第一篇:初二数学几何证明题
1.在△ABC中,AB=AC,D在AB上,E在AC的延长线上,且BD=CE,线段DE交BC于点F,说明:DF=EF。
2.已知:在正方形ABCD中,M是AB的中点,E是AB延长线上的一点,MN垂直DM于点M,且交∠CBE的平分线于点N.(1)求证:MD=MN.(2)若将上述条件中的“M是AB的中点”改为“M是AB上任意一点”其余条件不变,则(1)的结论还成立吗?如果成立,请证明,如果不成立,请说明理由。
3.。如图,点E,F分别是菱形ABCD的边CD和CB延长线上的点,且DE=BF,求证∠E=∠F。
4,如图,在△ABC中,D,E,F,分别为边AB,BC,CA,的中点,求证四边形DECF为平行四边形。
5.如图,在菱形ABCD中,∠DAB=60度,过点C作CE垂直AC且与AB的延长线交与点E,求证四边形AECD是等腰梯形?
6.如图,已知平行四边形ABCD中,对角线AC,BD,相交与点0,E是BD延长线上的点,且三角形ACE是等边三角形。
1.求证四边形ABCD是菱形。
2.若∠AED=2∠EAD,求证四边形ABCD是正方形。
7.已知正方形ABCD中,角EAF=45度,F点在CD边上,E点在BC边上。求证:EF=BE+DF
第二篇:初二几何证明题
1如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=DCCF.(1)求证:D是BC的中点;(2)如果AB=ACADCF的形状,并证明你的结论
A
E
B
第三篇:初二几何证明题
初二几何证明题
1.已知:如图,在△ABC中,AD⊥BC,垂足为D,BE⊥AC,垂足为E。M为AB中点,联结ME,MD、ED
求证:角EMD=2角DAC
证明:
∵M为AB边的中点,AD⊥BC,BE⊥AC,∴MD=ME=MA=MB(斜边上的中线=斜边的一半)∴△MED为等腰三角形∵ME=MA
∴∠MAE=∠MEA∴∠BME=2∠MAE∵MD=MA
∴∠MAD=∠MDA,∴∠BMD=2∠MAD,∵∠EMD=∠BME-∠BMD=2∠MAE-2∠MAD=2∠DAC
2.如图,已知四边形ABCD中,AD=BC,E、F分别是AB、CD中点,AD、BC的延长线与EF的延长线交于点H、D
求证:∠AHE=∠BGE
证明:连接AC,作EM‖AD交AC于M,连接MF.如下图:
∵E是CD的中点,且EM‖AD,∴EM=1/2AD,M是AC的中点,又因为F是AB的中点
∴MF‖BC,且MF=1/2BC.∵AD=BC,∴EM=MF,三角形MEF为等腰三角形,即∠MEF=∠MFE.∵EM‖AH,∴∠MEF=∠AHF
∵FM‖BG,∴∠MFE=∠BGF
∴∠AHF=∠BGF.3.写出“等腰三角形两底角的平分线相等”的逆命题,并证明它是一个真命题
这是经典问题,证明方法有很多种,对于初二而言,下面的反证法应该可以接受
如图,已知BD平分∠ABC,CE平分∠ACB,BD=CE,求证:AB=AC
证明:
BD平分∠ABC==>BE/AE=BC/AC==>BE/AB=BC/(BC+AC)
==>BE=AB*BC/(BC+AC)
同理:CD=AC*BC/(BC+AB)
假设AB≠AC,不妨设AB>AC.....(*)
AB>AC==>BC+ACAC*BC
==>AB*AB/(BC+AC)>AC*BC/(BC+AB)
==>BE>CD
AB>AC==>∠ACB>∠ABC
∠BEC=∠A+∠ACB/2,∠BDC=∠A+∠ABC/
2==>∠BEC>∠BDC
过B作CE平行线,过C作AB平行线,交于F,连DF
则BECF为平行四边形==>∠BFC=∠BEC>∠BDC.....(1)
BF=CE=BD==>∠BDF=∠BFD
CF=BE>CD==>∠CDF>∠CFD
==>∠BDF+∠CDF>∠BFD+∠CFD==>∠BDC>∠BFC...(2)
(1)(2)矛盾,从而假设(*)不成立
所以AB=AC。
2、两地角的平分线相等,为等腰三角形
作三角形ABC,CD,BE为角C,B的角平分线,交于AB,BE.两平分线交点为O
连结DE,即DE平行BC,所以三角形DOC与COB相似。
有DO/DC=EO/EB,又EB=DC所以DO=EO,三角形COB为等腰
又角ODE=OCB=OED=OBC
又因为BE和DC是叫平分线,所以容易得出角C=角B(这个打出来太麻烦了),即ABC为等腰。
第四篇:初二几何证明题
28.(本小题满分10分)
如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP-CQ。设AP=x
(1)当PQ∥AD时,求x的值;
(2)当线段PQ的垂直平分线与BC边相交时,求x的取值范围;
(3)当线段PQ的垂直平分线与BC相交时,设交点为E,连接EP、EQ,设△EPQ的面积为S,求S关于x的函数关系式,并写出S的取值范围。
21.(本小题满分9分)
如图,直线yxm与双曲线y
(1)求m及k的值; k相交于A(2,1)、B两点. xyxm,(2)不解关于x、y的方程组直接写出点B的坐标; ky,x
(3)直线y2x4m经过点B吗?请说明理由.
(第21题)
28.(2010江苏淮安,28,12分)如题28(a)图,在平面直角坐标系中,点A坐标为(12,0),点B坐标为(6,8),点C为OB的中点,点D从点O出发,沿△OAB的三边按逆时针方向以2个单位长度/秒的速度运动一周.
(1)点C坐标是),当点D运动8.5秒时所在位置的坐标是,);
(2)设点D运动的时间为t秒,试用含t的代数式表示△OCD的面积S,并指出t为何值时,S最大;
(3)点E在线段AB上以同样速度由点A向点B运动,如题28(b)图,若点E与点D同时出发,问在运动5秒钟内,以点D,A,E为顶点的三角形何时与△OCD相似(只考虑以点A.O为对应顶点的情况):
题28(a)图题28(b)图
(10江苏南京)21.(7分)如图,四边形ABCD的对角线AC、BD相较于点O,△ABC≌△BAD。求证:(1)OA=OB;(2)AB∥CD.(10江苏南京)28.(8分)如图,正方形ABCD的边长是2,M是AD的中点,点E从点A
出发,沿AB运动到点B停止,连接EM并延长交射线CD于点F,过M作EF的垂线交射线BC于点G,连结EG、FG。
(1)设AE=x时,△EGF的面积为y,求y关于x的函数关系式,并写出自变量x的取值范围;
(2)P是MG的中点,请直接写出点P的运动路线的长。
23.(本题8分)如图,在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,∥BF,连接BE、CF.
(1)求证:△BDF≌△CDE;
(2)若AB=AC,求证:四边形BFCE是菱形.
CE
27.(本题8分)如图①,将边长为4cm的正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点B落在AD边上的点 M处,点C落在点N处,MN与CD交于点P,连接EP.
(1)如图②,若M为AD边的中点,①,△AEM的周长=_____cm;
②求证:EP=AE+DP;
(2)随着落点M在AD边上取遍所有的位置(点M不与A、D重合),△PDM的周长是否发生变化?请说明理由.
27.(本题满分12分)如图1所示,在直角梯形ABCD中,AD∥BC,AB⊥BC,∠DCB=75º,以CD为一边的等边△DCE的另一顶点E在腰AB上.(1)求∠AED的度数;
(2)求证:AB=BC;
(3)如图2所示,若F为线段CD上一点,∠FBC=30º.
DF求 FC 的值.
图1 E C
E 图2 C
第五篇:初二数学平行四边形压轴:几何证明题
初二数学平行四边形压轴:几何证明题
1.在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,顺次连接EF、FG、GH、HE.
C(1)请判断四边形EFGH的形状,并给予证明; D(2)试探究当满足什么条件时,使四边形EFGH是菱形,并说明理由。
F
B
2.如图,在直角三角形ABC中,∠ACB=90°,AC=BC=10,将△ABC绕点B沿顺时针方向旋转90°得到△A1BC1.
(1)线段A1C1的长度是,∠CBA1的度数是.
(2)连接CC1,求证:四边形CBA1C1是平行四边形. A1 C
3.如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.(1)求证:OP=OQ;
(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形. P D
4.已知:如图,在□ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得△GFC.⑴求证:BEDG;
⑵若∠B60,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论.E
F
5.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连结AE、BE,BE⊥AE,延长AE交BC的延长线于点F.
求证:(1)FC=AD; D(2)AB=BC+AD.
E
F C
6.如图,在△ABC中,AB=AC,D是BC的中点,连结AD,在AD的延长线上取一点E,连结BE,CE.
(1)求证:△ABE≌△ACE
(2)当AE与AD满足什么数量关系时,四边形ABEC是菱形?并说明理由. B
A
D B C
7.如图,在平行四边形ABCD中,点E是边AD的中点,BE的延长线与CD的延长线交于点F.F(1)求证:△ABE≌△DFE
(2)连结BD、AF,判断四边形ABDF的形状,并说明理由.ED
B C
8.如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.
(1)求证:AE=DF;
(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.
F
B
D
9.如图,在平行四边形中,点E,F是对角线BD上两点,且BFDE.
(1)写出图中每一对你认为全等的三角形;
(2)选择(1)中的任意一对全等三角形进行证明.
10.在梯形ABCD中,AD∥BC,AB=DC,过点D作DE⊥BC,垂足为点E,并延长DE至点F,使EF=DE.连接BF、CF、AC.(1)求证:四边形ABFC是平行四边形;
(2)若DEBECE,求证:四边形ABFC是矩形.D
B
11.如图,△ABC中,AB=AC,AD、AE分别是∠BAC和∠BAC的外角平分线,BE⊥AE.B(1)求证:DA⊥AE
(2)试判断AB与DE是否相等?并说明理由。
E
C
12.如图,在△ABC中,AB=AC,点D是BC上一动点(不与B、C重合),作DE∥AC交AB于点E,DF∥AB交AC于点F.(1)当点D在BC上运动时,∠EDF的大小(变大、变小、不变)
(2)当AB=10时,四边形EDF的周长是多少? A(3)点D在BC上移动的过程中,AB、DE与DF总存在什么数量关系?请说明.EF
B C
2A
13.如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.(1)求证:四边形AECD是菱形;
(2)若点E是AB的中点,试判断△ABC的形状,并什么理由.D
B
14.如图,在平行四边形ABCD中,E为BC的中点,连结AE并延长交DC的延长线于点F.(1)求证:AB=CF D
(2)当BC与AF满足什么数量关系时,四边形ABFC是矩形?并说明.C
B F
15.如图,在正方形ABCD中,G是CD上一点,延长BC到E,使CE=CG,连结BG并延长交DE于点F.(1)求证:△BCG≌△DCE
(2)将△DEC绕点D顺时针旋转90°得到△DMA,判断四边形MBGD是什么特殊四边形?并说明理由.16.将平行四边形纸片ABCD如图方式折叠,使点C与点A重合,点D落到D’处,折痕为EF.(1)求证:△ABE≌△AD’F D’(2)连结CF,判断四边形AECF是什么特殊四边形,说明理由.D
B
17.如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为E.(1)求证:四边形ADCE是矩形;
(2)当△ABC满足什么条件时,四边形ADCE是正方形?说明理由.A
18.四边形ABCD、DEFG都是正方形,连结AE、CG.(1)求证:AE=CG; B(2)猜想AE与CG的位置关系,并证明.F
BC
19.如图,在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=AE.(1)试探究四边形BECF是什么特殊四边形,并说明理由;
(2)当∠A的大小满足什么条件时,四边形BECF是正方形?请回答并证明你的结论.F D
C20.如图,在□ABCD中,AB⊥AC,AB=1,BC=5,对角线AC、BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC、AD于点E、F.(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;
(2)试探究在旋转过程中,线段AF与EC有怎样的数量关系,并证明;
(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC绕点O顺时针旋转的度数.F D
21.如图,B、C、E是同一直线上的三个点,四边形ABCD与四边形CEFG都是正方形,连结BG、DE.(1)猜想BG与DE之间的大小关系,并证明你的结论;
(2)在图中是否存在通过旋转能够互相重合的两个三角形?若存在,请指出,并说明旋转过程;若不存在,请说明理由.A
B 22.如图,矩形ABCD中,O是AC与BD的交点,过点O的直线EF与AB、CD
F
(1)求证:△BOC≌△DOF;(2)当EF与AC满足什么关系时,四边形AECF是菱形?并说明.D
C
23.如图,△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连结DE并延长至点F,使EF=AE,连结AF、BE和
F CF.(1)请在图中找出一对全等三角形,并加以证明;
(2)判断四边形ABDF的形状,并说明理由.B
24.如图,△ABC是等边三角形,点D是线段BC上的动点(点D不与B、C重合),△ADE是以AD为边的等边三角形,过E作BC的平行线,分别交AB、AC于点F、G,连结BE.A(1)求证:△AEB≌△ADC;
(2)四边形BCGE是怎样的四边形?说明理由.