第一篇:1.4.1有理数的乘法教案
有理数的乘法
教学设计(一)
向长华
教学目的: 1.知识与技能
体会有理数乘法的实际意义;
掌握有理数乘法的运算法则和乘法法则,灵活地运用运算律简化运算。2.过程与方法
经历有理数乘法的推导过程,用分类讨论的思想归纳出两数相乘的法则,感悟中、小学数学中的乘法运算的重要区别。
通过体验有理数的乘法运算,感悟和归纳出进行乘法运算的一般步骤。3.情感、态度与价值观
通过类比和分类的思想归纳乘法法则,发展举一反三的能力。教学重点:
应用法则正确地进行有理数乘法运算。教学难点:
两负数相乘,积的符号为正。教具准备: 多媒体。教学过程:
一、引入
前面我们已经学习了有理数的加法运算和减法运算,今天,我们开始探究有理数的乘法运算. 问题一:有理数包括哪些数?
回答:有理数包括正整数、正分数、负整数、负分数和零. 问题二:小学已经学过的乘法运算,属于有理数中哪些数的运算?
回答:属于正有理数和零的乘法运算.或答:属于正整数、正分数和零的乘法运算. 计算下列各题;
以上这些题,都是对正有理数与正有理数、正有理数与零、零与零的乘法,方法与小学学过的相同,今天我们要研究的有理数的乘法运算,重点就是要解决引入负有理数之后,怎样进行乘法运算的问题.
二、新课
我们借助数轴来探究有理数的乘法的法则。
我们以蜗牛爬行距离为例,为区分方向,我们规定:向左为负,向右为正,为区分时间,我们规定:现在前为负,现在后为正。
①、如果一只蜗牛向右爬行2cm记为+2cm,那么向左爬行2cm应该记为_____。②、如果3分钟以后记为+3分钟,那么3分钟以前应该记为_____。如图,一只蜗牛沿直线l爬行,它现在的位置恰在l上的点O。
1.正数与正数相乘
问题一:如果蜗牛一直以每分2cm的速度向右爬行,3分后它在什么位置?
讲解:3分后蜗牛应在l上点O右边6cm处,这可表示为
(+2)×(+3)=+6 答:结果向东运动了6米. 2.负数与正数相乘
问题二:如果蜗牛一直以每分2cm的速度向左爬行,3分后它在什么位置?
讲解:3分后蜗牛应在l上点O右边6cm处,这可表示为
(-2)×(+3)=(-6)3.正数与负数相乘
问题三:如果蜗牛一直以每分2cm的速度向右爬行,3分前它在什么位置?
讲解:3分后蜗牛应为l上点O左边6cm处,这可以表示为
(+2)×(-3)=-6
4.负数与负数相乘
问题四:如果蜗牛一直以每分2cm的速度向左爬行,3分前它在什么位置?
讲解: 3分前蜗牛应为l上点O右边6cm处,这可以表示为
(-2)×(-3)=+6 综合上述四个问题得出:
(1)(+2)×(+3)=+6;
(2)(-2)×(+3)=-6;
(3)(+2)×(-3)=-6;
(4)(-2)×(-3)=+6.
5.零与任何数相乘或任何数与零相乘
问题五:原地不动或运动了零次,结果是什么? 答:结果都是仍在原处,即结果都是零,若用式子表达:
0×3=0;0×(-3)=0;2×0=0;(-2)×0=0.
(5)任何数与零相乘都得零. 观察上述(1)~(4)回答:
1.积的符号与因数的符号有什么关系? 2.积的绝对值与因数的绝对值有什么关系?
答:1.若两个因数的符号相同,则积的符号为正;若两个因数的符号相反,则积的符号为负.2.积的绝对值等于两个因数的绝对值的积.
由此我们可以得到:
两数相乘,同号得正,异号得负,并把绝对值相乘.
(1)~(5)包括了两个有理数相乘的所有情况,综合上述各种情况,得到有理数乘法的法则:
口答:确定下列两数积的符号:
例题:计算下列各题:
解:
解题步骤:
1.认清题目类型.
2.根据法则先确定积的符号.
3.再确定积的绝对值. 练习:
1.口答下列各题:
(1)6×(-9);(2)(-6)×(-9);
(3)(-6)×9;(4)(-6)×1;
(5)(-6)×(-1);(6)6×(-1);
(7)(-6)×0;(8)0×(-6);
(9)(-6)×0.25;(10)(-0.5)×(-8);
注意:由(4)(5)(6)得:一个数与1相乘得原数,一个数与-1相乘,得原数的相反数.
3.计算下列各题:
(1)(-36)×(-15);(2)-48×1.25;
4.填空:
(1)1×(-5)=____;(-1)×(-5)=____;
+(-5)=____; -(-5)=____;
(2)1×a=____;(-1)×a=____;
(3)1×|-5|=____; -1×|-5|=____;
-|-5|=____
(4)1+(-5)=____;(-1)+(-5)=____;
(-1)+5=____.
三、小结
(1)指导学生看书,精读乘法法则.
(2)强调运用法则进行有理数乘法的步骤.
(3)比较有理数乘法的符号法则与有理数加法的符号法则的区别,以达到进一步巩固有理数乘法法则的目的.
四、作业 1.计算:
(1)(-16)×15;(2)(-9)×(-14);
(3)(-36)×(-1);(4)13×(-11);
(5)(-25)×16;(6)(-10)×(-16). 2.填空:(用“>”或“<”号连接)(1)如果a<0,b>0,那么,ab____0;(2)如果a<0,b<0,那么,ab____0;(3)当a>0时,a____2a;(4)当a<0时,a____2a.
第二篇:有理数乘法教案
§2.7 有理数的乘法(1)
课时课题:第二章 第七节 有理数的乘法(1)课型:新授课
授课时间: 202_年 10月 15 日,星期 一,第 一 节课 教学目标:
(1)了解有理数乘法的意义,经历探索有理数乘法法则的过程.(2)掌握有理数的乘法法则,初步发展、归纳、猜测、验证等能力.(3)知道倒数的意义.重点:
有理数乘法法则及熟练运用有理数乘法法则进行运算
难点:
确定多个有理数乘法中的符号
教法及学法指导:
本节应用“启迪诱导-自主探究”教学模式,引导学生对设计的问题进行仔细观察、主动思考、小组讨论、主动探究,最后自己得出结论,学会解决问题的方法.本节是在有理数的加减运算之后,进一步讲解有理数的乘法运算。通过生活中的实例引入关于负数乘法的运算过程,同时通过小组进行讨论,议一议,有理数乘法的同号和异号的乘法的规律,得到有理数的乘法法则,利用例1的计算巩固法则,进而引出有理数的倒数概念,通过了例2的计算,探索规律,得出有理数乘法法则的拓展规律,培养了学生的自学能力和小组探究的能力.课前准备:
制作课件,学生课前进行相关调查及预习工作.教学过程:
一、回顾旧知
师:同学们,我们大家在此以前已经学习了有理数的加法和减法运算,请看下面的题目:
投影展示 5+5+5+5=
(-5)+(-5)+(-5)+(-5)=
学生口答:5+5+5+5=20;(-5)+(-5)+(-5)+(-5)=-20 师:这样的加法能否转换为乘法,如何转化?
生:5+5+5+5可以看作4×5,(-5)+(-5)+(-5)+(-5)也可以看作4×(-5); 师:小学学习的运算是在有理数的什么范围中进行的?
(第七组)这组同学,利用的是我们课本上结论,说明我们的同学回家是预习了,学了就能用,也很好.师:通过大家的讨论,我们现在来归纳一下两个有理数相乘可以分为哪几类,他们存在什么规律?大家研究一下?
生1:有理数的乘法可分为四类:正数乘以正数;正数乘以负数;负数乘以正数;负数乘以负数。
生2:我认为他回答的不正确,应为:有理数的乘法可分为三类:
正数乘以正数;正数乘以负数;负数乘以负数。因为:正数乘以负数、负数乘以正数是一样的; 生3:我认为他们回答得还不够全面,都没考虑0。教师总结:生1:把我们已学的四种情况都概括了;
生2:把异号的两数相乘纳为一种也不错,主要是利用自己的经验;
生3:作了全面的补充,把前两位同学没考虑到的问题都想到了,说明思维很严密。
整理一下,可以分为三大类:
一、同号的两个有理数相乘
二、异号的两个有理数相乘
三、0和有理数相乘
师:下面再请大家根据刚才的内容归纳一下两个有理数相乘的乘法法则: 从一般到特殊,引导学生思考
生1:同号的两个有理数相乘符号为正,并把绝对值相乘;
生2:异号的两个有理数相乘符号为负号,并把绝对值相乘; 生3:0与任何有理数相乘,积为0。教师总结概括并板书:
两数相乘,同号得正,异号得负,并把绝对值相乘; 任何数同0相乘,都得0.
给出有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0.
让学生自主学习发现结论,体验成功的喜悦,培养数学的学习兴趣,通过上述的结论的应用发现规律掌握规律
四、尝试做题,巩固新知
1、算一算:
(-7)×3
(-48)×(-3)(-6.5)×(-7.2)
(-3)×3 强调指出:
(1)法则只适用于两个有理数相乘;
(2)结果强调两部分:一是符号,二是绝对值;(3)比较易混的是:“负负得正”和“异号得负”。
2、典例讲析,规范做题
例1 计算:
(1)(-4)×5
(2)(-5)×(—7)
(3)(-381)×(-)(4)(-3)×(-)833教师引导学生规范解题过程
应用所学知识解决实际问题,规范解题格式,由知识上升为应用能力
第三篇:有理数乘法的教案
(一)学习与导学目标
1、知识积累与疏导:通过蜗牛爬行模型的演示,循序渐进,导出有理数乘法法则。认知率100%。毛
2、技能掌握与指导:能运用有理数乘法法则进行计算,掌握两个有理数相乘的方法和步骤。利用率100%。
3、智能的提高与训导:在练习等师生互动、生生互动的活动过程中,学会与老师及与其他同学交流,沟通和合作,准确表达自己的思维过程。互动率95%。
4、情感修炼与开导:通过练习中的沟通与合作,领悟有理数乘法与小学里数的乘法的联系、发展和进步。投入率95%。
5、观念确认与引导:通过导出、运用法则等活动,加深理解有理数乘法法则;通过与小学里数的乘法法则的比较及法则的导入,培养学生的观察、分析能力,渗透数形结合和转化的数学思想。
(二)学程与导程活动
把全班学生分成46人一组。
1、每组学生演示自己制作的蜗牛爬行的模型(模型制作事先完成),如课本P37的四种情况,讨论完成P37的五个填空。
2、全班集中交流以上结论,归纳引出有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘。
问:法则(1)有没有把所有的有理数都包括在内?
指出:正数与0相乘得0,这里规定负数与0相乘也得0。
所以得法则(2)任何数同0相乘,都得0。
3、通过举例,理解法则
问题:由法则,如何计算(-5)(-3)的结果?
第四篇:有理数的乘法教案
有理数的乘法(2)教案
知识目标:有理数乘法运算
能力目标:能确定几个不是0的有理数乘积运算的符号,进行有理数运算;运用乘法的分配律进行有理数的乘法计算;情感态度和价值观:体会用计算器给有理数运算带来的方便.[教学重点与难点] 重点: 有理数乘法运算
有理数的乘法运算
你还记得有理数的乘法法则吗?(同号得正,异号得负,并把绝对值相乘)[知识讲解] 计算并观察
下列各式的积是正的还是负的? 思考:几个不是0的数相乘,积的符号与负因数的个数是什么关系?
更多精彩推荐:初中gt;初一gt;数学gt;初一数学教案
第五篇:有理数乘法法则教案
有理数乘法法则教学探讨
由于引进了负数,七年级对数系的认识范围扩大到了有理数。有理数乘法法则的教学难点所在,就是运算的因式含有了负数,如何自然 由原来正数的乘法过渡到带有“负数”的乘法,如何体现这些运算法则的合理性和必要性,是困扰很多教师的问题。特别地,对“负负得正”的理解,是关键所在。下面提供一个教学教案,并做简要的评析,来探讨这一问题。
教学内容:华东师大版《数学》七年级上册,有理数的乘法法则 教学目标
1.知识与技能
经历探索有理数乘法法则的过程,熟练掌握有理数的乘法法则,并能正确地进行有理数的乘法运算.2.情感体验
让学生自主探索,形成有理数乘法法则,在数学学习活动中形成自主、自信、健康的心理.教学重点难点
1.重点:正确地进行有理数的乘法运算.2.难点:探索出有理数乘法的符合规律.教学设计
(一)情景导入
一只小虫沿一条东西向的路线,以每分钟3米的速度向东爬行2分钟,那么它现在位于原来位置的哪个方向,相距多少米?若小虫向西以每分钟3米的速度爬行2分钟,那么结果有何变化?
(二)合作探索
若我们规定向东为正,向西为负.(1)对于第一个问题,我们可以列出式子:3+3=6 根据乘法是加法的简便运算,同样可以得到:3×2=6 即小虫位于原来位置的东方6米处.用数轴表示这个过程为:
(2)对于后一问题,根据有理数相加的法则,可以列出算式为:(-3)+(—3)=-6.通过比较,同样可以得到另外一条算式:(-3)×2 【分小组讨论】求出算式(-3)×2的积.显然,其结果为—6,它的意义是两个-3相加。这是两种不同运算的求解过程。我们就此求得小虫位于原来位置的西方6米处.用数轴可以表示这个过程:
【试一试】求下列算式的积
1)3×3 3×4 5×7 2)(-3)×3(-3)×4(-5)×7 3)3×(-3)3×(-4)5×(-7)解:1)3×3=9 3×4=12 5×7=35
2)(-3)×3=-9(-3)×4=-12(-5)×7=-35
3)3×(-3)=-9 3×(-4)=-12 5×(-7)=-35
【比较】请同学对比观察上面三组算式,有什么发现? 提示:分别从因数和结果的角度看.【归纳】请和小组成员交流,写出发现的结论:
两数相乘,若把一个因数换成它的相反数,则所得的积是原来的积的相反数.【想一想】求下列算式的积
(-3)×(-2)=(-3)×(-4)=(-3)×(-5)=(-5)×(-7)= 提示:运用发现的规律,对比前面的2)、3)组算式来思考.再试一试计算:3×0=?(-3)×0=? 0×(-5)=?
【概括】综合以上各种情况,我们有有理数乘法法则:
两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得零.【巩固提高】 例:计算
11(-0.8)(1)0×(2)(2)512141(3)(1)()(4)(3)()0(0.7)
4531(5)(1)()(6)(6)(1)
411答案:(1)0(2)(3)1(4)0(5)(6)-6
415点评:按乘法法则先确定积的符号,再确定积的绝对值;
分数与分数相乘,带分数应先化为假分数,小数应化为分数;
在连乘运算中“有零快写零,无零先定号”;
一个数与(-1)相乘,积与这个数互为相反数,一个数与1相乘,积与这个数相同.练习:判断题,对的在括号内写T 错的写F.(1)同号两数相乘,符号不变.(F)
(2)异号两数相乘,取绝对值较大的因数的符号.(F)
(3)两数相乘,如果积为正数,则这两个因数都为正数.(F)(4)两数相乘,如果积为负数,则这两个因数异号.(T)(5)两数相乘,如果积为0,则这两个数全为0.(F)(6)两个数相乘,积比每一个因数都大.(F)(7)如果ab0,且ab0,则a0,b0.(T)(8)如果ab0,则a0,b0.(F)
(9)如果ab0,则a,b中至少有一个为0.(T)
【拓展】对于两个负数相乘的意义的理解,同学们可以通过代入实际背景,如路程,温度,水位等去帮助理解,还可以运用数轴进行操作帮助理解.可以看这样的一个问题:
水池的水位每小时下降2米,已知现在的水位是0,问:(1)2小时后,3小时后的水位分别是多少?(2)2小时前,3小时前的水位分别是多少?
分析:我们把水位上升记为正,下降记为负,那么下降2米的水位就为—2米,所以对问题(1),2小时后的水位容易计算,(—2)×2= —4米,同样3小时后的水位为(—2)×3= —6米。在掌握了负数的基础上,这是容易理解的。对于(2),我们记现在以后为正,现在以前为负,那么自然地,2小时前,3小时前的水位就分别为(—2)×(—2)= 4米,(—2)×(—3)= 6米。现在的水位,也就是0时刻的水位可以计算为(—2)×0=0米。通过类似这样的客观模型,可以帮助说明含负数相乘法则的现实意义。
从上面还可以得到这样的一个事实,要求几小时后的水位,就用“几”乘以—2,而每增加1小时,水位就随着减少2米,那么,每减少1小时,水位就随着增加了2米。所以,符号“-”的实质可以看作是相反的量或相反的操作.两个负数相乘可以通过这种方法来理解.例如(-2)×(-3)就是把(-2)相反的操作3次,(-2)相反就是(+2),操作3次就是把(+2)连加3次,得(+6).从而也可以得出乘法的符号法则.【小结】引导学生作知识总结,回顾法则的发现过程,熟记法则.有理数的乘法法则 实质上是符号法则,符号确定后,其余的绝对值相乘与小学乘法运算完全相同.以上的教学过程,可以从以下几个方面去分析:
1.前面的部分,从正整数的乘法过渡到“正负相乘”。正整数相乘是相同加数相加的简便运算,从这一基本定义出发,通过类比,在问题设计中,自然得出了“正负相乘”的相似定义,并且通过不完全归纳,得出一个重要事实——两数相乘,若把一个因数换成它的相反数,则所得的积是原来的积的相反数.2.后面的部分,由“正负相乘”过渡到“负负相乘”,这对于教学进程又是一个飞跃,通过上面得到的改变一个因式的符号就改变结果的事实,得到了两个负数运算的计算法则,这是在原来的抽象基础上再一次抽象提高,再经过不完全的归纳,就得出有理数相乘的一般法则。
3.在扩展部分,通过水位现实的模型说明“负负得正”的现实意义,这是非常必要的。负数的学习中,是通过方向问题,上下问题,盈亏问题等单一的实际模型引入的,而这里同时涉及到了水位变化,时间进程的一个“二维”变量问题,这既有和前面的对比,又是前面的再度提高。通过现实模型来说明学习对象,是将抽象和具体结合的过程,通过这一过程,加深学生对学习对象理解的深刻度,也培养了学生结合具体抽象的思维能力。4.整个教学过程,主要涉及了类比和不完全归纳两种重要的思想方法。利用类比,将具有相同特征的的事物进行比较,对学习和研究新事物具有积极的作用,也可以将两个毫不相关的事物进行类比,通过旧事物的某一特征来研究新问题,达到触类旁通的效果。另外,通过不完全归纳,可以得出一些容易得到而缺乏证明的事实。如“负负得正”,这在形式上是不能够证明的,这样,用不完全归纳去发现这一结果就非常的有意义了。
A.教学目标:
1.知识与技能: 掌握有理数的乘法法则;
2.过程与方法:经历有理数乘法法则的探索概括过程,学习观察、归纳、类比、概括的解决问题方法;
3.情感与态度:体验有理数乘法法则源于实际的需要,初步理解法则的实际意义.B.重点与难点
重点:有理数乘法法则的掌握。
难点:规则“两数相乘,若把一个因数换成它的相反数,则所得的积是原来的积的相反数.”的概括;“负负得正”的实际意义的理解。
C.没有突破由(-3)×2=-6到3×(-2)=-6的过渡。
建议利用学生脑中已有的规则——乘法交换律(abba)进行推广过渡。
D.注意文章是教学设计,对象是教师,不能窜位。
E.写上参考文献。