首页 > 精品范文库 > 5号文库
粉体技术在无机材料领域的应用
编辑:逝水流年 识别码:14-852200 5号文库 发布时间: 2023-12-29 10:54:53 来源:网络

第一篇:粉体技术在无机材料领域的应用

粉体技术在无机材料领域的应用

摘要:以玻璃、水泥、陶瓷为主的传统无机材料已经满足不了时代的需求,新兴的粉体技术给无机材料的应用注入了新的活力。本文主要总结了粉体技术对传统无机材料性能的改善以及在矿物加工方面的影响,特别是纳米粉体拓宽了无机材料在能源、环保、催化方面的应用。

关键词:矿物加工水泥粉体精细陶瓷纳米粉体

Abstract:Mainly glass, cement, ceramic traditional inorganic material already can't satisfy the demand of The Times, the emerging technology of powder to the application of inorganic materials has injected new vitality.This paper mainly summarizes the to improve the performance of powder technology in the traditional inorganic materials and the influence of the mineral processing, especially nano widened the inorganic materials in energy, environmental protection, catalytic applications.Key words:Mineral processing cement powder fine ceramic nano powder

引言

粉体技术是随着近代科技的发展而发展起来的一门新兴科学技术,它是物理、化学、化工、机械、冶金、材料、生物、信息控制等学科的交叉学科。无机材料的应用历史也很久远,传统的无机材料仍有用武之地,但生产过程中的污染及优良性能的单一这些缺点显而易见。对于任何一项技术或工业过程,其经济性和实用性是决定其存在的根本因素。对于无机材料,将粉体的制备工艺、微观结构、宏观物性、工业化生产和应用技术等有机的结合起来,作为系统工程对粉体的制备过程机理进行深入的研究,增强对微粒的形状、分布、粒度、性能等指标的控制技术,并不断完善粉体的性能测试、表征手段,都从而促进粉体技术在无机材料领域的发展。

1.矿物加工

矿物经粉碎分级后直接用于农业、化工、造纸、塑料、橡胶、涂料等产品中。造纸涂布级高岭土希望在超细粉碎的同时保持片状矿物的特性,提高粉料的涂布遮盖能力。在粉碎工艺上尽量选择剥片原理的粉碎方式和设备,从粉碎机理上来说,强化外力能加强对高岭土的强力剪切。同样是造纸涂布级的超细膜重质碳酸钙,其原始结晶多为立方多面体,为了达到超细粉碎的目的,则需要强化矿物颗粒的体积粉碎和表面的研磨。复合材料增强用的硅灰石在粉碎时应尽量保持它原始的针状结晶状态,是产品成为天然的短纤维增强材料。强力冲击式粉碎机能够在矿物颗粒内部短时间内形成较强的内应力,使颗粒内部沿着解理面形成裂纹,逐渐扩大直至最后分离形成细小的针状颗粒。云母由于它的多层结构多被用作电介质材料和珠光颜料,粉碎加工过程中应尽可能保证所得颗粒的径厚比一定。作为珠光颜料的云母粉体,其表面不能有太多的划伤,否则会影响其光学效果。在粉体设备的选择上应尽量选用高压射流式粉碎机,利用颗粒内部层间的膨胀压力而将将颗粒剥离,达到预期的粉碎效果。

重质碳酸钙是由方解石或大理石经粉碎分级而成,它的硬度较低,加工过程中要求有较高的白度。众多的粉碎设备中没几乎都可以用于重质碳酸钙的生产。由于其单位重量售价低,因此比轻质碳酸钙用量大,关键是如何无污染、低成本地达到加工目的是设备和工艺选择的重要问题。目前常用的雷蒙磨和球磨机或振动磨与分级机结合的冲击加超细研磨的方式。这种方式得到的粉体中细粉含量较高,常用于一些聚合物的填充从而得到优异性能的复合材料。

锆英砂的主要成分为硅酸锆,原料中常含有铁、钛等杂质。它的性质稳定,耐研磨,其微粉作为陶瓷行业釉料的乳浊剂,具有遮盖力强,乳浊效果好等特点。然而,锆英砂的超细粉碎过程是一个耗能大、设备磨碎严重、产品易污染的复杂过程。为实现低成本生产、必须综合分析加工工艺,优化设备组合,在能耗和其他消耗尽可能低的条件下产生高质量硅酸锆粉体。为了高细度,尽可能采用搅拌研磨的方式。为了保证产品的纯度,还需要配合酸洗等提纯措施。

2.水泥粉体

水泥是常用的建筑材料,在生产过程中需要对原料和成品进行两次研磨粉碎。随着对混凝土制品强度要求的提高,水泥的细度也在逐渐增加。原料细度的提高有利于改善原料各组分的混合均匀度。降低游离氧化钙的含量。水泥熟料的硬度较大,而细粉含量的高低在一定程度上决定了混凝土早期强度的高低。水泥的粒度分布对混凝土在不同龄期的强度有着决定性的影响。为了改善混凝土强度降低水化热和减小收缩,近年来磨细矿渣、磨细粉煤灰等混凝土掺合料的用量逐年增加。这类产品的生产设备主要是大型的球磨机振动磨、高效分级机等。

有人利用SEM、XRD、TG-DTA、IR、激光粒度仪、微量热仪、比表面积及孔隙度分析仪等现代分析测试手段研究了微纳粉体对硅酸盐水泥和硫铝酸盐水泥物理力学性能的影响及机理。在此基础上,进一步探讨了超微细矿渣、超微细粉煤灰对水泥物理力学性能的影响,探讨了利用矿渣、粉煤灰、石灰石制备绿色高性能复合超细矿粉的适宜配方和适宜的生产工艺。他们的研究结果表明:纳米SiO2和硅灰对水泥的强度都有较大幅度的提高,在三天以后,掺纳米SiO2的水泥试样强度明显高于掺硅的。这主要是由于纳米SiO2的粒径比硅灰的粒径小,纳米SiO2具有更大的表面能,纳米SiO2中[SiO4]4-离子团聚合程度低,导致了纳米SiO2的火山灰活性比硅灰的火山灰活性要高得多。掺有纳米SiO2的水泥试样中熟料矿物水化反应程度更高,CSH凝胶数量增长更快,结晶态Ca(OH)2含量更低。从而使掺有纳米SiO2的水泥浆体内比表面积和总孔体积。

3.精细陶瓷

精细陶瓷的应用目前,国外精细陶瓷主要被发达国家所垄断,特别是日本、美国和西欧等发达国家的精细陶瓷生产量和应用量是全世界最大的。日本和美国精细陶瓷产量约占全世界市场份额的80%以上。我国精细陶瓷的起步较晚,但改革开放以来,一些外资和中外合资精细陶瓷生产企业的逐渐发展壮大,促使我国的精细陶瓷产业已初具规模,但与日本和美国等发达国家相比,尚属起步阶段。目前,我国精细陶瓷的生产规模仍较小,由于缺乏行业的统计资料,还难于定量描述。但从其结构和功能来区分,我国精细陶瓷的发展趋势仍与国外精细陶瓷的发展趋势基本一致,主要是以电子陶瓷为主。精细陶瓷主要应用于电子、通信、化工、冶金、机械、汽车制造、能源、航空航天等空间技术装备以及国民经济各部门。陶瓷工业的原料制备过程中需要对物料进行粉磨和混合。为了后续的挤压成型,多采用湿法的批次粉磨工艺。主要粉磨设备为批次球磨机。原料取决于浆料的粉磨效果好坏,直接影响着泥坯的流变性和成型烧结质量。研磨过程中要避免金属物的污染。所使用的衬板多为燧石、橡胶或聚氨酯等非金属材料。研磨介质采用球石或陶瓷磨球。

在精细陶瓷生产过程中、原料超细研磨更为需要。无论是功能陶瓷还是结构陶瓷。都是多种原料固相反应的产物。若原料粉碎得越细,多种原料的混合度就越高,固相反应也就越均匀彻底,产品性能也就越好。达到纳米级的陶瓷微纳米陶瓷,通过其小尺寸效应,希望克服陶瓷材料的脆性,使陶瓷具有像金属一样的柔韧性和可加工性。若能解决单相纳米陶瓷的烧结过程中抑制晶粒长大的技术难题,则它将具有高硬度、高韧性、低温超塑性、易加工等优点。在制备纳米粉体的工艺上,除了保证纳米粉体的质量,做到尺寸和分布可控,无团聚,能控制颗粒的形状,还要生产量大。

3.1结构陶瓷

高温、高强、超硬、耐磨、抗腐等机械力学性能为其主要特征。例如,纳米级ZrO2陶瓷,烧结温度为1250℃,施加一不大的力有400%的形变,类似金属的延展性。室温下进行拉疲劳试验,断裂后表层晶粒间同样表现为塑性形变。不仅离子型物质如此,共价型的SiCl4也有微小超塑性行为。美国一科学家用CaF2纳米材料在室温下可大幅度弯曲不断裂。纳米TiO2陶瓷度达95%,高硬度,耐高温,若用于改善发动机系统,将大大改善其性能。降低烧结温度制成小晶粒,用于电子陶瓷制备,例如广东肇庆风华集团已采用纳米钛酸钡颗粒烧结来提高片式电容器和片式电感器的各项指标性能。

3.2功能陶瓷

以电、磁、光、声、热、力等性能及相互转换为主要特征。例绝缘陶瓷、介电陶瓷、铁电陶瓷、压电陶瓷、半导、导电、超导陶瓷。有的学者基于过渡液相烧结机制的高性能压电陶瓷材料具有低烧结温度、高压电常数和低介质损耗等诸多优点。低烧多层压电变压器(MPT)以其低驱动电压、小体积、高升压比、薄型片式化等优点在液晶显示背光电源等方面获得应用。多层压电变压器及其背光电源具有高功率密度、高转换效率、薄型化和低成本等特点。基于缺陷化学原理和无晶粒长大的致密化烧结动力学,制备了亚微米/纳米晶钛酸钡基陶瓷及其薄层化贱金属内电极MLCC。研制了低烧铁氧体材料及其片式电感器。

3.3仿生陶瓷

有些研究者应用化学沉淀法制备了粒径约100nm的β-磷酸三钙(β-TCP)超细粉体,并采用放电等离子烧结技术烧结β-TCP,在875℃的烧结温度、150℃/min的升温速率和40MPa的烧结压力下,保温2min,制备得到透明的β-TCP生物陶瓷。XRD、FESEM、密度和透光性能分析结果表明,制备得到的β-TCP生物陶瓷纯度高、结构致密、晶粒平均尺寸约250nm具有良好的透光性能。细胞相容性研究的结果表明,透明β-TCP生物陶瓷对骨髓间质干细胞的增殖作用明显高于常规的通用聚乙烯培养板。

4.纳米粉体

纳米粉体材料作为一种特殊的精细化工产品,越来越受到人们的关注。纳米粉体的尺度处于原子簇和宏观物体交界的过渡域,是介于宏观物质与微观原子或分子的过渡亚稳态物质,它有着不同于传统固体材料的显著的表面与介面效应、小尺寸效应、量子尺寸效应和宏观量子隧道效应,并且表现出奇异的力学、电学、磁学、光学、热学和化学等特性。

4.1能源方面的应用

用于镍-碱性电池,制成纳米Ni(OH)2;锂离子在电池中的应用Cd-Ni,Zn-Ni 在电池中运用锰钡矿、MnO2纳米纤维、纳米管、聚硅氧烷。在太阳能电池方面的应用,例如在市场上占有极大份额的晶硅电池板。第三代电池——染料敏化太阳能电池(DSSCs)的多孔纳米晶TiO2薄膜电极。

4.2环保方面的应用

目前,国内外对层状硅酸盐矿物在废水处理领域中的应用研究主要集中在对其有机改性后对废水中有机污染物的吸附去除,而关于无机粉体改性土对无机污染物特别是有害重金属离子的吸附去除研究较少。层状硅酸盐中的膨润土进行改性,缩小粒径,增大吸附能力,吸附含 Cr6+重金属离子废水。

4.3催化方面的应用

锐钛矿型的TiO2作为催化剂,可以与卤代脂肪烃、卤代芳烃、有机酸类、酚类、硝基芳烃、取代苯胺反应,还可除去空气中的丙醇等有害污染物。类似粉体还有Fe2O3、CdS、ZnS、PbS、PbSe、ZnFe2O4。TiO2经过Cu+、Ag+表面修饰可以杀菌;经Pb化可以使丙炔与水蒸气反应生成甲、乙、丙烷;经Pt化可以分解醋酸为甲烷和二氧化碳;催化甲醇水溶液制取氢气。

参考文献

[1] SumioIijima.Helical Microtubules of Graphitic Carbon[J].Nature, 1991, 354: 56-58 [2] Wong E W,Sheehan P E,Lieber C M.Nanobeam mechanics:elasticity,strength,and toughness of nanorods and nanotubes[J].Science,1997,277:1971-1975.

[3] Kim P,Shi L,Majumdar A,et al.Thermal transport measurements ofinpidualmultiwalled nanotubes[J].Physical Review Letters,202_,87:215-221. [4] Cornwell C F,Wille L T.Elastic properties of single-walled carbonnanotubes in compression[J].Solid State Communications,1997,101:555-558.

[5] Robertson D H,Brenner D W,Mintmire J W.Energetics of nanoscalegraphitic tubules[J].Physical Review,1992,B45:12592-12595.

[6] Lu J P.Elastic properties of carbon nanotubes and nanoropes[J].PhysicalReview Letters,1997,79:1297-1300.

[7] Yakobson B I,Brabec C J,Bernholc J.Nanomechanics of carbon tubes:instabilities beyond linear response[J].Physical Review Letters,1996,76:2511-2514.

[8] 辛玲,张锐,石广新,等.碳纳米管性能及应用[J].中国陶瓷工艺,202_.12(3):39-42.[9] A jayan P.M, Stephen O, Colliex C, et al.Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite[J].Science, 1994,(265): 1212-1216.[11] Xu X J,Thwe M M,Shearwood C,Liao K.Mechanical properties andinterfacial characteristics of carbon-nanotube-reinforced epoxy thinfilms[J].Applied Physics Letters,202_,81:2833-2835. [12] Lau K T,Shi S Q,Cheng H M.Micro-mechanical properties andmorphological observation on fracture surfaces of carbon nanotube compositespre-treated at different temperatures[J].Composites Science and Technology,202_,63:1161-1164.

[13] Jin Z X,Pramoda K P,Xu G Q, et al.Dynamic mechanical behavior ofmelt-processed multi-walled carbon nanotube/poly(methyl methacrylate)composites[J].Chemical Physics Letters,202_,337:43-47.

[14] 贾志志, 王正元, 等.PA6/碳纳米管复合材料的复合方法的研究,材料工程,1 998, 9 :3)

[15] Ma R Z, Wu J , Wei B Q , et al.Processing and properties of carbon nanotubes-nano-SiC ceramic[J ].J Mater Sci, 1998, 33: 5243-5246.[16] 马仁志, 朱艳秋.铁-巴基管复合材料的研究[J ].复合材料学报, 1997,14(2):92-96.[17] 董树荣, 张孝彬.纳米碳管增强铜基复合材料的滑动磨损特性研究[J ].摩擦学学报, 1999, 19(1)∶1-6.[18] Kuzumaki T , Miyazawa K, Ichinose H, et al.P rocessing of carbon nano tube reinforced aluminum composite[J ].J Mater Res, 1998, 13(9): 2445-2449

第二篇:粉体工业静电防护技术

粉体工业静电防护技术研究进展 引言

随着全球工业化进程的加快,生产粉尘、粉末和颗粒状物质的粉体工业迅猛发展。改革开放二十多年来,我国粉体工业生产规模迅速扩大,发展速度前所未有。以石油化工行业聚烯烃粉体生产为例,1982 年全国年产量不足100 万吨,1989 年则突破了200 万吨大关,1996 年年产量达到320 万吨;近年来,我国合成树脂和塑料年产量仍然保持20 %的增长速度。如煤炭、冶金、纺织、粮食等其他行业涉及粉体工业的生产规模亦以年产量增长速度超过15 %的态势呈规模化发展趋势。与此同时,粉体工业生产中引起的爆炸和燃烧事故也迅速增多。如哈尔滨亚麻厂粉尘爆炸事故,广东新港粮食储仓粉体爆炸事故均发生在20 世纪80 年代初期.据统计资料分析,随着我国经济发展速度的加快,粉体爆炸与燃烧事故越来越频繁。以粉尘爆炸统计数据资料为例,我国自1960 年至1989 年30 年间,发生粉尘爆炸次数按年代百分比的分布为: 1960年至1969 年占总数的9。37 %,1970 年至1979 年占总数的3。13 %,1980 年至1989 年占总数的87.50 %,此数据充分表明,粉体事故与国民经济发展规模之间有着密切的联系,同时说明了粉体防灾技术研究的意义与作用。上述粉体灾害事故和其发展态势引起了人们的极大关注,对我国经济发展和社会稳定造成了较大的影响,我国政府和有关行业主管部门及相关的研究单位对此类灾害事故高度重视[1,3 ]。这些因素对促进和加强我国粉体工业防灾技术研究工作,对防粉体灾害技术的应用推广和进一步落实企业的专项整改与治理措施等方面都起到了积极的推动作用.统计资料显示,粉体工业灾害事故与粉体静电密切相关[1 —4]。从一组引起粉体灾害事故(粉尘爆炸)的点火源数据统计百分比分析可知: 由热表面引爆的占38。71 %,由明火引爆的占32。26 %,静电与电气火花引爆的占16。13 %,其他因素引爆的占12。90 %。由可见,在粉体工业生产过程中,由于静电与电气火花引起粉尘爆炸事故的比例是比较大的,其中静电的危害已到了必须引起人们高度重视的程度。事实上,在人类现代生产和生活活动中,静电存在的范围很广。静电在给我们带来极大便利的同时(如静电复印、静电除尘、静电喷涂、静电成像、静电生物效应和纳米材料制备等),也给人类社会带来了各种各样的麻烦甚至引发灾难性事故。正因为静电事故遍及矿业、冶金、石油化工、纺织、医药、粮食加工与储运、交通运输、航天航空、通讯与军工等行业,所以对静电灾害与防护技术的研究一直是现代社会关注的热点课题之一 在众多的静电研究课题中,由于粉体静电灾害问题涉及专业面广,致灾过程复杂,模拟实验难度大,费用高等原因,所以相对于现代静电研究的其他领域而言,粉体静电灾害的研究在其起电机理、致灾条件和防范对策等方面相对滞后。虽粉体静电防灾领域需要研究解决的问题很多,但自20 世纪50 年代以来,这方面的研究进展一直不大,其研究水平远远落后于液体防静电灾害等技术研究,与实际要求存在较大的差距。然而从Maurer(1979 年)报道了粉体大料仓堆表面放电现象之后,以瑞士Ci2ba 公司和英国南开普敦大学为中心,在国际上迅速形成了一个以粉体工业生产实际尺度的粉体静电放电问题为研究对象的研究热点,并进一步提出了一些与生产过程密切相关的防静电规范或建议。与此同时,德国、瑞士、挪威、波兰及前苏联等欧洲防爆委员会成员国,以及我国、日本、美国等国的相关部门和研究单位,也相继开展了超细粉尘和非标准条件下的燃烧与爆炸实验,静电场分析计算及体起电、放电等理论与实验研究工作。这些研究工作极大地丰富了人们对粉体静电 危险性的认识,特别是与工业控制和安全评价有关的粉体静电研究结果,对粉体工业安全生产具有十分重要的意义和指导作用 2 粉体静电灾害概况 现代工业生产过程中的粉体是粉尘、粉末及颗粒状物质的总称。一般而言,我们将粒径d > 0.5mm的物质称作颗粒;将粒径d 在100μm和0。5mm之间的物质称作粉末;将粒径d < 100μm的物质称作粉尘,此类物质基本上具有正常状态下在空气中飘扬的特征。统计与实验资料表明,可燃性粉尘大多数属易燃易爆物质,其燃爆事故占粉体灾害事故的60 %以上,粉尘本身的静电放电火花即可成为其点火源。可燃性粉末与颗粒虽然能燃烧,但是一般难以形成爆炸性混合物,然而其静电放电或热表面等危险因素可能成为可燃气、可燃粉尘及其杂混合物等易燃易爆物质的点火源。对于非可燃性粉体而言,其静电危险性主要表现在这类物质的静电放电火花可能成为生产过程中其他易燃易爆物质的点火源[2,4]。粉末与颗粒粉体粒径较大,在生产过程中单个粒子的带电量也大。在一定的条件下,聚合物粉体大料仓中可能发生堆表面放电和传播型刷形放电,此类静电放电的放电能量大,足可以点燃一般的可燃粉尘。大多数粉尘中固体物质的粒径约为1 —100μm,含分子数为104 —106,因此小而轻且比表面积大。带静电的粉尘可漂浮于空气中,也极易吸附在物体表面上。漂浮的带电粉尘的灾害可以产生闪电状静电放电,如火山喷发时可经常看到的火山灰粉尘闪电;大气中悬浮的尘埃使大气能见度大为降低,容易引起各类交通事故。带电粉尘的吸附性亦有较大的危害,粉尘吸附在植物的叶面和干上会影响其生长,给人类的农业、林果业生产等造成损失;金属表面的粉尘可促使其加速腐蚀;粉尘的沉降或吸附使各种建筑物遭受污染、腐蚀加速,使许多传感器中毒、失效,使诸如集成电路等高精细材料、器件无法制造和使用,可以导致机器停运、电路短路等事故。如此种种,关于粉体静电的危害不胜枚举,而其中最具破坏性和灾难性的就是粉尘爆炸,它会造成突发的、一次性损失严重的人身伤亡和财产损失等事故.德国自1940 年起的50 年间,与静电相关的重大粉体爆炸事故有斗式提升机滑槽中燕麦糠爆炸,碾碎机内的制粉半成品爆炸,斗式提升机滑槽中高粱(含粉尘多)爆炸,斗式提升机中高粱粒爆炸和粉体料仓中高分子聚合物爆炸。据日本劳动省产业安全技术研究所对1952 年至1975 年期间日本所发生的177 起损失较为严重的粉尘爆炸事故点火源的调查分析可知,最多的点火原因是机件或装置中的金属异物摩擦撞击而引起的热表面和撞击火花(37起),其次就是静电引起的放电火花(29 起)。因此,引起粉体爆炸的原因与静电放电有一定的联系.料仓燃爆事故统计资料可知,这40 起粉体料仓燃爆事故的点火源,基本可以认定是粉体自身的静电放电火花。事实上有关高分子聚合粉体的静电危险性研究,尤其是粉体气力输送和粉体大料仓的防静电危害问题是近二十年来国际范围内静电防灾研究领域中的热门课题之一。聚合物粉体绝缘程度很高,生产过程中粉体的起电量可达104 C/ kg,静电泄漏缓慢,生产过程中的粉体往往会积聚很高的电荷。这种静电的积聚会给粉体生产带来两类危害:一类是带电粉体粒子之间,粒子与管壁、容器之间的静电力作用,给生产带来各种障碍与危害;另一类是电荷的积累能够产生很强的静电场,从而导致各种类型的静电放电发生,或引起火灾和爆炸事故,或引起人体电击事故而导致二次事故发生.粉体静电危险性评价方法研究发展

概况

通过对静电放电火花实际点燃危险性量化分析研究,近年来已经取得了可用于对粉体实际生产过程中的静电危险性进行定量评价的研究结果。建立在静电点燃现实危险性基础上的静电放电火花点燃危险性的量化分析理论,相关的静电参数测试方法,生产工艺过程现场数据取样和评价技术,促使粉体善,有关研究和管理部门已经将相关研究结果应用于具体的生产实际

3.1 粉体起电机理研究

粉体是特殊状态下的固体物质,其静电起电过程遵循固体的接触起电规律。目前,人们对金属-金属、金属-半导体的接触起电机理研究结果已经达到实用化水平的要求。然而对于高分子聚合物材料的起电机理研究而言,由于聚合物内部结构的复杂性以及起电机理性实验结果的重复性不好等原因,对其起电机理性的研究方法尚在不断的完善之中[8]。然而,对于粉体工业生产中粉体气力输送的粉体静电起电问题,人们结合两相流动力学理论、电介质物理学、粒子介质之间的相互作用等理论研究,年来已经分析总结出了一些可用于实际分析的有关粉体起电的半经验公式[9,10]。

3.2 粉体静电参数测试技术

有关粉体状物质的静电参数(电阻率ρ、介电常数ε、电位U、电场强度E 及电荷密度q 等)的实验室测量,从理论分析到测试方法都比较成熟,有些测试方法和具备防爆条件的测量仪表也已经直接应用于实际生产场所的粉体静电参数的数据测试[11,12]。近年来,人们可以在工尺度的大型粉体模拟装置上设置粉体静电试验,方便、高效地测试粉体静电参数,便利开发、试用防粉体静电灾害的技术和产品,这为进一步深入研究与解决粉体静电问题提供了实验手段上的保证。相关科研单位研究开发的非接触式管道粉体静电电荷密度测量仪,在完善防爆设计后即可应用于粉体工业输送与储运系统的粉体静电监测[13]。粉体、聚合物电荷空间分布的测量方法研究也有了较好的研究结果。几十年来,人们已经积累了大量的有关粉体方面的静电参数,从相关的基本静电参数到实际生产中不同性质的粉体起电参数都比较全面.3.3 粉体起电、放电特性(包括辐射场)研究

人们在小、中、大型粉体静电模拟实验装置上,尤其是工业尺度的粉体模拟试验装置上成功地模拟了电晕放电、刷形放电、火花放电、堆表面放电及传播型刷形放电等典型的粉体生产中存在的静电放电现象,使有关粉体的静电危险性研究水平上了一个大的台阶[14,15]。在这些极为有效的试验设备上,人们成功地测定了粉体的起电量,研究了粉体的起电特性,综合研究了粉体料仓的粉体电荷密度、荷质比、放电电荷转移量、料仓内的电势分布与电场强度的分布特点、粉体放电间隔特点、放电信号频率等对于粉体静电危险性评估有重要价值的相关物理量[7,16,17]。通过大量的静电放电测试试验,统计、研究、探讨和总结了粉体工业生产中可能发生的不同类型静电放电的辐射场特性,其试验研究数据为粉体工业生产现场检测与监测仪表的电磁兼容性设计提供了有价值的数据;同时结合气体等介质的击穿理论,建立了典型的静电放电理论模型

3.4 可燃物质的燃爆特性研究

自20 世纪80 年代中、后期起,标准条件下(标准实验样品、标准测试条件)可燃粉体、可燃气仪器,已经基本上达到了国际标准化。所以有关可燃物在标准状态下的最小点火能、爆炸极限、最小点燃温度、最大实验安全间隙、自燃温度、闪点、极限氧浓度等数据,基本上都可以从标准出版物上引用。近年来,有关非标准状态和非标准条件下的可燃物质燃爆参数研究,人们从实验和理论分析两方面作了不少的工作[19,24,33]。非标准粒径粉尘最小点火能与粉尘中位粒径的关系,杂混合物最小点火能与可燃气体浓度的关系,粉尘最小点火能与温度的关系,负压条件下可燃物爆炸极限的变化,高压条件下可燃物自燃温度的变化等对实际安全评价有重要意义的燃爆参数数据库,也在积极完善之中.结合气力两相流动理论和燃烧反应动力学理论,借鉴比较完善的可燃气体燃烧理论,初步建立了粉尘、杂混合物(粉尘,可燃气)燃烧理论分析模型

3.5 粉体静电放电点燃特性研究

粉体静电放电火花的火花时间特性和空间分布特征、形成放电的初始条件和放电电荷转移量等点火源因素,可燃物质的燃爆特性参数都对粉体静电放电的实际点燃能力有影响。近年来,人们将研究重点放在粉体料仓内粉体静电放电的点燃能力研究上,但由于研究手段上的原因,只能将料仓内的放电通过环形收集电极引出,在放电区以外的极隙内做点燃实验。这样由实验所得到的放电相当能量Eeq,在一定程度上反映了粉体放电的点燃能力。实验与实际静电点燃事例统计表明,粉体生产过程中可能产生静电灾害的静电放电形态和有效点燃能量Eef大致如下:(1)电晕放电的有效点燃能量不大于01025mJ;(2)普通的刷形放电单次放电的有效点燃能量可达3mJ;(3)料仓粉体堆表面放电单次放电的有效点燃能量可达10mJ;(4)人体放电单次电的有效点燃能量可达30mJ;(5)火花放电单次放电的有效点燃能量可达1J;(6)传播型刷形放电单次放电的有效点燃能量可达10J。有关粉体静电放

电实际点燃可燃物的过程研究,对于了解和研究放电火花的现实点燃能力是有重要意义的。结合介质击穿过程的放电物理学和燃烧学理论,关于气体、粉尘的静电放电火花点火模型理论和气体、粉尘的点燃过程研究近年来也取得了一些较好的研究结果

3.6 粉体静电放电危险性评估与仿真模拟

有关粉体静电放电危险性研究主要侧重于引发火灾、爆炸事故的危险性方面。对于规模一般都比较大的粉体生产而言,这种危险性主要反映在火灾、爆炸事故的敏感性参数上,也就是可燃物被静电放电火花引燃的特性上。这样,由带电粉体物质的基本静电参数、粉体量大小及边界条件所确定的带电粉体空间可能产生的静电放电类型、静电放电火花的点燃能力,结合产生静电放电场所的可燃物燃爆特性,即可以定量评价粉体静电放电的实际危险性.通过研究典型静电放电火花的实际点燃能力,对实际生产工艺过程中的静电放电火花的点燃危险性进行定量评价。静电放电火花的放电相当能量、放电火花空间分布范围和放电火花持续时间,决定了静电放电火花实际点燃可燃物的可能性大小,因此不同类型的静电放电火花点燃可燃物的差异性很大.根据数据序列理论分析,引入静电放电火花点火源序列和可燃物危险性序列之间存在的关联性,反映了静电放

电火花点燃可燃物的危险程度,可用于对静电放电火花的实际点燃危险性进行量化评价。有关粉体的电荷弛豫理论和粉体静电场分析模型研究以及电场仿真和计算分析,一直是静电防灾研究的前沿热点课题。近年来由于粉体静电检测技术的发展,大力促进和支持了粉体静电仿真技术的研究,使得粉体静电仿真技术研究成果离实用阶段越来越近[7,24,25]。同时,有关粉体静电模拟仿真的研究结果也弥补了实际粉体静电测量技术的不足和现场测量场所的限制(如引入测量仪器对原静电场的影响等),可以帮助人们更详细地了解带电粉体空间的电场变化等情况.粉体防静电灾害技术发展概况

粉体防静电灾害技术的要点在于经济实用,根据危险性定量评估的结果选用相应的防护技术是防灾减灾工作的根本内容和努力方向。我们知道,粉体工业生产中可能产生静电灾害的典型静电放电类型有6 种:(1)电晕放电;(2)普通刷形放电;(3)料仓堆表面放电;(4)人体放电;(5)火花放电;(6)传播型刷形放电。理论分析与实验结果表明,这些不同形态的放电形式点燃可燃物的能力大不相同。另一方面,可能存在于粉体工业实际生产中的可燃物大多为可燃粉体(颗粒、粉末、粉尘)、可燃气以及它们的杂混合物,这些可燃物的被点燃性能差异也很大。所以,我们在研究开发防粉体静电灾害技术的具体工作中,应在粉体静电危险性合理分级的基础上,遵从既科学合理、又经济实用的防灾减灾原则

4.1 粉体静电危险性分级方法

有关粉体静电危险性分级,有别于静电危险场所的分级。粉体危险性分级的目的在于结合安全经济学原理,为存在粉体静电危险性场所选用既经济实用又科学合理的防静电灾害措施提供科学依据.这方面的工作可参照相关的静电危险场所分级方法[24,26,41,44],以粉体静电实际危险性为基础,结合粉体静电可能造成的灾害程度作为分级依据来进行

4.2 防粉体静电灾害技术

粉体静电防灾的应用技术研究,目前从相关物体的静电泄漏技术、粉体静电消电技术、泄爆技术、阻爆与隔爆技术,到可燃物质的惰化与抑爆技术等,基本上能够满足实际生产的需要。但有时候由于片面追求经济效益等方面的原因,有些成熟的粉体静电防灾技术并不能被粉体生产厂家所接受;或由于维护方面的原因,有些已选用的粉体静电防灾设施,并未在实际生产中发挥其应有的作用;所以粉体静电防灾技术的研究与开发任重道远,新技术的开发与已有技术的优化,尚有很多工作要做。概括地说,有关粉体生产防静电灾害应用技术的研究开发,从控制危害源因素和防灾减灾作用的角度考虑,已经形成了以下两大类以降低粉体静电危险性为目的的工程应用技术[27 —33]:一类是以控制粉体静电起电量(改变接触起电介质的材料特性,采用粉体消电措施,采取防静电涂层与合理接地加速静电泄放等)、控制放电类型(如防止形成击穿场强较大的绝缘层,避免产生能量大的传播型刷形放电等)为目的所采用的技术;另一类是以控制可燃物点燃特性(如加强通风,可燃气置换,控制切粒所形成的细微粉尘,注入惰性物质等)为目标而采取的技术措施。目前我国有关部门正在计划制定有关的粉体防静电灾害操作规程[34 —37]。值得注意的是,在特定条件下,由于粉体生产过程的工艺条件或环境条件的限制,粉体静电放电火花有可能点燃、引爆可燃物质,为了减缓灾害的破坏性,防止灾害的进一步扩大,应采取防灾减灾措施。主要的应用技术有阻爆、隔爆、泄爆和抑爆技术等,以及与之配套的可燃气、可燃粉尘的温度和压力等监测监控技术。目前,静电源监测相结合的粉体静电防爆减灾控制体系正在完善之中结束语

综上所述,有关粉体静电危险性与防静电灾害技术方面的研究工作涉及面广、任务繁杂,难度较大。本文仅就其中的有关方面,结合作者近年来所做的有关具体研究工作,进行了相关专题的调查研究与统计分析,介绍了粉体工业生产中的静电危险性分析方法与防静电灾害技术的最新研究成果,有关研究结果近年来已经陆续应用于粉体工业的具体生产实际,解决了企业安全生产中的有关技术难题,取得了良好的社会效益与经济效益。作者希望有关粉体静电测试研究方法、粉体静电起电与放电研究方法、粉体静电危险性评价方法、粉体静电危险性分级理论与粉体防静电灾害技术措施等重要研究结果,在今后的研究与具体应用实践工作中得到进一步的完善、补充和检验。

参考文献

[ 1 ] Wang Dong-yan.Hazards and control countermeasures in China.In : Proceedings of the 6th international colloquium on dust explo2 sions.Shenyang : Northeastern University Press , 1994.1

[ 2 ] 刘尚合, 刘直承, 魏光辉等.静电理论与防护.北京: 兵器工业出版社, 1999.10 [Liu S H, Liu Z C , Wei G H etal.Electrostatic theory and protection.Beijing : Publishing company of weapon industry , 1999.10(in Chinese)] [ 3 ] 中国科协学会工作部.工业粉尘防爆与治理.北京: 科学出版社, 1990.7 [ Standing Department of CSCA.Explosion protection and prevention for industrial dusts.Beijing :SciencePress , 1990.7(in Chinese)]

[ 4 ] 刘尚合, 谭伟.物理, 202_ , 29(5): 304 [Liu S H, TanW.Wuli(Physics), 202_ , 29(5): 304(in Chinense)]

[ 5 ] 孙可平.物理, 202_ , 29(6): 364 [ Sun K P.Wuli(Physics), 202_ , 29(6): 364(in Chinese)] [ 6 ] 谭凤贵, 周本谋.对瑞士等国粉体静电爆炸与防护研究的考察.见: 马峰编.现代静电技术.西安: 西安出版社,1999.142 [ Tan F G, Zhou B M.Investigation of the powder

electrostatic hazards and protection in Europe.In : Ma F ed.Modern technology of electrostatics.Xian : Xi′an Press , 1999.142(in Chinese)]

[ 7 ] 周本谋.中国粉体技术, 202_(8): 138 [ Zhou B M.Chi2nese powder science and technology , 202_(8): 138(in Chinese)]

[ 8 ] Watson P K.Journal of Electrostatics , 1997(43): 67 [ 9 ] Bailey A G.Journal of Electrostatics , 1993(30): 168 [10 ] Jones T B et al.Journal of Electrostatics , 1999(22): 231

[11 ]Juliusz B G.Journal of Electrostatics , 1994(32): 297 [12 ]Juliusz B G.Journal of Electrostatics , 1997(42): 231 [13 ]Bassani L et al.Journal of Electrostatics , 1997(41): 401

[14 ]Schwenzfeuer K.Journal of Electrostatics , 1997(40&41): 383 [15 ] Maurer B et al.Journal of Electrostatics , 1989(23): 25 [16 ]Glor M et al.Journal of Electrostatics , 1989(23): 35 [17 ]Glor M.Journal of Electrostatics , 1997(40): 511

[18 ] 谭伟.静电放电辐射场的研究进展.见: 马峰编.现代静电技术.西安: 西安出版社, 1999.30 [ Tan W.Research developments in ESD radiation field.In : Ma F ed.Modern technology of electrostatics.Xi′an : Xi′an Press , 1999.30(in

Chinese)] [19 ] 黄九生.军械工程学院学报, 202_(增刊), 12 : 260

[ Huang J S.Journal of ordnance engineering college , 202_(Supp.Aug.202_), 12 : 260(in Chinese)]

[20 ]Siwek R et al.Safety Progress , 1995 , 14 : 107

[21 ] Zhou B M et al.A new type of movable electrode electrostatic ignition energy apparatus.In : Proceedings of the 6th international colloquium on dust explosions.Shenyang : Northeastern University Press , 1994.257 [22 ] Piotr Wolanski et al.Minimum explosive concentration of dust air mixtures.In : Proceedings of the 6th international colloquium on dust explosions.Shenyang : Northeastern University Press , 1994.206

[23 ]Glor M.Journal of Electrostatics , 1996(30): 123

[24 ]Glor M et al.Loss prevention and safety promotion in the process industries , 1996 , 11 : 44 [25 ] Jones T B , Chan S.Journal of Electrostatics , 1993(22): 199

[26 ] GJB2527295.弹药防静电要求.国防科技委.[ GJB2527295.Electrostatic protection measures for ammunition.STC of national defence.(in Chinese)]

[27 ] ISSA Prevention Series No.202_(E).Static Electricity(Ignition hazards and protection

measures).D269115 Heidelberg , Germany , 1996 [28 ]Siwek R.Journal of Loss Prevention , 1996 , 9 : 81 [29 ] Moore P E.Journal of Loss Prevention , 1996 , 9 : 3 [30 ] Moore P E.Journal of Loss Prevention , 1997 , 9 : 13

[31 ]Crowhurst D et al.Journal of Loss Prevention , 1997 , 9 : 113 [32 ]Vogl A.Journal of Loss Prevention , 1996 , 3 : 17

Siwek R.Latest development in explosion protection technology.In : Proceedings of the 6th international colloquium on dust explo2sions.Shenyang : Northeastern University Press , 1994.35 [34 ] VDI Guideline 2263 : Dust fires and dust explosions.Hazards Assessment Protection measures ,Beuth , Berlin and Koln , May 199

[35 ] ISO/ DIS 6184 : Explosion protection system2Part1 : Determination of explosion indices of combustible dusts in air.International Organization for Standardization , 1985

[36 ] ISO/DIS 6184 : Explosion protection system2Part2 : Determination of explosion indices of combustible gases in air.International Organization for Standardization , 1985

[37 ] ISO/ DIS 6184 : Explosion protection system2Part3 : Determination of explosion indices of combustible feul/ air mixtures other than dust/ air and gas/ air mixtures.International Organization for Standardization , 1985

[38 ] Guideline VDI 3673 , Part 1 : Pressure release of dust explosions.Beuth , berlin , July 1995 [39 ] NFPA 68 : Venting of deflagrations.1978 and 1988 edition , National Fire Protection Association , Quincy , Massachusetts , USA

网址:http://

第三篇:实验讲义 无机粉体的水热合成

实验8 无机粉体的水热合成

一、实验目的

1.了解无机粉体水热合成的原理; 2.掌握无机粉体水热合成的方法。

二、基本原理

纳米材料是纳米粉料经过烧结或复合得到的块体材料,可以是金属、陶瓷或复合材料。纳米材料具有传统晶体材料和非晶体材料都不具备的优良特性,例如纳米金属的高强度、高电导率和高弹性;纳米陶瓷的超塑性、低温烧结性等。自1984年德国科学家H.Gleiter教授及合作者制造出一-9种由纳米(lnm=10m)量级的超细粉料压制烧结而成的固体材料,到现在短短20多年里,包括纳米材料在内的纳米科技引起了世界科技先进国家的高度重视,并已成为连接多学科、迅速发展的研究热点。

制备纳米材料的先决条件是制出尺度在1一100nm的粉末。目前,制备纳米粉末的方法可分3大类:物理方法、化学方法和物理化学综合法。化学方法主要包括水热法、水解法、溶融法和溶胶一凝胶法等。其中,用水热法制备纳米粉体技术越来越引起人们的关注。

水热法(Hydrothermal Process),又名热液法,是指在密封压力容器中,以水(或其它溶剂)作为溶媒(也可以是固相成份之一),在高温(>100℃)、高压(>9.81MPa)的条件下,研究、加工材料的方法。水热法最早是在地质学领域开始应用的,之后应用于基础研究,如物理化学(相平衡、溶解度测定、矿化剂作用、反应动力学、物理缺陷等);地球化学、矿物学与岩石学(高温高压矿物相平衡、实验岩石学、热液活动、成岩成矿模拟、地热利用等);在应用研究,如材料制备(单晶生长、粉体制备、薄膜和纤维制备、材料合成、材料处理等);材料加工(成型一烧结、刻蚀一抛光、陶瓷表面金属化等);材料评价(器皿水热腐蚀与破坏);废物处理(垃圾再生、核废料固定等)以及新型建筑材料等众多方面得到广泛的应用和发展。

1.水热法原理和装置(1)水热法原理

水热法制备纳米粉体的化学反应过程是在流体参与的高压容器中进行。高温时,密封容器中一定填充度的溶媒膨胀,充满整个容器,从而产生很高的压力。外加压式高压釜则通过管道输人高压流体产生高压。为使反应较快和较充分进行,通常还需在高压釜中加人各种矿化剂。水热法一般以氧化物或氢氧化物作为前驱体,它们在加热过程中的溶解度随温度升高而增加,最终导致溶液过饱和并逐步形成更稳定的氧化物新相。反应过程的驱动力是最后可溶的前驱物或中间产物与稳定氧化物之间的溶解度差。严格说来,水热技术中几种重要的纳米粉体制备方法或反应过程的原理并不完全相同,即并非都可用这种“溶解一沉淀”机理来解释。反应过程中有关矿化剂的作用、中间产物和反应条件对产物的影响等问题尚不十分清楚。

水热法最大的特点在于反应发生在高温高压流体中,因而溶媒的性质和高压反应装置的研究非常重要。水热法借助高压釜可以获得通常条件下难以获得的几个纳米到几十纳米的粉末。水热法制得的粉体粒度分布窄,团聚程度低,成份纯净,而且制备过程污染小、成本低。

(2)高压釜

水热法的必备装置是高压反应器一高压釜。高压釜按压力来源可分内加压式和外加压式。内加压是靠釜内一定填充度的溶媒在高温时膨胀产生压力,而外加压式则靠高压泵将气体或液体打人高压釜产生压力。高压釜按操作方式可分间歇式和连续式。间歇式是在冷却减压后得到产物,而连续式可不必完全冷却减压,反应过程是连续循环的。间歇式和连续式水热反应装置分别示于图1、2。

粉体制备常用间隙式高压釜,高压釜材料的选用情况对于温度、压力、耐腐蚀和水热反应时间的限制起决定作用。高压釜的寿命、可靠程度依赖于高压釜设计、选用材料成份和性质、使用温度和压力以及使用频率等。高压釜常用的材料是低碳钢、不锈钢、合金钢等。为了防止内封流体对釜腔的污染,一般高压釜还针对不同的溶媒加相应的防腐内衬,如A1203衬、R衬,Teflon衬等。

2.水热法制备纳米陶瓷粉体方法

水热过程制备纳米陶瓷粉体有许多不同的途径,它们主要有:水热沉淀、水热结晶、水热合成、水热分解、反应电极埋弧和水热机械一化学反应。

水热法制粉工艺具有能耗低、污染小、产量较高、投资较少等特点,而且制备出的粉体具有高纯、超细、自由流动、粒径分布窄、颗粒团聚程度轻、晶体发育完整并具有良好的烧结活性等许多优异性能。

(1)水热沉淀(Hydrothermal Precipitation)水热沉淀是水热法中最常用的方法。制粉过程通过在高压釜中的可溶性盐或化合物与加入的各种沉淀剂反应,形成不溶性氧化物和含氧盐的沉淀。操作方式可以是间歇的,也可以是连续的。制粉过程可以在氧化、还原或惰性气氛中进行。

(2)水热结晶法(Hydrothermal Crystallization)

水热结晶法是以非晶态氢氧化物、氧化物或水凝胶作为前驱物,在水热条件下结晶成新的氧化物晶粒。这种方法,可以避免沉淀一锻烧和溶胶一凝胶法制得的无定形纳米粉体的团聚,而且也可作为用这两种方法或其它方法制备的粉体解团聚的后续处理的重要步骤。

(3)水热合成(Hydrothermal Synthesis)

水热合成是将二种或二种以上成份的氧化物、氢氧化物、含氧盐或其它化合物在水热条件下处理,重新生成一种或多种氧化物、含氧盐的方法。

(4)水热分解(Hydrothermal Decomposition)

氢氧化物或含氧盐在酸或碱溶液中,水热条件下分解,形成氧化物粉体;或氧化物在酸或碱溶液中再分散为细粉的过程称水热分解。

(5)水热机械一化学反应(Hydrothermal Mechanochemical Reaction)

水热机械一化学反应是一种在水热条件下,通过安装在高压釜上的搅拌棒搅动放置于高压釜中的球体和溶媒,并同时实现化学反应生成微粉粒子的方法。借助机械搅拌可以防止生成的微晶过分长大。

水热法是制备高质量纳米陶瓷粉体极有应用前景的方法。业已通过水热法,在不同温度、压力、溶媒和矿化剂条件下实现了多种不同成份纳米级陶瓷粉体制备。但总体说来,水热条件下纳米粉体制备工艺,包括粉末粒径及分布的有效控制、粉末的分散和表面处理,以及纳米粉末形成过程与机理、水热法纳米材料合成等问题仍在探索和发展阶段。在另一方面,受水热过程物理化学变化的限制,目前制出的纳米粉体多是氧化物、含氧盐以及羟基化合物。研究广泛用于现代陶瓷材料的氮化物、碳化物、硼化物、硅化物等纳米粉体的水热法原理和工艺有重要意义。

三、实验器材

1.高压水热反应器(水热釜)1个 2.磁力搅拌器 1台

3.烧杯 400ml 1只;200ml 1只 4.量筒 100ml 1只 5.移液管 20ml 1支

6.胶头滴管、玻璃棒 各1支 7.洗瓶 1个

8.电热鼓风干燥箱(最高温度300℃)

9.抽滤装置(抽滤漏斗、抽滤瓶、真空泵)1套

高压水热反应器(水热釜)

四、实验步骤

本实验在吸取前人研究成果的基础上,以廉价的钛酸四丁酯(Ti(C4H9O)4),氢氧化钡(Ba(OH)2·8H2O)为原料,通过加入氢氧化钠(NaOH)作为矿化剂,利用水热反应方法来制备纳米钛酸钡粉体。

如果条件允许,可进一步研究各种反应因素对产品的影响规律,以及通过透射电子显微镜(TEM)、X射线衍射(XRD)、热重分析(TGA)等检测手段对产品晶体进行分析。

1.水热反应制备钛酸钡纳米粉体流程图 2.操作步骤

按照钛钡之摩尔比为1:1进行实验,计算各原料的用量;NaOH浓度为2~10mol/L,本实验可选用10mol/L。

(1)称取一定量的八水合氢氧化钡和氢氧化钠;加到200ml烧杯中,加入50ml蒸馏水,搅拌使之尽可能溶解;

(2)量取40ml无水乙醇,加入到400ml烧杯中(洁净干燥的烧杯,先放入1枚搅拌磁子);(3)用移液管量取一定量的钛酸四丁酯溶液,加到盛有40ml无水乙醇的烧杯中,置于磁力搅拌器上,开启磁力搅拌器,调节适当的转速,进行强力搅拌;

(4)在强力搅拌状态下,将氢氧化钡与氢氧化钠混合溶液,逐次小量滴加到钛酸四丁酯乙醇溶液中,控制滴加速度,控制沉淀物的产生;

(5)在将氢氧化钡与氢氧化钠混合溶液全部滴加完毕后,继续强力搅拌,直至得到均匀的混合溶液;

(6)测试溶液的PH值,要求溶液PH值在12以上(必要时添加氢氧化钠调节);

(7)根据高压水热反应器(水热釜)容量,将溶液倒入其内腔中,要求填充率在70%左右;不足时,可加入蒸馏水补充,但应注意保持溶液PH值在12以上;

(8)将反应釜内腔装入反应釜金属壳体中,按反应釜结构要求装好、旋紧上盖;

(9)将装好溶液的反应釜平稳地放到干燥箱中,调节温度220℃,开始加热,在220℃保温2hr;然后关闭烘箱电源;

(10)反应完毕,取出水热釜,冷却到室温后,打开上盖,取出内胆;

(11)将水热反应完毕的溶液倒入真空抽滤装置(铺好滤纸)的抽滤漏斗中,利用36%醋酸洗滤3—5遍,然后用蒸馏水清洗直中性;

(12)将洗滤得到的产物,小心移入小烧杯中,自然干燥或烘干即得到钛酸钡纳米粉体。

必要时,可通过XRD、SEM、TEM以及粒度分析等手段,对水热反应得到的钛酸钡纳米粉体进行分析表征。

五、注意事项

1.实验过程中要认真、仔细操作;

2.要严格按照高压水热反应器(水热釜)的结构要求进行装配; 3.注意反应釜内溶液的添加量一般不得超过其总有效容积的90%;

4.水热反应为高压反应,要注意反应温度的控制及反应体系的选择,确保整个反应系统的安全控制。

六、思考题

1.水热法合成无机材料粉体的主要特点是什么?

2.为什么高压水热反应器(水热釜)中溶液的添加量一般不得超过其有效容积的90%? 3.本实验中,水热反应后的产物,为何要用36%醋酸进行洗滤?

第四篇:粉体总结

1、等面积球当量径—与颗粒同表面积的球的直径;有助于描述粉末的成型过程及烧结过程,较适用于无气孔和轻微粗糙度表面的颗粒体系

2、由不同大小的颗粒组成的集合体由不同大小的颗粒组成的集合体——多分散系统

3、体是研究微小颗粒的集合体。当集合体颗粒大小相等或粉体是研究微小颗粒的集合体。当集合体颗粒大小相等或近似相等——单分散系统

4、目:系指在筛面的25.4mm(1英寸)长度上开有的孔数。20-120目(900-125um)[目数/2.5]2=孔数/cm2

5、TEM观察粉体的特点:能给出不同等效原理(如等面积圆、等效短径等)的粒度分布。能观察颗粒形貌。能直接观察颗粒分散状况、分体样品的大致粒度范围、是否存在低含量的大颗粒或小颗粒情况等等。

6、频率分布曲线上的最高点是频率的极大值,表示最多数量的颗粒,其对应尺寸称为最多数径Dm(或众数直径,(或众数直径,modal diamater),其数量的多少可计算其面积。若曲线是关于Dm对称,即符合正态分布(normal distribution),此时,Dm=平均粒径 =Dmed(中位径)median diameter

7、累积分布曲线与频率分布曲线互为积分与微商的关系,若取同一横坐标,则累积分布曲线上各点斜率实际上,累积分布曲线与频率分布曲线互为积分与微商的关系,若取同一横坐标,则累积分布曲线上各点斜率dR/dD,即为频率分布曲线纵坐标上相应各点之值。,即为频率分布曲线纵坐标相应各点之值。频率分布曲线上任一点的纵坐标表示某粒径频率分布曲线上任一点的纵坐标表示某粒径D为中心的颗粒在dD范围内占物料百分数为范围内占物料百分数为dR,在频率分布曲线之下,粒径为,在频率分布曲线之下,粒径为D以左所包含的面积占曲线以下所包含面积百分比即为累积百分数以左所包含的面积占曲线以下所包含面积百分比即为累积百分数R%。

8、累积分布——反映粒度变化不敏感,要求出斜率→粒度变化,斜率大,粒度变化大;但数量上反映较为明显,从纵坐标可以看出,计算方便,工业生产常用。频率分布——反映频率变化,是动态变化,颗粒组成的变化,但不表示数量(各粒级数量的多少要计算面积)。研究工作中常用的方法。

9、D50:一个样品的累计粒度分布百分数达到50%时所对应的粒径。它的物理意义是粒径大于它的颗粒占50%,小于它的颗粒也占50%,D50也叫中位径或中值粒径。D50常用来表示粉体的平均粒度。D97:一个样品的累计粒度分布数达到97%时所对应的粒径。它的物理意义是粒径小于它的的颗粒占97%。D97常用来表示粉体粗端的粒度指标。中位径Dmed

10、定量描述粒子几何形状的方法:形状指数(shape index)、形状系数(shape factor)和粗糙度系数(roughness factorfactor)。单颗粒外形的几何量的各种无因次组合称为形状指数;形状系数——在表示颗粒群性质和现象的函数关系中,把与颗粒形状有关的因数作为一个系数加以考虑;粗糙度系数反映颗粒表面微观结构

11、用透射电镜可观察纳米粒子平均直径或粒径的分布,可以直接观察颗粒是否团聚,电镜观察法测量得到的是颗粒度而不是晶粒度.粗颗粒使用光学显微镜,SEM较TEM可观察到更多关于颗粒形状和表面结构信息,立体感强些。X射线是测定晶粒度的最好方法(当颗粒为单晶时,该法测得是颗粒度)对于混合多组分颗粒系统,由于组分密度不同,颗粒形状不同,要测量颗粒的大小电镜是较好的方法。

12、② 颗粒组成(颗粒分布):•激光法, 光透射:重力沉降 > 1μm,离心沉降 > 0.01μm 13.TEM观察法测量得到的是颗粒度而不是晶粒度。X射线衍射线宽法是测定晶粒度的最好方法。当颗粒为单晶时,该法测得的是颗粒方法。当颗粒为单晶时,该法测得的是颗粒度。当颗粒为多晶时,该法测得的是组成单个颗粒的单个晶粒的平均晶粒度这种测量个颗粒的单个晶粒的平均晶粒度。这种测量法只适用于晶态的超微粉晶粒度的评估。实验表明晶粒度≤50时测量值与实际值验表明,晶粒度≤50nm时,测量值与实际值相近,反之,测量值往往小于实际值。

13、透气法—不受微观结构变化的影响,由颗粒大小,聚集体状态决定。只反映出外表面积不受微观结构变化的影响,由颗粒大小,聚集体状态决定。只反映出外表面积的大小;

14、BET法—颗粒的总表面积:除包括颗粒大小,聚集体状态外还包括了颗粒的裂纹沟槽聚集体状态外,还包括了颗粒的裂纹,沟槽的内表面,因此其数值较上法大的多

15、比表面积的测定范围约为0.1-1000m2/g,以ZrO2粉料为例,颗粒尺寸测定范围为lnm~l0μm.

16、UFP的制备方法:①长大法或者称化学法或者造粒法,合成法——通过化学反应或物相变化,从物质的原子、离子或分子入手, 经过成核和成长、收集两阶段;使颗粒在控制之下长大到要求的大小,这是使颗粒尺寸由小到大的制备方法——纳米粉体的制备方法

②碎细法或者称粉碎法、机械法——这种方法是通过对粗颗粒的粉碎,使其微细化从而成UFP。这是使颗粒尺寸由大变小的方法。是制备微米级颗粒的传统粉碎法的延伸。颗粒粒径在10~0.1μm范围,以两个数量级范围内的颗粒为对象——微米粉体制备 18单分散颗粒系统,其粒度分布呈正态分布

19振动磨制备的粉体粒度分布较窄、纯度较高物料。振动磨除粉碎效率较高外,另一个优点是物料在磨中翻动,从而使物料不易团聚

20气流粉碎机亦称(高压)气流磨或喷射磨或流能磨,是常用的超细粉碎设备之一。高速气流(300—500m/s)或过热蒸汽(300-400℃)的能量,使颗粒相互产生冲击、碰撞、摩擦而实现超细粉碎的设备。降低入磨粒度,可得到平均粒径1μm的产品。

21、随着颗粒微细化,细小颗粒之间的吸附作用,例如范德华引力、静电力、颗粒表面的水份附着力等;或者由于断裂后在新表面上产生的剩余价键带正或负电荷的结构单元或化学游离基的作用,使小颗粒聚结或附聚而成为大颗粒

22、根据生产工艺的要求,把粉碎产品按某种粒度大小或不同种类颗粒进行分选的操作过程称为分级。方法:干法分级和湿法分级

23、颗粒分级可以避免团聚

24、流体是空气时称为干式分级,利用水或者液体时则称为湿式分级。

25、凡是通过挤压、剪切、摩擦、磨剥、拉伸等作用对固体、液体、气体施加机械能,诱发一系列的物理化学性质的改变,称之力化学,或机械力化学。

26、经粉磨后物料活性有所提高的原因经粉磨后,物料活性有所提高的原因是什么?

答:活性提高的主要因素——无定形化的作用;活性提高的次要因素——颗粒尺寸 变小比表面积增大

27、机械力诱发的一系列变化可用X射线衍射、差热分析、红外光谱、反气相色谱法、溶解速度变化密度变化等进行研究

28、助磨剂一般为表面活性物质,具有降低比表面能和“楔入”粒子裂缝的作用。物料在细磨过程中,粒子逐步细化,比表面积增大,其表面因断键而荷电,粒子相互吸附并出现团聚使粉碎效率下降,加入少量助磨剂可以防止粒子团聚,改善物料,流动性,从而提高 研磨效率,缩短研磨时间。

29、颗粒在比较弱的引力作用下结团——附聚体;颗粒在比较强的化学键作用下结合为整体——聚结体

30、助磨剂作用机理:a.削弱固体颗粒强度——软化剂。裂纹的存在、扩展导致断裂,助磨吸附在裂纹上平衡了裂纹表面的剩余价键及电荷,避免裂纹愈合,提高了物料的易碎性。b.防止颗粒并合聚结——分散剂。平衡了颗粒表面上的剩余价键,使颗粒之间的附聚力得到屏蔽,避免颗粒的聚结,抑制粉碎逆过程,故有利于粉碎过程进行。

第五篇:冷冻干燥技术在制药领域的应用

摘要:随着社会经济的发展和人民物质生活水平的日益提高,人们对身体健康也提出了新要求。药品作为保障人类身体健康的重要成分,如何保证药效的稳定性、药物的高质性深受业内人士的重视。冷冻干燥技术作为目前药品生产中最为关键的环节,其在药物生产稳定方面深受业内人士的关注。本文主要对冷冻干燥技术概念、原理、特点进行分析,着重探讨了其未来发展和应用前景,旨在为同行工作提供参考。

关键词:冷冻干燥技术;制药工艺;应用情况

新世纪,物质生活不断丰富、生活节奏的不断加快使得人们对生活质量也提出了新要求,这也促使了人类对健康认识的全面。制药工艺的改革力度的不断深入,无论是生产技术还是生产理念,都出现了巨大的转变。基于这种社会发展形势,冷冻干燥技术在制药领域引起了人们的高度重视,并形成了一个涉及范围广、工作效率高的工作方式。药品冷冻技术在应用中是集制冷、真空技术为一体的综合性技术,但在工作中,由于冷冻干燥技术的应用容易受到外界环境的干扰,为此必须要提前进行严格的改革和设计,促使这门技术在应用中朝着理想、可靠的方向发展。

一、冷冻干燥技术概述

冷冻干燥技术是一种在低温条件下对产品进行干燥处理的一种工艺,其具备着常规干燥条件下不可比拟的工作优势。这种干燥技术最早出现于十九世纪世纪初期,是在食品加工领域应用较多的一种,直至上个世纪后期才在制药领域得到使用。这种技术的出现对于制药生产而言可谓是一个质的飞跃,对制药行业的发展有着极大的推动和促进作用。

1、冷冻干燥技术概念

为了生存,人类每天都需要摄取食物中所含有的水分;为了生存,人类保存食物、药物必须要除去水分,为了更好的生存,人类很多生活资料必须要彻底的去除水分。在这种时代背景下,我们便会发现干燥技术是一个多么重要的工作。干燥技术是保证物质不致腐败和变质的主要方法之一,是目前社会生产领域中最为常见的工作。冷冻干燥技术作为一项干燥新技术,在近年来的社会发展中得到了广泛的应用,尤其是在食品生产、药品生产和农副业加工等领域中,更是成为产品保鲜、保质的主要手段。所谓的冷冻干燥技术也被人们广泛的称之为动感技术,是温度在0℃以下进行水分去除的一种技术。

2、特点

在现阶段的社会发展中,干燥技术的应用不断深入,这也使得干燥技术的使用方法得到了极大的优化和改进。冷冻干燥技术作为一种工作新技术,其主要的特点表现在以下几个方面:

2.1、冷冻干燥法通常都是在低温条件下进行的,其在应用的过程中热敏性的物质在高温干燥条件下容易产生性能变化,而采用冷冻干燥方法则有效的避免了这一问题的产生。

2.2、冷冻干制品药液在冻结前进行分装,剂量十分准确,同时在制药生产中对于药品的生产优势也较为明显。

2.3、冷冻干燥过程中避免了化学、物理和霉菌等相关变化模式,其需要确保制品的物理性质不变。因此在应用之中采用冷冻干燥方法进行处理,这对于提升药品稳定性十分有效。

2.4、冷冻干燥方法的选用有助于药品稳定性。在药品生产中,冻结条件下的药性经济危机稳定,避免了药物失衡而产生的药效流失。这种方法的应用中,药物在在干燥之后,虽然其体积一定程度上缩小、变化,但是其颜色和形状以及成分基本不变,避免了浓缩现象的产生。

2.5、在冷冻干燥技术的应用中,干燥后的材料多呈现出疏松多孔的工作方式,一般都成海绵状,这种状态之下的复水性能好、溶解度较为迅速,物料在水中溶解的时候其冰晶的形态出现较多,即容易融入无机盐等相关的物料之中,避免了一般干燥无机盐随着水分表面浅议而出现变化以及硬化模式。

二、冷冻干燥技术工作原理及发展现状

在科学技术大力发展的新时代,健康越来越被人们重视。但是,要想达到良好的健康状态,就必须要更加有效的进行疾病治疗、疾病预防,减轻患者痛苦和药物所产生的副作用,在这种时代背景下,我们必须要大力发展制药新技术,这样使得冷冻技术出现受到人们的重视。

1、工作原理

药品的冷冻干燥技术的应用是一个从药品的准备、预冻、升华乃至吸收干燥、密封为一体的工作环节,其在工作中主要的工作原理是在低温作用下,将药品中的溶液迅速冻结,进而在真空的条件下进行升华干燥,同时出去在这个时候所产生的冰晶问题,再通过分解作用来去除药品中存在的水分,最终得到干燥的药品。

2、冷冻干燥技术的发展现状

在目前的制药生产工作中,冷冻干燥技术的应用极为广泛,尤其是在国内的西药制取中,更是得到了深入的使用。但是就目前的应用现状而言,由于受到各种因素的影响,使得其中还存在着诸多的问题,这些问题主要表现在以下方面:

2.1、药品准备环节

药品的成份都将会影响到冷冻干燥的效果。药液的生物活性度、药液共熔点以及药液中的液体和固体的比例都是进行药品冻干加工的重要参考指标。为保证新产品的冻干能顺利进行,制药企业应重视药品冻干加工研究,通过热分析法测定药品共熔点,还可以通过冻干实验记录下不同成份的药液对冻干过程中各项指标的不同要求,积极进行冻干效果对比,寻求最佳解决方案。

2.2、药液预冻环节

预冻是冷冻干燥技术中重要环节,预冻的目的是要固化自由水和物化结合水,并保证产品的主要性能稳定、物质结构合理。若药液预冻没有做好,产品冻结不实,会影响所产生的冰晶的形态和大小,并进一步影响药品制作后期的干燥速率及质量。

三、冷冻干燥技术的应用优势 药液在冻干前分装,分装方便!准确!可实现连续化; 处理条件温和,在低温低压下干燥,有利于热敏物质保持活性,可避免高温高压下的分解变性,以实现蛋白质不会变性; 含水量低,冻干产品含水量一般在1%~3%,同时在真空,甚至可在通n2保护情况下干燥和保存,产品不易被氧化,有利于长途运输和长期保存; 产品外观优良,为多孔疏松结构且颜色基本不变,复水性好,冻干药品能迅速吸水还原成冻干前状态。

四、结语

通过冷冻干燥技术制备药品,能最大限度地避免药品产生变性或失去生物活力,已在医药领域得到广泛地应用。但因药品制备过程中的复杂性和冷冻干燥技术的综合性,在药品冷冻干燥过程会产生多种应力,容易使药品发生不同程度的变性,而且冻干法本身也存在速率低、时间长、能耗高和设备投资大等缺点。因此,制药企业应结合生产实践,在确保质量的基础上,就如何实现节能降耗、降低生产成本等问题进行深入研究,进一步优化和改进冷冻干燥技术。

粉体技术在无机材料领域的应用
TOP