6、10、15„„相同的小图形可以组成一个三角形,这些数也叫做“三角形数”。

四、拓展延伸

五、回顾整理,反思提高

通过这节课的学习,你都有那些收获?

总结:通过一节课的学习,我们又进一步的了解了数与形之间的奥秘。

六、作业布置 像例题1研究的是从1开始连续奇数相加的和,拓展题研究的是从1开始连续自然数相加的和,那么从2开始n个连续的偶数相加结果是多少呢?这个题目就留给同学们课下进行思考。

第三篇:数与形教案

《数与形》教学设计

半程镇中心小学 范建玲

【教学内容】

《义务教育教科书·数学》(人教版)六年制六年级上册第八单元《数学广角----数与形》,107页例1,108页做一做。

【教学目标】

1、在解决数学问题的过程中,总结并应用规律,体会归纳推理等数学思想。

2、体会数与形的联系,积累数形结合解决问题的经验,培养数形结合的应用意识。

3、体会数形结合思想的价值,激发学生的学习兴趣,感受数学的魅力。【教学重点】

体会数形结合思想的价值,激发学生的学习兴趣,感受数学魅力。【教学难点】

数形结合,解释应用。【教学过程】

一、实物引入,体验数形先天联系。1.欣赏一幅图片(花坛)。你看到了什么?

2.从数学的角度观察描述实物,体验数---形---物之间的天然联系。

【设计意图:数学来源于生活,数与形是同一客观事物在数学上的两种不同表象,通过简单事物以小见大,使学生感受数与形的联系是先天的,不可分割的。】

二、操作探究,体验数形结合思想价值。

(一)经历问题解决过程,寻找规律,以形助数。1.提出问题,分析问题。

(从1开始的n个连续奇数相加的和是)。2.假设举例,探究规律。

复杂的问题从简单的开始是一个很好的解决问题的策略,我们先把n假定在10个以内。3.观察对比,归纳总结。

你发现了什么规律?你能举例说明一下吗?从1开始的n个连续奇数相加的和是 n² 4.以形助数,解释规律。 化数为形,合作探究。这个问题从数的角度不好解释了,怎么办呢?

 以此类推,再现通式。

 提炼总结:以形助数。

师:一些复杂的数量关系往往需要借助图形来帮助理解,化数为形后,可以使这些复杂的数量关系变得更加清楚明白,直观易懂。

【设计意图:着眼于学生利用数形结合解决问题经验的积累,使学生切实经历分析问题,提出假设,举例验证,形成结论,解释证明的问题解决全过程。以小见大,发现规律,化数为形,解释规律,全面体现数与形的应用价值】

(二)化形为数,以数解形。(做一做2题变式。)1.出示问题,观察规律。

师:10张桌子拼在一起能坐多少人?。2.解决问题,汇报交流。

师:10张桌子拼在一起能坐多少人?你是怎么做的?为什么这样做? 3.数形对比,提炼总结(以数解形)。

用数的规律来解决图形数量的问题有什么好处?

师:形虽然形象直观,但在计算数量的时候往往也需要借助数的力量,用数的规律来计算往往能更快速,更准确。我们把这个过程称之为以数解形。

(三)梳理回顾,概括总结。

师:数和形一一对应,既可以互相转化,又可以互为补充,所以在解决问题时就需要把数和形结合起来,灵活运用,这在数学上是一种重要的思想和方法,叫做数形结合。

【设计意图:以数解形是类似于学生比较熟悉的找规律,是学生比较熟悉的应用形式,所以此素材宜做为一个综合性的应用练习,学生既能以数解形,又能在交流过程中参与解释,以形助数。学生交流时,在画图与计算的不同问题解决方式间进行对比,体现以数解形的优势及必要性,从而促进学生数形结合解决问题的应用意识形成。呈现图例,顺势总结,直观易懂。】

三、课堂练习,搭建思想至方法转换桥梁。1.名言欣赏,强化思想。

师:提到数形结合,我国著名数学家华罗庚先生,对数形结合思想有着自己独到的见解,我们一起来欣赏。

2.技能训练,促进应用。

那怎样才能做到数与形的结合呢?我觉得还是要落脚在思和想上,也就是见数思形,见形想数。我们一起来练一练。

3.小结学习意义,承上启下。

师:可见数形结合的思想不但在小学阶段悄悄陪伴着我们,它对我们初中乃至以后的学习都是十分重要的。

【设计意图:数形结合思想既是一种数学思想,更是一种方法,离开了技能的支撑,空谈思想,对于促进学生由思想到方法的转化应用是没有意义的,本环节意在通过一系列学生以前熟知的题例,沟通学生的日常学习与数形结合思想的联系,并通过勾股定理的事例将数形结合思想的应用引深至学生的终生发展,提升数形结合思想的应用价值。】

四、拓展总结,提升数形认识境界。1.课外拓展,认识形数。

师:下面给大家介绍一些数和形紧密结合的数字。我们就把这样有形状的数叫做形数。2.首尾呼应,根植思想。

师:你知道形数是谁发现的吗?这个人叫毕达哥拉斯。毕达哥拉斯学派万物皆数思想。3.课堂总结,提升认识。

师:同学们,学完这节课后,你有什么收获?你对数与形的认识有没有发生一些改变? 【设计意图:学生对数学的兴趣和好奇心是促进学生和谐可持续发展的不竭动力,也是课堂上教师不应忽视的情感目标。形数较好地体现了数与形的结合,而毕达哥拉斯万物皆数的思想不但与前面引入的事例相互印证,而且为学生利用数形结合思想解决生活中的实际问题提供了有力的佐证。】

第四篇:数与形教案公开课

《数与形》教学设计

【教学目标】

1、通过观察、操作,使学生认识图形和相应的数之间的联系。

2、引导学生探索规律、发现规律,运用规律提高计算技能。

3、让学生在经历猜想与验证的过程,培养学生认真观察、大胆猜想、细心验证、灵活运用的能力。

4、使学生在解决数学问题的过程中,体会和掌握数形结合、归纳推理等基本数学思想。【教学重点】

经历探索规律的过程,发现算式中蕴含的数学规律。【教学难点】

运用数形结合的思想,探索规律。【教学过程】

一、谈话导入,激发未知。

师:上课前我们先来看看一个人,我国的数学家华罗庚曾说过这样的话,投影出示,生齐读“数无形时少直觉,形无数时难入微。”。现在,我们就在带着华老先生的这句名言,一起走进奇妙无穷的数形世界。师:我们的数学是由数与形构成的。今天我们就来探索数与形的奥秘。(板书课题:数与形)

二、自主探索,获取新知

1、教学例1 出现1、3、5、7,问和是多少? 板书:1 师:这些数字有什么特点?

师:看到他们你想到了什么图形? 生:正方形

板书:1=12

4=22

9=32

16=42 师:从这些算式来看,你发现了什么特点?

生:从1开始,连续的奇数的和,就是这些加数个数的平方。

师总结:从1开始,连续的奇数的和,就是这些加数个数的平方。正方形数又叫平方数、完全平方数、四边形数。

三、巩固所学,深化提高

1.你能利用规律直接写一写吗? 1+3+5+7=

1+3+5+7+9+11+13 =

=92 2.请根据例1的结论算一算。1+3+5+7+5+3+1= 1+3+5+7+9+11+13+11+9+7+5+3+1=

3、按照规律,填一填。

4.利用摆一摆解决高斯公式。

【板书设计】

数 与 形

1= 12 = 1

数形结合

1+3= 22 = 4

3+4+5+6+7= 1+3+5= 32 = 9 1+3+5+7= 42 = 16

第五篇:《数学广角—数与形》教案

《数学广角——数与形》教案

教学内容:

教材第107~111页。

教学目标:

1、通过观察图形等活动,找出简单图形的数学规律。

2、经历探索简单图形排列规律的过程。

3、培养学生有序地全面地思考问题的意识。

教学重点与难点:

能够找简单图形的数学规律。

教学设计:

1、感知数学图形。

21(),213(),2135(),(1)师:同学们,观察一下上面的图和右边的算式有什么关系?并把算式补充完整。(2)请学生回答并补充算式。

21(1),213(2),2135(3),(3)利用规律,继续写算式。

21357(4),213579(5),·····

(4)教师小结:算式左边的加数是每个正方形图左下角的小正方形和其他“”形图中所包含的小正方形个数之和,正好等于每个正方形图中每列小正方形个数的平方。

2、杨辉三角。

(1)介绍杨辉三角。

师:“杨辉三角”出现在杨辉编著的《详解九章算法》一书中,且我国北宋数学家贾宪(约公元11世纪)已经用过它,这表明我国发现这个表不晚于11世纪。在欧洲,这个表被认为是法国数学家物理学家帕斯卡首先发现的,他们把这个表叫做帕斯卡三角。杨辉三角的发现要比欧洲早500年左右。(2)杨辉三角基本性质。

1.三角形的两条斜边上都是数字1,而其余的数都等于它肩上的两个数字相加; 2.杨辉三角具有对称性(对称美),与首末两端“等距离 ”的两个数相等; 3.每一行的第二个数就是这行的行数;

4.所有行的第二个数构成等差数列; 5.第n行包含n+1个数。

3、课堂练习。(1)尝试计算:1111 ······ 24816(2)画图计算,找出其中规律。

4、课堂总结。

(1)有些计算问题或者杂题通过画图,解决起来更直观。图形与数学之间能相互转化,能使计算更直观,更简单。

(2)可以画个图来帮助思考用一个圆或者一条线段表示“1”。

《数与形》教案6
TOP