首页 > 精品范文库 > 7号文库
《岩土工程》平时 测试题目(推荐五篇)
编辑:雨声轻语 识别码:16-1024580 7号文库 发布时间: 2024-06-06 11:42:44 来源:网络

第一篇:《岩土工程》平时 测试题目

202_《岩土工程》期间测试题(3)

学号:姓名:成绩:

注:名词解释和问答题请在试卷后面答题,答题纸不够自备。

1.名词解释(30分)

(1)滑坡与崩塌;

(2)剩余下滑力与支护力;

(3)地下工程;

(4)围岩应力与围岩压力;

(5)桥梁工程。

2.单项或多项选择题(30分)

(1)大型滑坡主要在以下情况存在();

(A)山区与丘陵区的工业与民用建筑和市政工程(B)平原区的地面交通工程;

(C)水能资源开发工程;(D)矿业中的地下开采工程。

(2)按滑坡形成机理可将其分为()

(A)推移式滑坡;(B)牵引式滑坡;

(C)牵引~推移式滑坡;(D)平推式滑坡。

(3)地下洞室分类的角度有()

(A)按使用功能;(B)按洞室大小;

(C)按洞室周围介质;(D)按洞室空间形态。

(4)地下工程需要解决的问题有()

(A)围岩稳定性;(B)围岩过大变形;

(C)地下涌水或渗水;(D)支护结构的持久性。

(5)地下洞室围岩压力主要有()

(A)形变围岩压力;(B)松动围岩压力;

(C)水压力;(D)冲击围岩压力。

(6)下列表述正确的是()

(A)地下洞室直边边壁法向最容易出现张应力集中;(B)地下洞室角点最容易出现压应力集中;

(C)从围岩应力分布均匀性来说直边形比曲边形洞室好;(D)圆形地下洞室边壁切向围岩应力处处相等。

(7)与隧道和路基工程相比桥梁具有如下特点()

(A)修建技术难度较高;(B)其工作状态不受大气影响;

(C)破坏后修复难度较小;(D)不受山体稳定性影响。

(8)影响山区桥梁修建难度和安全的主要因素有()

(A)斜坡变形或滑移;(B)滚石;

(C)地基不均匀;(D)地震。

(9)下列表述错误的是()

(A)地基变形对简支梁桥和连续梁桥结构内力的影响相同;(B)斜坡地基沉降和侧向变形对所有桥梁结构影响相同。

(C)地基变形对连续梁桥和连续刚构桥结构内力的影响相同;(D)地基变形对简支梁桥结构内力的影响最小。

(10)解决地基基础及环境对桥梁工程的岩土工程措施主要有()

(A)选择设计适应地质环境的桥型;(B)提高地基及地质环境评价结论的可靠性;

(C)选取恰当的地基基础型式;(D)边坡、斜坡和岸坡加固防护。

3.简要回答下列问题(40分)

(1)为什么要对滑坡进行勘察,勘察解决哪些问题?(2)坚硬围岩和软弱围岩洞室的二衬时机为何不同?

(3)交通隧道与水工隧洞使用中围岩受力有何不同?(4)连续刚构桥为何对地基基础变形最为敏感?

第二篇:岩土工程测试

土木工程学院工程课程报告

课程: 《岩土工程测试》

班级: 专业: 姓名: 教师:

202_年12月

目录

一、岩土工程测试的意义概述...............................................................................................1

二、岩土工程测试的作用概述...............................................................................................2

三、岩土工程测试的内容概述...............................................................................................2 3.1、平板荷载试验.............................................................................................................3 3.2、十字板剪切和旁压仪试验.........................................................................................3 3.3、锚杆和土钉测试.........................................................................................................4 3.4、岩土的渗透性及注浆加固.........................................................................................5 3.5、静力触探试验.............................................................................................................7 3.6、动力触探试验.............................................................................................................7 3.7、岩石力学参数测定.....................................................................................................8 3.8、软岩及土的流变试验.................................................................................................8 3.8.1、软岩的特征与流变特性.........................................................................................8 3.9、岩土中的应力测量.....................................................................................................9 3.10、超声波测试.............................................................................................................10 3.11、桩基检测试验.........................................................................................................10 3.12、地基动力测试.........................................................................................................11 3.13、岩体强度试验.........................................................................................................12 3.14、非饱和土测试.........................................................................................................12 3.15、模型试验.................................................................................................................12 3.16、测试数据的整理与分析.........................................................................................13

岩土工程测试课程报告

贵州大学(贵州路桥集团有限公司)王锁

一、岩土工程测试的意义概述

岩土工程测试就是对岩土体的工程悱质进行观测和度量,得到岩土体的各种物理力学指标的试验工作。

岩土工程测试是生产实践,也是科学试验,是获得感性认识和理性认识的必由之路。毛泽东在《实践沦》中说过:“真理的标准只能是社会的实践。实践的观点是辩证唯物论的认识论之第一的和基本的观点。”他又说:“社会实践的继续,使人们在实践中引起感觉和印象的东西反复了多次,于是在人们的脑子里生起了一个认识过程的突变(即飞跃),产生了概念。”

土木工程、岩土工程都是很古老的学科。早期以土、木、石为材料,都是先有实践、试验,后来才有了材料力学、结构力学,近代才有了弹性力学、塑性力学、土力学、岩石力学等。材料属性必须通过试验或现场测试获得。土力学中有试验土力学,粒径级配曲线、e—P曲线、p—S曲线、击实曲线都是试验、测试得到的,库仑抗剪强度理论、达西定律也都是实践、试验得到的。土木工程、岩土工程中经验、统计公式很多,经验、统计更是实践的总结,数学上的概率统计就是在实践总结的基础上应运而生的。科技中常用的反分析法更是由实践、试验结果反求材料特性、计算参数和深究理论概念。

英国人培根有一句名言“知识就是力量”。这句话不完整,没有提到实践的作用。知识如果不和实践相结合,不能应用,就产生不了力量。中国老百姓有一句俗语叫有本事,本事即能力,即在实践中应能用知识来解决问题、创造效益、提高生产力,这才是活的知识,才有力量,才算有本事。反之,如果知识不结合实践,不能应用,那就是一个书呆子,没有本事。我国宋代大诗人陆游说过:“纸上得来终觉浅,绝知此事要躬行。”纸上得来即书本知识,绝知就是真知、会用,躬行就是实践。一名岩土工程师如果不重视实践、试验,那是不可思议的,终无大成就,因此一定要重视试验、实测技术。

总结得到的理论、计算公式的可靠性如何检验呢?还是实践,以此为标准,由实践来检验、提炼理论。/ 13

二、岩土工程测试的作用概述

岩土工程理论分析中的各种定理和规律(如摩尔一库仑定律、各种岩土体本构模型等)几乎都是建立在试验分析的基础之上。理论分析指导工程实践,而土工测试又是理论分析的基础。因此,在岩土工程中,测试处于基础地位。

近几十年以来,随着经济和社会的发展,工程实践中出现了更多更复杂的岩土工程问题,为了解决这些问题,一系列新的岩土体理论和工程设计方法涌现出来。这些新的理论和设计方法要求测试技术有新的发展和突破。没有先进的测试技术就得不到新的理论和设计方法所需要的精确的岩土体参数,这些新的理论和设计方法就无法保证工程实践精度。因此,现代工程实践对测试技术的要求越来越高,依赖性也越来越强。

从整体上看,岩土工程测试可以分为原位测试和室内测试两大类。原位测试可以在最大限度上减少试验前对岩土体的扰动,避免了这些扰动可能带来的对试验结果的影响。原位测试结果可以直接反映原位岩土体的物理力学状态,更接近工程实践的实际情况。同时,对于某些难于采样进行室内测试的岩土体(如承受较大固结压力的砂层),原位测试是必需的。但是进行原位测试,需要的人力、物力和财力通常都比较大。此外,原位测试对应的试验条件比较复杂(比如边界条件非常复杂),给理论分析计算带来了困难,许多情况都不得不进行某些理想化的假设才能进行计算分析。而室内测试能进行各种理想条件下的控制试验,在一定程度上反而更容易满足理论分析计算的要求。因此,原位测试和室内测试具有各自的特点和优势,不能相互取代。

现代新发展起来的测试设备和技术,往往以解决复杂工程问题为目的。因此,仪器构造复杂,操作要求高,可以了解岩土体材料在各种情况的变化规律、考虑常规试验不能考虑的各种因素。但是,这些仪器设备花费巨大,并且操作复杂,不可能普遍应用于一般工程实践,常规测试仪器和技术仍然是必需的。即便是对于复杂的工程实践,常规测试也是必要的,它是进行复杂测试的基础。

三、岩土工程测试的内容概述

岩土工程测试的内容很多,《岩土工程测试》(土木工程研究生系列教材)主要讲述一下内容。/ 13

3.1、平板荷载试验

原位试验(In-Situ Festing)有时也称现场试验(On the Spot Festing),其类型很多,如静力触探、动力触探、平板荷载试验、十字板剪切试验、旁压仪试验、大型剪切试验、孔隙水压力测试、弹性波速测试、地应力测试、抽水或注水、压水试验等。应用最广泛、最常见的还是平板荷载试验(P1ate Loading Test),简称PLT试验。

平板荷载试验是利用弹性力学半无限体表面作用集中荷载的沉降计算公式(布希奈斯克解),来确定地基承载力的基本方法。平板荷载试验一般只能反映深度为两倍承压板宽度范围内的土性特征。

试验设备,平板荷载试验因试验土层(地基)软硬程度、平板(荷载板或承压板)面积大小、试验土层深度等不同,采用的测试设备有多种情况。整个试验可分为承压板、加荷系统、反力系统、观测系统四部分。

3.2、十字板剪切和旁压仪试验

十字板剪切试验全称为野外十字板剪切试验,国际上简称为FVST(Field Vane Shear Test)。十字板剪切试验是用插入软粘土中的十字板头,以一定的速率旋转,测出土的抗扭力矩,换算其抗剪强度。这个抗剪强度相当于摩擦角u0时的粘聚力Cu值。旁压试验(Pressure Meter Test,PMT)起源于德国。旁压试验是利用旁压器对钻孔壁施加横向均匀应力,使孔壁土体发生径向变形直至破坏,利用量测仪器量测压力与径向变形的关系推求土力学参数的一种原位测试方法。

十字板剪切试验在国内外运用广泛,该法能够有效地在原位测定饱和软粘土的抗剪强度。长期以来的实践证明,该试验方法有如下优点:①试验存原位进行,不需取试样;②对无法取样和很难进行室内试验的土,如极软粘土、岩土接触面等,可以获得必要的力学指标;③能更好地反映土的结构、构造特性,如层理、裂隙、结核和颗粒分布的不均匀性;④试验中的边界条件(如排水条件、天然受力状态等)是实际的边界条件;⑤对于正常固结的饱和软粘性土,十字板试验能反映出软粘性土的天然强度随深度而增大的规律,而室内试验指标成果比较分散。/ 13

十字板剪切试验原理:十字板剪切试验是在钻孔某深度的软粘性土中插人规定形式和尺寸的十字板头,施加扭转力矩,使板头内的土体与周围土体产生相对扭剪,直至土体破坏,测出土体抵抗扭转的最大力矩,然后根据力矩的平衡条件,推算出土体抗剪强度。在推算强度时,作了以下几点假定:①剪破面为一圆柱面,圆柱面的直径与高度分别等于十字板板头的宽度D和高度H;②圆柱面侧面的抗剪强度fV和上下端面上的抗剪强度fH为均匀分布并相等,即fVfHf。由于十字板现场剪切试验为不排水剪切试验。因此其试验结果与无侧限抗压强度试验结果接近,饱和软土在固结不排水剪切时0,故f十字板剪切试验推算抗剪强度的公式可以表达为

qu2cu。

cukPff

3.3、锚杆和土钉测试

锚杆支护技术是20世纪初由煤矿巷道支护发展而来的,在岩土工程的边坡稳定支护中已经有广泛应用,是比较成熟的技术。现代土钉支护技术是20世纪70年代发展起来的,用于土体开挖和保持边坡稳定性的一种新型挡土技术。锚杆支护和土钉支护技术经济可靠,施工快速简易,已在大量工程中得到应用。

锚杆的锚固原理:与锚杆直接作用的是复杂多变的岩土体,这给锚杆的力学行为及锚固用原理的观测和研究带来了很大的困难。现有的多数有关锚杆支护作用和效果的试验都是在限定条件下和理想化了的基础上进行的。因此,目前对锚杆锚固原理了解还不够深入,但以下几种锚固作用机理是得到了工程和理沦界的普遍认同的。

悬吊作用原理:悬吊作用理论认为,锚杆支护是通过锚杆将软弱、松动、不稳定的岩土体悬吊在深层稳定的岩土体上,以防止其离层滑脱。这种作用在地下结构锚固工程中,表现得尤为突出。起悬吊作用的锚杆,主要是提供拉力,用以克服滑落岩土体的重力或下滑力,来维持工程结构的稳定。

组合梁作用原理:组合梁作用是较早提出来的,也是一般公认的支护作用原理之一。这种原理是把薄层状岩体看成一种梁(简支梁或悬臂梁)。在没有锚固时,它们只是简单地叠合在一起。由于层问摩擦阻力不足,在荷载作用下,单个/ 13

粱均产隹各自的弯曲变形,上下缘分别处于受压和受拉状态。若用螺栓将它们紧固成组合梁,各层板便相互挤压,层间摩阻力大为增加,内应力和挠度大为减小,于是增加了组合梁的抗弯强度。当把锚杆埋入岩士体一定深度,相当于将简单叠合的数层梁变成组合梁,从而提高了地层的承载能力。锚杆提供的锚固力愈大,各岩层间的摩擦阻力愈大,组合梁整体化程度愈高,其强度也愈大。

挤压加固作用原理:兰格(T.A.Lang)通过光弹试验证实了锚杆的挤压加固作用。当他在弹性体上安装具有预应力的锚杆时,发现在弹性体内便形成以锚杆两头为顶点的锥形体压缩区,若将锚杆以适当间距排列,使相邻锚杆的锥形体压缩区相重叠,便形成一定厚度的连续压缩带。

为说明锚杆对破碎地层的支护作用,国外的澳大利亚雪山水电站地下工程、国内的冶金建筑研究院等单位曾分别先后用碎石、混凝土碎块作材料模拟破碎地层,然后锚杆加固,结果发现加固后的模型承压能力大大提高。这就说明,通过锚杆的加固,即使毫无粘结力的碎石也能被加固成承载能力相当高的糕体“结构”。工程上称这种现象为挤匿加固作用,类似我国古代桥梁工程中的键(腰铁、铰石)对裂隙岩体的作用。

上述锚杆的锚固作用原理在实际工程中并非孤立存在,往往是几种作用同时存在并综合作用,只不过在不同地质条件下某种作刚占主导地位罢了。

3.4、岩土的渗透性及注浆加固

地下水在岩土孔(空)隙中的运动称渗流(透),发生渗流的区域称为渗流场。观测井就是敞开口的井,或称为测压井,可以用来观测海水人浸淡水含水层的现象,观测地下水的污染情况等。岩土体中的孔隙水压力的量测可以利用敞开式测压管(观测井)或封闭式测压计。压水试验是测定岩土体渗透性特征最常用的一种测试方法。它是靠水柱自重或泵压力将水压人到钻孔内岩壁周围的裂隙中,并以一定条件下单位时间内的吸水量来表示岩土体的渗透性。

观测井包括海水入侵和地下水质污染,这是为了环境保护,环境保护就是保护人类自身的生存利益。自然环境的变迁,如沙漠化、水源断缺,对森林的破坏,直接影响甚至毁灭了人类自身的生存环境。

测孔隙水压力意义也很重要。在饱和土中总应力由有效应力和孔隙水压力组成。在非饱和土中总应力包括有效应力、孔隙水压力和孔隙气压力。孔隙水压力/ 13

和孔隙气压力较难测准,因而有效应力原理的应用就受到影响。有效应力原理是土力学理论的重大发展,它反映r岩土工程强度的本质。岩土工程计算中都有误差,甚至误差很大,原因当然足多方面的,但最主要的原因有两个:一个是材料力学、弹性力学中均匀、连续、各向同性的弹性体假定是近似的,不完全符合实际,另一个是计赞:参数洪差大,nf靠性差。能够使计算参数测试提高可靠度,这是个重要问题,足对崧土力学的贡献。

岩体和土体的重要区别是岩体中有各种成因的节理、裂隙、甚至是裂缝,这些裂隙(缝)的存在严格地说使岩体不成为连续体,这就从根本上动摇了材料力学、弹性力学,也是岩土力学的根本假定,所以许多学者尤其对岩石(体)力学问题,从损伤力学,甚至从断裂力学角度去研究,就是承认岩体不是,至少不是严格的连续体。但目前,从岩土力学与工程应用方面讲,还是材料力学、弹性力学基础。岩体中的压水、灌浆工程就是要堵塞裂隙、使岩体成连续体,至少成为近似地连续体,从根本上改善了岩性,改变了岩体工程测试的前提条件。也为测试岩体中界面的接触应力(压力)、岩体(石)中应力(包括构造应力即地应力,工程荷载作用下的附加应力),这些测试都要求紧密接触,接触良好,只有这样才能很好的地传递应力,测试才能准确。岩体内部裂隙被封堵后,成了连续介质,岩体(石)内部埋设仪器、仪表后,所有变形、变位、应变、位移才能测得准,这就为反分析法提供了基础条件。反分析法是测位移、形变、应变,在此基础上去作应力、应变参数分析,因为有了应力才有应变,现在是测了应变,再分析应力,应变参数,所以称为反分析法。在数学物理方程中称逆问题。反分析法是一种既老又新的方法,比如西医诊病,先查问症状,再分析病理,再用药;中医诊病,先望、闯、问、切,再分析病理,再用药,这就是反分析,先查明果,后分析因。又比如测挡土墙位移、变形,再反演土的抗剪强度。又比如大家所熟知的本构关系,也是反分析,先弄清各种影响因素的作用方向和规律,再通过演绎或归纳建立方程,然后再求解方程。

岩土的渗透性及测试应用是广泛的,如野外抽水、基坑降排水、管涌、流沙、地层液化、隔水帷幕、隧道及矿井渗漏水、桥墩围堰、大坝基础防渗、水下工程、农田灌溉、地面沉降、环境工程如回灌等都与岩土的渗透性有关,都要进行测试,有的在大学阶段学过,有的在研究生阶段工程地质里学过。有的太专门化了,只/ 13

能约略提到,避免重复。

3.5、静力触探试验

静力触探试验(stati penetration test),英文缩写CPT(cone penetration test)。静力触探是用千斤顶或落锤将一根细长的金属杆(直径19~80mm)压入或打人地下,用以测定任意深度处金属杆的贯人阻力。将其结果绘成图,横坐标表示贯人阻力,纵坐标表示贯人深度,这是勘察方法——原位测试中的主要类型之一。

在20世纪初期的触探仪是一个顶角为90。的圆锥,放在黏性土上并逐渐加荷,不断贯人,贯人阻力随着黏性土强度增大而增大。后来有了荷兰圆锥静力触探试验,这种圆锥具有60°顶角和直径:36mm,锥底而积10cm2。

3.6、动力触探试验

动力触探(DPT)和标准贯入试验(SPT)都是土工原位测试的主要方法,它们是利用一定的锤击能量,将带有探头的探杆打人土中,按贯入的难易程度来评价土的性质,得到经验(统计)公式。

标准贯入试验的力学机理:标准贯人试验(SPT)与动力触探试验在设备上的区别(重型动力触探和标准贯入试验没备大同小异)主要是探头形式和结构有差异,因而决定了各自的试验机理。标准贯人试验的探头称贯人器,是由钻孔取土器转化而来的开口管状空心探头。在贯人过程中,整个贯人器对端部和周围土体产生挤压和剪切作用,同时由于贯人器是空心的,将有部分土体挤入,加之是在冲击作用下工作,其工作细节和边界条件非常复杂。20世纪50年代以来不断有人探讨标准贯人试验的力学机理,从理论研究方面讲,可有三种理论:①动力作用理论;②用极限平衡理论进行研究;③用波动理论进行研究。

影响动力触探仪精度的因素:⑴人为使用因素:①落锤的高度控制和锤击方法;②量测读数精度;③触探孔垂直程度和探杆长度;④在钻孔中进行触探时钻孔的护壁和清孔情况。⑵设备本身的影响因素:①穿心锤的形状和质量;②探头的形状和大小;③触探杆的截面尺寸、长度和质量;④导向锤座的构造及尺寸。⑶土质与工程环境:①土的性质,如密度、含水量、颗粒结构、压缩性、超固结状态、抗剪强度等;②触探深度,包括触探杆长度和探杆侧壁摩擦。触探深度在12~15m以内时,可忽略探杆侧壁摩阻力,也不用泥浆护壁。探杆长度有显著影/ 13

响,对锤击数需要修正;③地下水的影响。在粘性土中试验,地下水的影响大;在砂土中试验.地下水影响小。

3.7、岩石力学参数测定

岩石的力学性质,岩石和岩体,无论是干燥的还是饱和的,在大多数工程荷载作用下,均表现为弹性体或近似弹性体。

岩石特别是岩体内部,必然有节理、裂隙、结构面、软弱夹层等。这些结构面、软弱夹层,其物质成分、微观结构、力学性质都比较复杂,其力学性质可能属于非线性弹性、弹塑性或粘弹性等。对于结构面和软弱夹层而言,它们含水情况是否饱和,作用力方向和结构面、软弱夹层的展布方向是垂直还是平行或者倾斜,影响很大、差异明显、工程效果大不相同。由于岩石、岩体本构关系的多样性、复杂性及不确定性,这里只研究岩石、岩体作为弹性体、近似弹性体的情况。

3.8、软岩及土的流变试验

软岩及土的流变性包括弹性后效、流动、结构面的闭合和滑移变形等。随着岩土工程的发展,流变已成为工程实践中常遇到的问题,也是造成事故的主要因素之一。岩土体流动变形呈现出了大量的、具有不同特征的流动变形和破裂现象一,通过测试技术,研究这些现象便于了解岩土体变形程度、发生原因、发展趋势及最终状态,由此采取适时有效的工程对策。

3.8.1、软岩的特征与流变特性

软岩的基本特征是强度低,孔隙率高,重度小,渗水、吸水性好,易风化,易崩解,具有显著的膨胀性和明显的时效特性。作为工程材料,其稳定性差。由于岩体开挖后出现持续变形,对于不稳定岩石包括泥质夹层节理弱面等,往往有流变性、粘弹性、粘弹塑性等。流变性又称粘性(Viscosity),是指物体受力变形过程与时间有关的变形性质。软岩流变的一个重要特征是其强度随时间的延长而降低。

软岩的流变性包括弹性后效、流动、结构面的闭合和滑移变形。,弹性后效是一种延迟发生的弹性变形和弹性恢复。由于加荷刚继瞬时的弹性变形产生之后,仍有部分变形随时间增长而产生,因为这部分变形属于可恢复的,且在恢复时亦需要一定的时间,因此,这部分变形仍属于弹性变形范畴,当外力卸除后最/ 13

终不留下永久变形。流动又可分为粘性流动和塑性流动,它是一种随时间延续而发生的塑性变形(永久变形),其中粘性流动足指在较小外力作用下发生的塑性变形(永久变形),塑性流动是指外力达到屈服极限值后才开始发生的塑性变形。闭合和滑移是岩体中结构面的压缩变形和结构面问的错动,也属塑性变形。

工程岩体流变性状及其多样性、易变性显得比较复杂。不同成因类型的软岩、不同结构构造的软弱层,其流变性表现程度是不同的。花岗岩风化形成的软岩,流变变形一般较小,阻尼变形持续时间较短,变形很快趋向稳定;泥质砂岩变形增长较快,变形量值也较大;粘土岩与页岩以及软弱夹层的流变特性非常明显,故对其流变性进行研究有着重要的现实意义。

软岩的流变规律是很复杂的,它和膨胀、崩解一样给软岩工程带来极大的危害。地下洞室围岩的失稳往往是流变、膨胀和崩解的综合效应。很难区分何种效应起主导作用。

软岩的流变力学特性主要包括四方面:①蠕变,在恒定麻力的条件下,变形随时间逐渐增长的现象;②应力松弛,当应变保持一定时,应力随时间逐渐减小的现象;③流动特性,时间一定时,应变速率与戊力大小的关系;④长期强度,在长期荷载持续作用下软岩的强度。

3.9、岩土中的应力测量

土体中的应力测量通常采用压力盒装置(常用的有钢弦式土压力盒),测量时必须保证仪器埋设处的土体可以近似认为是弹性均匀连续介质。地应力的研究和测试方法有:岩体表面应力测量技术、浅钻孔应力解除技术、深钻孔地应力测量技术、水压裂法地应力测量技术和声发射法地应力测量技术等。

土中应力测量分为两种类型,一类是在界面处的应力称为接触应力,如基础底面、挡土墙背处(包括深基坑支撑和土层的接触面处)、地下洞室衬砌外侧、桩端界面处、双层地基界面处,深埋管道底部或外侧,这些都是在两种材料的界面处。另一类是在土体内部,如地基内部、边坡体内部,还有厚衬砌内部、地下连续墙内部(严格说,后两种情况不是土中应力)。

测土中应力有一个基本要求,这就是要求介质是连续介质,也就是说仪器埋设处应是连续介质,而且仪器埋设处要有代表性。这就要求不论界面还是土体内部,不应该处于非均匀状态或是有孔洞或有应力集中现象。如在岩体中测试最好/ 13

通过灌浆填塞,封堵各式各样、大大小小的裂隙,使之成为连续介质,起码近似于弹性连续介质。在土体中测试时,要求通过手工操作使土体,至少使仪器埋设处成为弹性、均匀连续介质。这才符合材料力学、弹性力学的基本假定,具备测试正确性的基本前提。

3.10、超声波测试

声波测试技术是一种现代物理技术,该技术主要是应用声学原理,采用声电转换技术,依据弹性波理论,利用波速这一参数,结合波幅、波频、波形等特征,反映介质质点运动的力学特征,获得工程地质与室内试样的物理力学特性。

声波测试技术是一种现代物理技术,主要是应用声学原理,采用声电转换技术,依据弹性波理论,利用波速这一参数,结合波幅、波频、波形等特征,来反映介质质点运动的力学特征,获得工程地质与室内试样的物理力学特性。

声波测试分室内与室外两种。室内主要是测定岩土试样的声波波速,用来计算岩土试样的物理力学参数;室外主要是在工程现场通过原位测试,用弹性波波速来对地质进行评价,尤其是岩体的完整性与稳定性评价。概括起来,声波测试技术可以解决以下几方面的问题:①岩石(土)试样的物理力学性质的测定和估算,如动弹性模量、泊松比等;②利用声波参数结合地质因素,对工程地质进行分类、分级;③利用声波探测技术评价地下工程围岩的稳定性,包括围岩松弛带范围的测定和围岩稳定性的定期观测;④利用声波测井技术,进行工程地质勘探钻孔及孔间地质剖面分层,确定风化层厚度,为设计开挖及处理提供依据;⑤岩体中存在缺陷,如构造断裂、岩溶洞穴的位置和走向及规模,张开裂隙的延伸方向和长度的探测;⑥工程岩体施工及加固效果的检测,如爆破、喷锚支护、补强灌浆的质量检查等。

3.11、桩基检测试验

桩是设置在地层中的竖直或倾斜的基础支承构件。桩基检测的目的主要有两个:第一个目的是为桩基的设计提供合理的依据。该目的是通过在建筑现场的试桩上进行测试来实现的。第二个目的是检验工程桩的施:[质量,是否能够满足设计或建(构)筑物对桩基承载力的要求。该目的是通过对工程桩进行抽样测试来实现的。

桩基检测的目的主要有两个:一是为桩基的设计提供合理的依据,该目的是/ 13

通过在建筑现场的试桩上实现的;二是检验工程桩的施工质量,是否能满足设计或建(构)筑物对桩基承载能力的要求,该目的是通过对工程桩抽样检测来达到的。对桩基检测的基本要求主要有两项:一是桩的平面位置与几何尺寸;二是桩的完整性与承载能力。主要介绍单桩的完整性与承载能力的检测技术与方法。单桩承载力检测内容包括桩的垂直承载力、水平承载力与抗拔承载力,它取决于桩周(端)介质对桩的支承阻力以及桩身材料的强度。单桩完整性反映了桩身截面尺寸变化、桩身材料密实度和连续性的综合性指标。检测参数包括桩身钢筋混凝土波速、密实度,桩身截面尺寸变化,桩身缺陷位置、缺陷形式、缺陷程度,推算桩长及估算钢筋混凝土强度等级等。桩基检测技术方法分静载试验与动测试验两种。

3.12、地基动力测试

在岩土工程中,岩土体受到动力作用(地震、风振、浪振、机器振动以及爆炸爆破、高速流体和陆地高速重型运载工具等所产生的动应力等)的情况是非常普遍的。岩土体在动力作用下的反应和动力参数通过动力测试获得。常用的岩土体室内动力测试技术有:动三轴试验、动单剪试验、振动台试验和共振桂试验。

土的动力性质是指其在各种动力作用下直接或间接表现出来的某种反应和效应,从岩土工程观点来看,动力是指地震、风振、浪振、机器(锻锤、透平机、破碎机等)振动,以及爆炸、爆破、高速流体通道和陆地重型高速运载工具等所产生的动应力。可见,岩土体在各类土建工程中受到动力作用的情况是极其普遍的。

土的动力测试的目的分为三个方面:①土的基本动力参数的测定,如动弹性模量、动剪切模量、泊松比、动阻尼以及土体中波的传播速度等;②土体的动力反应试验.如饱和低塑性土的振动液化试验和衰减试验等;③土体结构受振条件下的原型观测,如各种动力作用下土体振动性状的实际观测等。就其测试条件又可分为四类:①室内试验;②现场模拟试验;③原位试验;④原型观测。

由于动力试验条件的复杂性,通常一项动力参数可以通过多种试验方法测求。所以在设计土的动力试验或选用某项试验设备时.应首先考虑试验条件的相似性和设备功能的多重性,以及试验成果的针对性。

动三轴试验原理:动三轴试验是从静三轴试验发展而来的,通过对试样施加/ 13

模拟的动土应力。同时测求试样在承受动荷载作用下所表现出的动态反应。这种反应是多方面的,最基本和最主要的是动应力(或动主应力比)与相应的动应变的关系和动应力与相应的孔隙水压力的变化关系。根据应力、应变及孔压这三种指标的相互关系,可以推求出土的各项动弹性参数及粘弹性参数,以及土样在模拟某种实际振动的动应力作用下所产生的性状。

3.13、岩体强度试验

岩体是赋存于一定地质环境中的复杂地质体,通常由岩石(结构体)和各种各样的软弱结构面组合而成。因此,岩体强度不仅与组成岩体的岩石力学性质有关,而且与这些软弱结构面的物质组成、发育程度、组合类型及力学性质等有着很大的联系。许多工程实践表明,结构面的存在大大削弱了.岩体整体强度,导致岩体稳定性降低。工程实践需要以岩体为对象的室内测试技术和原位测试技术来分析评价岩体强度和稳定性。

3.14、非饱和土测试

相对于饱和土力学而言,非饱和土力学的研究进展比较缓慢。制约其发展的因素主要有两个:一是试验技术,迄今没有定型设备;二是理论体系欠成熟。理论的发展离不开试验对土的力学特性的揭示,因而测试技术对非饱和土力学发展的影响非常深远。

3.15、模型试验

尽管随着计算机技术的发展,岩土工程的分析计算取得了蚝足的进步,但到目前为止,许多复杂的工程情况(如水工大坝、地基一结构的相互作用等),运用现有的理论计算仍有很多困难,甚至无法计算,这时,模型试验就是一种非常有效的方法。模型试验要求模型材料、模型形状及所受的荷载等必须按照一定的规律与原型的情况相似。

模型的相似原理:既然是模型试验,模型和原型之间,在几何尺寸,材料、物理、力学特性方面是相似而不是相同。模型试验的相似理论是指模型上重现的物理现象应与原型相似,即要求模型材料、模型形状、所受荷载等均必须遵循一定的规律。这种模型试验,既要研究在正常荷载作用下结构、岩体、地质体的应力及变形特性,又要研究超载情况下的变形和破坏特征,因而兼有线弹性应力模/ 13

型和破坏模型的试验特点,因此它既要满足结构破坏型试验的相似关系,又要满足地质力学、岩体力学模型试验的相似关系。

概括而言,相似原理可表述如下:实体(原型)和模型为两个系统,它们的几何特征和各个对应的物理量必须(然)互相成为一定的比例关系。这样就可以试验测定模型系统的物理量,再按比例推求原型(实体)的相对应的物理量。

考虑平面问题时,物理量包括坐标、体积力、边界力、应力、位移、应变、弹性模量、泊松比等。

数值模拟:模型试验要制作模型或称试件(样),要多作儿次、几十次试验,就要作多个试件。模型试验复杂、费时、费钱,所以有的人就少作,甚至不作,这样要得到足够的、准确的、可靠的试验数据就不可能。有效的解决办法是数值模拟。

以有限单元法为代表(有限条带法、边界冗法等)的方法称为数值方法,这是目前最接近真值的近似方法。我们设定一个数值模型,单元划分好,模型中的特殊构造损伤事先安置好.可设置特殊单元,各种荷载及加载条件、边界条件设计好,只要编好计算程序,在计算机上很快或较快时间内就可以得出结果,一目了然,再调数值,形成一个新的方案再计算,很快又得出一个结果,一个计算方案的计算结果就相当于一个模型(试件)试验。用数值模拟米和模型试验相比较,数值模拟应用越来越广,当然和有限单元法及电子计算机的大量使用分不开。

3.16、测试数据的整理与分析

在岩土工程测试中必然会遇到大量的数据,因此岩土工程测试中的一项重要工作就是从大量的数据中取出有用的数据并得出结论或规律,用于指导工程实践。

数据处理,在数理统计中,就是通过随机变量的部分观察值来推断随机变量的特性,例如分布规律和数字特征等。数理统计是具有广泛应用的一个数学分支,它以概率论为理论基础,根据试验或观察得到的数据,对研究对象的客观规律作出合理的估计与判断。/ 13

第三篇:岩土工程测试技术 封皮

石家庄铁道大学

研究生课程论文

培养单位土木工程学院学科专业桥梁与隧道工程

课程名称岩土工程测试技术 任课教师刘尧军学生姓名程纪怀学号120130424

研究生学院

第四篇:岩土工程测试与检测技术

对当前岩土工程检测技术的研究

摘要:在工程建设开始之前,需要对施工现场的地质状况进行详细的勘察和检测,为工程的设计和施工提供参考的依据。随着工程建设的规模不断扩大,对于岩土工程检测的标准不断提高,需要保证检测结果的准确性和真实性,以提高工程结构的稳定性和安全性。随着时代的不断发展,传统的检测技术已经无法满足现有工程建设的需求,所以需要在技术水平以及仪器设备方面不断的提高和完善,确保工程建设的安全性。岩土工程测试领域非常广泛,通常包括岩土的原位测试技术、地基加固的检验与检测、桩基础的测试与检测、基坑工程检测、地下工程的检测和监控、边坡工程检测等。在岩土工程检测工作中,主要存在两方面的问题:一是存在样抽样随机性较差,不能做到随机、均匀抽检,检测抽样的样本代表性差;二是数据处理不合理、盲目、随意性较大,无法保证检测成果的精度,给工程建设带来安全隐患或造成浪费。

关键词:岩土工程检测技术发展 前言

最近几十年,我国开始致力于岩土工程地基检测技术的研究,通过实际动手实践,积累了大量的操作经验。但是,我国关于此方面技术的研究还远远不够,无法达到生产生活的需要,这不仅反映在岩土工程地基处理与岩土工程地基检测的不协调上,还反映在其发展的落后性上。究其根源,很大程度是应为地方对此项技术的重视程度还不够。更具数据采样,可以得出结论,大多数土建事故时有岩土工程地基问题所引起的。鉴于此上情况,相关工作人员应该对现有的岩土工程地基检测技术进行翻新,不断地与先进科技进行融合,使检测方法具有科学性,先进性,标准型等特性。只有这样,岩土工程地基检测方法才能真正的微土建工程服务,达到它本该达到的效果。如今科学技术的发展使得岩土工程中环境物理检测技术有了巨大的发展和飞跃,许多先进技术比如岩土原位检测技术、室内土工试验以及岩体力学试验、锚杆检测技术等均被广泛的应用到岩土工程中,对人们充分了解岩土物理特性提供了有力的技术支撑。

1.岩土工程中环境物理检测技术

1.1室内土工试验

主要是分析和试验土的物理、化学以及力学等性能。目前,土工试验可以划分为多种类型,比如判别试验、化学性质试验、物理性质试验等等。在具体工程实践中,土的化学分析一般是可以省略掉的。化学分析,主要是对土中石膏、易溶盐以及难溶盐碳酸钙的含量、离子交换量以及酸碱度等进行测定。在岩土工程中,将矿物分析法应用过来,可以对粘土矿物类型进行测定,通过化学分析,可以将矿物类型给确定下来,另外,还可以将其他的一系列物理滑雪分析法给应用过来,如差热分析、X射线衍射分析等。在室内土工试验中,粒径分析试验也是非常重要的一个方面。这种试验具体指的是对一定量的土进行烘干碾撒之后,进行过筛和称重,对各粒径范围内土粒重的百分数进行确定等等。如果土团粒在2mm以内,在水中充分浸润和分散,就可以将2mm到0.1mm之间的细筛给得出来。如果细粒土在0.1mm一下,那么要想对其粒径含量进行确定,就可以将移液管法或者比重计法给应用过来。有机结合筛分发、比重计法以及粒径分析试验等,通过实验,来对土样的粒径分布曲线供土分类给绘制出来。1.2岩体力学试验

通过岩体力学试验,可以对常规力学指标进行测试,并且对岩体变形与破坏机理进行分析和研究。以单轴抗压强度试验为例,岩体的单轴抗压强度指的是在单向受压直到破坏的过程中,岩体试样单位面积上承受的最大压应力,我们也可以将其简称为抗压强度。一般可以分为干抗压强度和抗压强度两种类型,这种划分依据是岩石含水状态的差异。通常情况下,在压力机上直接压坏标准试样就可以将岩石的单轴抗压强度诶测出来,岩石单轴压缩变形试验也可以同时进行。通过岩石单轴抗压强度,可以对岩体强度进行分级,并且描述岩性。1.3岩土的原位测试技术

一般情况下,岩土的原位测试指的是将现场地籍图的天然结构以及含水量和应用状态保持下去,测定地籍图的物理性质和力学性质。借助于理论分析或者一些计算公式,来测定物理力学指标,对岩土的工程性能和状态进行评定。部分岩土工程因为有着较为复杂的地质条件、结构条件和荷载条件,如果采用单纯的理论家计算方法,无法对土体的应力—应变变化进行准确预计,在室内也无法对现场地层条件和荷载条件等进行模拟。因此,就可以通过原位试验,来提供更加可靠的资料。在对岩土工程进行检测和监测中,非常重要的一种方法是原位测试,可以将岩土体的实际参数给获取到,通常利用其来检测施工过程中或者加固处理地基之后,地基土的物理力学性质及状态变化情况。一般可以将岩土的原位测试划分为两种类型,分别是原位实验和原位监测,前者是对实际参数进行获取,后者则是将施工控制和反演分析参数给提供出来。

通过实践研究表明,原位测试具有一系列的优点,不会有过去取土样遇到的困难出现,可以对无法采取不扰动土样的土层进行顶;试验是在原位应力条件下进行的,在采样的过程中,应力释放的影响可以得到有效的减小。在试验中,需要选用较大体积的岩土体,有着较强的代表性。工作效率可以得到有效提高,进而在较大程度上缩短课勘探试验的周期。

虽然原位测试有着一系列的优点,但是也有缺点存在,不同的原位测试有着不同的适用条件,有着较强的针对性,如果采用了不恰当的方法,就会在很大程度上影响到结果的准确性。在统计关系的基础上,通过原位测试,才可以将参数以及图的工程性质给得出来。有诸多因素都会影响到原位的是结果,那么就无法对对策定制的准确性进行科学判断。通过试验表明,会有不一致的问题存在于原位测试中主应力方向和实际岩土工程问题中多变的主应力方向之间。像静力荷载试验、标准灌入试验、十字板剪切试验以及圆锥动力触探试验等都是常见的原位测试。2.岩土工程检测技术的发展

2.1锚杆检测手段

锚杆检测技术主要有常规检测技术与超声波检测技术等两种。常规检测技术的基本原理是荷载对锚杆的压力或者拉力,由于现代岩土工程的发展,要求检测具有精度高、实时性以及大面积动态检测的技术。超声波检测,即在对锚杆完整性检测时,不破坏原岩土的基本受力结构,只通过利用一些辅助仪器设备、相关检测技术手段和数据分析原理,检测锚杆在岩土中是否完整,是否存在一定的缺陷,并判断出锚杆存在缺陷的类别、出现缺陷的准确部位以及缺陷的大小尺寸等,特别适用于岩土工程大面积检测工程。(1)常规锚杆检测技术

常规锚杆检测技术是一种依据静力锚固质量检测的技术方法。又叫做拉拨试验法。主要根据试验压力计和唯一计所测得的数据信息,利用相应转换方式,整理出相应的锚固杆在岩土中位移与荷载间的变化曲线,从而分析出岩土锚杆锚固性能。常规检测技术存在着一些缺陷,就是不能对大面积的进行动态检测。而且通过拉拨试验手段获得的数据仅仅是锚固力的一个大概值,假设锚杆有异常,也不能指出异常所在锚杆的具体位置,所以,拉拨试验法仅仅能判断出锚杆是否存在异常,却不能检测缺陷所在的具体位置。

(2)超声波检测技术

超声波检测技术是不破坏原岩土的受力结构,应用相关的检测设备对锚杆进行检测。在检测时,对杆端进行外力震击,从而引起杆端的剧烈振动,并产生沿锚杆向杆底传播的应力波。如果应力波的波形、波速、波峰值保持不变,在锚杆中均匀传播,则表明锚杆的完整性比较好。如果应力波的波形、波速、波峰值发生变化,则表明沿锚杆长度方向上存在缺陷。由于超声波检测对锚杆不产生破坏,所以特别适用于重要的岩土工程大面积检测工程。

2.2锚固锚杆应力波超声波检测工作流程 在进行锚杆超声波检测数据分析之前:(1)要对围岩土地的基本地质情况进行考察;(2)在确定锚杆杆头应力的波速,利用检测装里采集反射波反射回来的数据,通过检测装备反射波反射数据的采集,从而得到岩土中锚杆的长度、完整度等信息。因此,超声波检测技术基于应力波检测的工作流程大致为:考察围岩土地的基本地质情况,确定应力波速,分析处理检测仪器返回的数据。通过拉拔萝抽检试验、时域波形分析、频谱分析以及时频频谙分析等,从而最终得到锚杆的准确长度和完整度。3.在岩土工程中实施有效的监测措施

岩土工程的现场监测就是以工程实际作为监测的对象,在工程施工过程中对岩土土体以及工程地质结构等进行应力变化等实施的监测。实施现场监控需要事先在工程岩土土体、周围环事中设定观测监控的点位还应该设定一定的时间间隔。其主要的检测内容包括以下几个方面:

(1)在施工的过程中对岩土收到施工作用进行检测并测定各项荷载里的大小并检测在各类荷载的作用下岩体的反应性状;(2)对工程施工、运营工程中结构物进行监测;(3)在工程施工过程中一定会对周围的环境等造成影响规场检测还包括对环境影响程度的检测包括对周围地基加固性质进行检验等。

4.结语

建筑工程中要选择在地质条件良好的场地上建设,但有时也不得不在地质条件不良的地基上进行修建。因此,为了保证工程质量往往需要通过现场测试对加固效果进行严格的监测与检测。现场测试可以为工程设计提供依据;对施工过程进行控制、检验和知道;为理论研究提供试验手段。但是现场测试在地基加固过程中需要注意下列问题:加固后的现场测试应在地基加固施工结束后,经一定时间的休止恢复后再进行;为了有较好的可比性,前后两次测试应尽量由同一组织人员,用同一仪器,按同一标准进行;由于各种测试方法都有一定的适用范围,必须根据测试目的和现场条件,选用最好的方法;无论何种测试方法都有一定的局限性,应尽可能采用多种方法进行综合评价。参考文献:

【1】王严升.岩土工程测试与检测技术及其在工程中的应用{J}.城市建设理论研究,202_(2)

【2】宰金珉.岩土工程测试与检测技术{M}.北京:中国建筑工业出版社,202_

第五篇:岩土工程测试技术

岩土工程测试技术读书报告

—计算机在岩土工程测试技术中的应用 岩土工程测试技术不仅在岩土工程建设实践中十分重要,而且在岩土工程的理论形成和发展过程中也起着决定性的作用。测试技术也是保证岩土工程设计的合理性和保证施工质量的重要手段。

岩土工程测试技术一般可以分为室内试验、原位测试和原型监测三大类,还有各种模型试验,极其多样,各有各的特点和用途,同一种参数,又因测试方法不同而得出不同的成果数据。选用合理的测试方法成为岩土工程计算能否达到预期效果的重要环节。例如土的模量有压缩模量、变形模量、旁压模量、反演模量;土的抗剪强度室内试验有直剪和三轴剪;直剪又有快剪、固结快剪和慢剪;三轴剪又有不固结不排水剪、固结不排水剪、固结排水剪和固结不排水剪测孔隙水压力;原位测试有十字板剪切试验和野外大型剪切试验。测试方法的多样性,也是岩土工程区别于其他工程技术一个重要特点。

计算机科学的飞速发展和岩土工程理论及方法日益完善,计算机与岩土工程测试技术的结合也就成为理所当然的结果。过去计算机应用多限于数值计算及数理统计如有限差分法、有限单元法、边界单元法、概率统计法等。目前计算机的应用已拓展到岩土工程数据库、专家系统、图形处理技术、智能式计算机以及AutoCAD 等方面。计算机与岩土工程测试技术的结合,已在国防机械、地矿石油、土木建筑、铁道交通等系统获得日益广泛的应用。表现在以下几个主要方面。

1.室内试验

土工试验种类繁多,工作量大,易出差错。例如固结试验,如果多台固结仪 同时工作,一个人是无法在规定的时间内同时记录几台仪器的沉降量的,即使稍 微错开各台仪器的开始时间,一个人也显得十分忙碌,且常出差错。如果采用计 算机进行自动数据采集处理,那么一台计算机可以同时监控几台甚至几十台同结仪,一个操作人员就可应付自如.又如动三轴试验,由于试验频率高,使得普通 数显仪器的数码显示速度大大超过人眼的反应速度,因此靠人工是无法记录多个参量的变化值的,如果没有各类传感器及与配套的计算机自动数据采集系统,这类试验是不可想象的.现在已有不少单位建成了自动化程度相当高的土工试验室,从对各种土的物理、力学试验数据的实时采集到所需曲线图形的绘图及各种

成果报表的打印等,均由计算机完成。

2.野外检测

野外检测、原位测试是掌握土的物理力学性质的重要手段,计算机在这方面 的应用也毫不逊色。目前,计算机已与旁压仪、动静触探仪、测桩仪等结合使用,进行野外数据的实时自动采集处理。如计算机测桩系统,不但能测出桩身完整性 及单桩承载力,还能根据实测结果绘出桩长、桩径、缺陷位置及程度等信息,供 有关单位和人员参考。此外,高速铁路、高速公路在动荷载作用下路基的动力特性,也要借助计算机快速采集和处理应力、应变、加速度等传感器传来的信号,才能分析得到。

3.统计计算与分析评价

计算机在这方面的应用主要是指在特定的软件支持下,进行常规的统计,如 回归、方差、相关、判别、趋势面、主因子等分折。一般的诸如沉降、边坡稳定性、土压力、地基强度等计算,比较复杂的如有限元、边坡单元、渗流、协同作用等的分析计算,可靠性理论和随机方法等等都能通过计算机的辅助解决。

4.专家系统

专家系统是一个取自人类专家知识并贮存于知识库之中的信息体系。它能形 成与回答涉及该信息中的各类同题.是用适当的人工智能技术将专家的某些理论 知识和经验存放在计算机里的知识系统。由于专家系统利用了计算机具有大容量 贮存记忆和运算速度极大这两个显著的优越性,并能模拟人的思维对同题求解.因此其在许多领域广为应用.在岩土工程中,南京大学的基于优势面理论的斜坡稳定分析、中科院地质所的地下工程岩体稳定分析、东北大学的围岩人类及支护设计等等专家系统,已开发并推广应用。专家系统隶属人工智能,是计算机技术在非纯数值分析中应用于实际同题的一个重要方面。目前岩土工程专家系统可分为两类 :

第一类专家系统,是基于某个或某几个专家的知识、经验构造的,以专家的丰富知识、经验为系统的内容,由计算机再现专家的思维过程和解题水平,这类 专家系统犹如专家大脑的复制,具有很强的模仿性,经验成分占很大的比倒.

第二类专家系统,是基于某类问题的起源、变化与发展而构造的,其知识获取不限于某个专家,而是许多专家,并且还包括与问题有关的研究成果、工程实

例、理论分析等。与第一类专家系统相比,该类专家系统能让多因素互相取长补短,更好地解决工程实际问题。

除了上面提到的四方面应用之外,在土工试验 汇总报表、计算机辅助成图等方面,计算机的广泛应用已非常成功,且图表整洁标准,大大减轻了试验人员的劳动强度,降低了误差,提高了工作效率。

在岩土测试工作的开展中其实还存在下列问题:手段单一,结果缺乏合理性的解释,管理制度不健全,人员培训不及时等问题。故岩土工程测试应该向以下几个方向发展:取样标准化;开发新仪器新方法;工程地球物理勘探;现场测试、室内试验、理论预测和数值反分析法及其在预测的有机结合与循环。

随着计算机技术的发展及整体科技水平的提高,测试模式的改进及测试仪器精度的改善,最终将导致岩土工程方面测试结果在可信度方面的大大改进。新的岩土力学理论要变为工程现实,如果没有相应的测试手段,则是不可能的。因为不论设计理论与方法如何先进、合理,如果测试技术落后,则设计计算所依据的岩土参数无法准确测求,不仅岩土工程设计的先进性无法体现,而且岩土工程的质量与精度也难以保证。所以计算机在岩土工程测试技术中的发展和应用,将会给岩土工程领域带来巨大的活力,同时也提出了更高的要求。

《岩土工程》平时 测试题目(推荐五篇)
TOP