第一篇:数学读后感
读数学史有感
与其把数学科学化,把它当做一门严谨的学科小心翼翼地探寻着,倒不如把它当做一件普通不过的事物,至少,这样的数学更加灵动迷人。
数学,是一样很孤独的东西。它不像是诗歌那样,文人骚客共聚一堂举酒高歌,动情处就即兴脱口,一首千古传唱的诗就诞生了。它也不像艺术品那样,饱含着美感与灵感,可它却汗艺术气息,虽然它的成果是冷冰冰的智慧结晶,但是它的发展过程是饱含悲欢愁的。我想这个过程是孤独的,但是那个创造者对于这样的孤独,他(她)是甘之如饴的。因为那是属于他(她)世界里的一朵奇葩,他(她)看着那株他们倾尽所有汗水与智慧浇灌出来的数学之花,灿烂绽放在这片大地上,何其欣喜。
诸多数学家中,我尤其敬佩祖冲之一家。他们是把数学当做传家宝一样,代代相传,一脉同心。或许因学术有所成而名垂青史、流芳千古的只有祖冲之与祖恒二人,但是也正因为他们的前辈潜心研究,让他俩拥有比常人更加优越的条件,他们也更加容易成功。他们的家族史让我所钦佩的,无论是他们的成就或是执着,都那么的独树一帜,至少在数学史上是如此。
但在数学发展过程中,它也受到了一些人的亵渎。把它当做成名的手段。并不是说这些人有错,他们只是从自己的成果里获取一些名利,满足个人的欲望,正所谓,人不为己,天诛地灭。这些人的初衷是纯洁的,只是在成就与名利俱来的诱惑下变了味。比如说数学怪人卡尔达诺,我不对他的行为加以任何评论,只是为数学惋惜,它并非为功利造台阶,但它却成全了功成名就。它原本只是单纯而神圣的智慧成就,但它的发展却掺杂了许许多多人情世故。更令人伤心的是阿贝尔。当他是一名无名而有志的少年时,受尽嘲笑与蔑视;当他守得云开见月明,证明了一般五次一元方程的不可性时,他被一句“不可能的事”否定了;当上天给了他一次次希望在一次次让他失望而归,他终于无力和命运抵抗,为他遗憾的一生画上句点了。然而讽刺的事情发生在两天之后,阿贝尔被聘任为教授。阿贝尔的不幸事数学发展史上的灾难,或许曾经因为这样那样原因被埋没的人大有人在,他们本拥有一腔热情为数学做贡献,但现实击垮了他们。
无论如何,我还是想在最后说一句,不管被誉为“伟大数学家“的人还是为数学研究默默奉献着的人,他们都是可敬的,因为他们对这份孤独的数学有着不一样的热爱。
第二篇:数学读后感
读《小学数学与数学思想方法》有感
郭红卫
数学思想是对数学知识内容和所使用方法的本质认识。数学方法是解决数学问题的策略。小学数学内容比较简单,以基础知识为主,这其中隐藏的思想和方法很难决然分开,通常把数学思想和方法看成一个整体概念,即小学数学思想方法。这就要求我们教师首先要更新观念,从思想上不断提高对渗透数学思想方法重要性的认识,把掌握数学知识和渗透数学思想方法同时纳入数学目标之中,在课堂教学的各环节中有效渗透一些基本的数学思想方法。
一、导入中渗透
如在教学“圆柱的认识”时,教师提出如下问题:“同学们,你们知道孙悟空之所以神通广大不仅仅是他有七十二般变化,更是因为他有一件降妖除魔的法宝,同学们知道它是什么吗?”学生异口同声的回答:“如意金箍棒。”“同学们知道它是什么形状的吗?”“是圆柱形的”“同学们你们知道它和我们平常见到的如粉笔、电线杆等柱体有什么不同吗?”这时学生的学习兴趣就浓了,踊跃发言。老师这时可以趁势打铁:“我们这一节课要学习的圆柱和粉笔、电线杆不一样。哪我们所学习的圆柱又是什么形状的呢?圆柱圆柱,两头是圆,中间是柱。两头是什么样的两个圆?中间是柱,中间又是什么样的柱子?”这时老师可以要求学生分组讨论交流,课堂气氛一下子就活跃了。有同学们熟悉而又感兴趣的话题迁移到教学中来,教学效果可想而知。让学生初步感悟数学的思想方法,为学生搭建有意建构的桥梁,让学生运用转化类比的数学思想方法进行合理的正迁移
二、新授中渗透
1、渗透分类的思想方法。
“分类”就是把具有相同属性的事物归纳在一起,它的本质是把一个复杂的问题分解成若干个较为简单的问题。如老师在教学统计与初步这一小节内容时,要学生统计出一小时内经过该路口的各种车辆各有多少时,通过学生们的分类整理,能有效纠正学生的无序性甚至盲目拼凑的毛病,有利于培养学生的逻辑思维能力。
2、渗透集合的思想方法。
集合的数学思想方法是从某一角度看所研究的对象,使之成为合乎一定抽象要求的元素。在小学数学教学中,通常采用直观手段,利用画集合图的办法来渗透集合思想。
例如教学长方体、正方体之后,使学生明确正方体是长、宽、高分别相等的长方体,即正方体是一种特殊的长方体,用圆圈图表示更形象。让他们感知大圈内的物体具有某种共同的属性,可以看作一个整体,这个整体就是一个集合——长方体集合,小圈内的物体也具有某种共同的属性,可以看作一个小整体,这个小整体就是一个小集合——正方体集合,如长方体集合包含正方体集合。集合的数学思想方法在小学各年级段都有所渗透,如数的整除中就渗透了子集和交集等数学思想。
3、渗透符号化思想。
渗透符号化思想主要是指人们有意识地、普遍地运用符号去表达研究的对象,恰当的符号可以清晰、准确、简洁地数学思想、概念、方法和逻辑关系。符号化思想在小学数学内容中随处可见,教师要有意识地进行渗透。
例如:在教学加法结合律时,我首先让学生通过试题计算明确:三个数相加,可以先把前面两个数相加,再和第三个数相加;也可以先把后两个数相加,再和第一个数相加,结果不变。把它变成符号化的语言就是:a+b+c=a+(b+c)在这里,一定要让学生明确每个符号的意义,知道这样表示更一般化、抽象化,也更简洁,更能表示一般规律,进而再引导学生用符号化语言表达两个数的差与一个数相乘的规律,加深理解符号的含义,建立符号化思想。当然像我们所学过的一些计算公式等,无不渗透了数学思想在里面。
三、练习中渗透
练习是数学教学的重要环节,习题的设计和选择不仅要体现基础性、层次性和可选择性,而且要具有实践性、应用性、探索性和开放性,做到基础性练习与发展性练习协调互补,使数学练习适应不同学生发展的需要。教师应精心设计练习,在巩固练习中运用数学思想方法。
例如:在学习了分数、百分数应用题之后,我为学生出示了这样一道练习题:一条路全长1200米,修路队前三天就修了它的30%,照这样计算,修完这条路一共需要多少天?
老师在教学中引导学生可以借助于单位“1”来进行计算。老师可以把“12——00米”这一条件盖起来,让同学们自由解答。
师:这样做,简化了解题思路,同学们想不想找规律?(想)刚才这道题我们运用了“转化”的思想方法:“把已知数量看作单位“1”,有“前三天就完成它的30%,不难算出这个修路队每天修全长的10%,那么修完这条路需要多少天就简单了。再者有”前三天修了它的30%,不难看出没有修的占70%,则还需要7天。师边说边显示这一简化思路的基本方法,并让学生再议一议上述运用“转化”思想方法的解题关键。
上述练习环节中,我在新旧方法的联结点上巧妙设问,激发了学生探索新方法的兴趣和情感,在探索新方法的过程中渗透了转化的思想方法,并在教师小结和学生议一议的过程中巩固了这种思想方法,与此同时,发展了学生的思维能力。
四、复习中渗透
在平时教学复习中,要以思想方法贯穿整个教学过程,将各个知识点,引导学生在解题训练过程中以数学思想为主线,并进行知识点概括与归纳整理,从不同内容、不同角度、不同问题、不同方法中寻找同一思想。把数学思想方法纳入教学计划中,有目的、有步骤地引导学生参与数学思想方法的提练、概括的过程。对于习题的选择不可以条块分割、泾渭分明,应在知识网络的交汇处选题,有意识地设计隐含着数学思想方法的习题、高频率再现,精心安排,恰到好处的点拔。特别是章节复习时,在对知识复习的同时,将统领知识的思想方法概括出来,增加学生对数学思想方法的应用意识,从而有利于学生更透彻地理解所学知识,提高独立分析、解决问题的能力。
第三篇:数学读后感
数学读后感
人类最早用来计数的工具是手指和脚趾,但它们只能表示20以内的数字。当数目很多时,大多数的原始人就用小石子来记数。渐渐地,人们又发明了打绳结来记数的方法,或者在兽皮、树木、石头上刻画记数。中国古代是用木、竹或骨头制成的小棍来记数,称为算筹。这些记数方法和记数符号慢慢转变成了最早的数字符号(数码)。如今,世界各国都使用阿拉伯数字为标准数字
随着生产力的发展,数字符号的产生使得人类能够在时候进行更大规模的记录,进而产生了较早期的数字运算规律,再后来,阿拉伯数字符号的发明使得“算数”往“数学”过度有了可能。
而数学运用数字符号表达记录了各种高级的,高度符号化了的,抽象的数学定律。随之产生的还有“几何”。
正是这些数学规律使得人类能够量化地进行工程设计和施工,人类的工业开始能够制造出复杂庞大的系统。
数学也是近代化学,物理,计算机科学等重要学科的基础和研究工具。
所以说,数字符号的出现,是人类社会和智能发展的必然结果,也是人类社会进步的基石之一。
数字符号见证了我们的人类史上光辉传奇。
成功对每个人来说都是一件幸运的事,但不是每一个人都能获得成功。成功不是路边的小石子随处可捡,也不是田间的小草随意可觅。要成功,需要有一段漫长的路要走,在这期间是要经过许多挫折的。
1930 年的一天,清华大学数学系主任熊庆来,坐在办公室里看一本《科学》杂志。看着看着,不禁拍案叫绝:“这个华罗庚是哪国留学生?”周围的人摇摇头,“他是在哪个大学教书的?”人们面面相觑。最后还是一位江苏籍的教员想了好一会儿,才慢吞吞地说:“我弟弟有个同乡叫华罗庚,他哪里教过什么大学啊!他只念过初中,听说是在金坛中学当事务员。”
熊庆来惊奇不已,一个初中毕业的人,能写出这样高深的数学论文,必是奇才。他当即做出决定,将华罗庚请到清华大学来。
从此,华罗庚就成为清华转载自百分网http://,请保留此标记大学数学系助理员。在这里,他如鱼得水,每天都游弋在数学的海洋里,只给自己留下五、六个小时的睡眠时间。说起来让人很难相信,华罗庚甚至养成了熄灯之后,也能看书的习惯。他当然没有什么特异功能,只是头脑中一种逻辑思维活动。他在灯下拿来一本书,看着题目思考一会儿,然后熄灯躺在床上,闭目静思,开始在头脑中做题。碰到难处,再翻身下床,打开书看一会
儿。就这样,一本需要十天半个月才能看完的书,他一夜两夜就看完了。华罗庚被人们看成是不寻常的助理员。
第二年,他的论文开始在国外著名的数学杂志陆续发表。清华大学破了先例,决定把只有初中学历的华罗庚提升为助教。
几年之后,华罗庚被保送到英国剑桥大学留学。可是他不愿读博士学位,只求做个访问学者。因为做访问学者可以冲破束缚,同时攻读七、八门学科。他说:“我到英国,是为了求学问,不是为了得学位的。”
华罗庚没有拿到博士学位。在剑桥的两年内,他写了 20 篇论文。论水平,每一篇都可以拿到一个博士学位。其中一篇关于“塔内问题”的研究,他提出的理论被数学界命名为“华氏定理”。
华罗庚曾说:“科学上没有平坦的大道,真理的长河中有无数礁石险滩。只有不畏攀登的采药者,才能登上高峰觅得仙草;只有不怕巨浪的弄潮儿,才能深入水底觅得骊珠。”科学上的每一个真理都是在经历无数次的挫折、失败之后才得出的。我们要正视挫折,正确对待挫折,只有这样,才能让挫折变成我们走向成功的阶梯。
华罗庚以一种热爱科学,勤奋学习,不求名利的精神,献身于他所热爱的数学研究事业。他抛弃了世人所追求的金钱、名利、地位。最终,他的事业成功了。
华罗庚把科学研究与实际应用紧密结合起来。华罗庚把数学应用到工农业生产上,对我国现代化建设做出了突出的贡献。
挫折可以战胜,挫折孕育着成功,而前提是具有坚定的信念和勇往直前的精神。当具备了这些条件之后,挫折就会被你踩在脚下,明天就是拨开浮云见丽日之时
第四篇:《数学百草园》读后感
本书讲的是各种各样的例题,如公元年数与干支的换算,几何等一些数学知识,都有文章详细解说,让我能更加理解书上的例题和知识,一旁画有解图,可以让我越读越有味儿,它引起了我对数学的兴趣,使我能把书中的知识运用在实际生活上。书中的知识也并非全都是数学,包含了一定量的天文、地理、语文、历史、科学、物理、化学、魔术,甚至还有一些民间发生的关于数学的事,所以知识极其丰富,有些被深藏奥秘让我很难理解。作者以幽默的语句来解答我通常会觉得自己在看童话书一样妙趣横生,但又不失深奥和逻辑。在我看来,原本很枯燥的圆周率和数学计算也被作者写的极富有趣味,奇妙而又深不可测,所以这本书容易让我广泛使用知识,激发了我的潜力,现在我觉得,其实数觉也并没有我想像中的那么难。
鸡兔同笼,数学家的眼光从这个小学的数学问题又能看出什么呢?鸡兔同笼用方程的解法会很简单,但是它除了方程,还可以用最原始的方法去解。有人可能会笑了:有了简便的方法,还用那么笨的方法干什么?但如果倒过来想,用鸡兔同笼的方来做方程的话,那么很难方程不就好解了吗?
在数学中,能从基本的数学常识中看出复杂的理论,能从不可能中看出可能,能从简单的问题中看出那题的解法。在数学家的眼中,最最基础的理论也可以衍伸变化出高深的数学问题。数学的领域是无穷广阔的,真正的关键在于自己,若我们用心观察四周的事物,抓住平凡的事实,思考、探索、发掘,会发现数学是耐人寻味且无所不在的。数学家的眼光从洗衣服中都能看见数学的影子,那么我们也一定能够从其它事情中看到数学,久而久之,就会慢慢理解数学,喜欢上数学。这样,数学就不再是让我们绞尽脑汁去思考的难题,而是生活中处处都有的小精灵。
第五篇:关于数学的读后感
【篇一:《好玩的数学》读后感】
《好玩的数学》的作者是中国有名的科普教授——谈祥柏,这本书也是他送给少年儿童最好的礼物。
谈祥柏教授是我国著名的科普作家,从事数学科普工作已经有半个多世纪了,他与张景中院士,李毓佩教授一起被称为“中国科普三驾马车”。谈祥柏教授还有着扎实的古文功底与非常渊博的文史知识,并通晓英、日、德、法以及阿拉伯文等多种语言,因此谈祥柏教授写的《趣味数学》的内容妙趣横生,并且与智力的训练巧妙的结合在了一起,深受我们少年儿童的喜爱。
谈祥柏教授还将许多国外的著名而且优秀教学科普作品翻译给了中国所有读者,其中包括世界著名数学科普大师马丁加德纳等许多著名人物的作品。
谈祥柏教授写的《好玩的数学》中分为许多种类,包括:数学是大花园,数学史大作坊,数学是大超市,数学是大课堂,数学是大戏台,这些内容都表达着自己含义的大题目,中题目,还有“弹子盘上的数学”中有的小题目……还有许多有趣的题目和有趣的内容,只有有趣的题目才是最吸引人的,因为只有题目新奇才可以吸引读者。
同学们,听了这些你是不是也对这本书很感兴趣了呢?不妨和我一起看看吧!
【篇二:《趣味数学》读后感】
自三年级起,我开始订阅《趣味数学》,它是一本生动有趣的课外数学辅导资料。
借用一句古话:授人以鱼,不如授人以渔。就是说:“给人一条鱼,不如教他打渔的方法(或技术)。”就像我们的老师孜孜不倦的在课堂上教会我们学习时的方法或公式。《趣味数学》就像一本教你如何在知识的海洋里“打渔”的杂志——它不仅让我们学到了知识的要点,更我们掌握了学习中的方法。
《趣味数学》它的内容分为:科幻故事.名人数学家的成长经历.历史故事.开心笑话.脑筋急转弯,以及漫画;它以这些方式,向我们展示了数学世界的精彩。例如:科幻故事利用魔法的神奇让我们感到数学世界的魅力和神秘。科幻故事虽然只有一个叫《菜鸟魔法师之黑魔法复苏》,这是一篇每期连载的科幻故事里面的主要人物有:格鲁、贝奇、萨尔、吉米、托比和索拉,他们各有各自的本领以及独特的性格,但是他们都有一个共同点,就是爱探险。所谓的菜鸟魔法师就是格鲁,他喜欢钻研魔法。托比是个数学家.贝奇是个语言学家.萨尔是个植物学家.吉米是个考古学家.索拉是个探险家。他们是一个个爱动脑筋.善于思考的人。通过读他们的故事,让我的思维变的灵敏,使我更加喜欢思考和发现问题。
让我记忆深刻的是第一册《趣味数学》名人数学家的成长经历中讲的是我国著名数学家——陈景润。
陈景润爷爷,从小就酷爱读书,可惜家庭贫困无法供他读书。小时侯陈爷爷每天一见到自己哥哥放学回到家就缠着叫哥哥讲数学故事。这件事一直被陈景润的母亲看在眼里,她一咬牙把陈景润也送进了学校。入学后,陈景润的成绩优异,可是因家庭困难,陈景润上了高中以后,不得不退学,后来,他在家里坚持自学一学期。从小到大,陈景润都酷爱看书,他与小朋友一起捉迷藏时,手里都拿着本书,然后往隐蔽的地方一窝,等到大家都走光了,他也不知道。有一次,妈妈让他煮饭,因为专注地看书他居然连饭煮糊了也不知道。陈景润有着忘我的学习精神,能够在艰苦的环境下坚持学习,因此后来他成为我国著名的数学家。我们应该向他学习这种酷爱读书的学习精神。
另外,这本书中的开心笑话和漫画让我们在一个充满乐趣的环境下学习数学,还用脑筋急转弯的方式来锻炼我们的思维能力,让我成为一个爱思考、爱发现的孩子。
《趣味数学》让我们在趣味中学习,在快乐中进步。它使我的学习充满乐趣,也使我变得热爱思考。我喜欢读《趣味数学》。
【篇三:有趣的数学读后感作文】
说实话,教了二十多年小学数学,年复一年,日复一日的和那些阿拉伯数字打交道,有时真觉得数学很乏味的,但作为老师,为了培养学生学习数学的兴趣,总是想方设法挖掘数学的有趣之处,有时真的是绞尽脑汁。放假前到校长室借书时,看到《有趣的数学(第1集)》一书,顿觉眼前一亮,便毫不犹豫的借了来,书拿来一看,作者是韩国的,太陌生了,于是先上网查了一下作者的相关资料,一查才知道,作者李光延博士是韩国著名的数学教授,一直致力于向普通大众普及数学知识,展示数学的魅力和数学的美。《有趣的数学》有两集(我借的是第1集),在韩国非常畅销,吸引了大批青少年走进数学殿堂。这么有诱惑力的书,一定要好好读读。
读完全书,我的第一感觉就是原来数学并不是那么枯燥、单调、乏味的,也可以充满诗情画意,整本书的内容就像简介中说的一样“融会古今、大气磅礡,寓精微的数学道理于玩笑幽默之间,图文并茂、趣味盎然”。《有趣的数学(第1集)》有趣又简单,任何知识层面的人都可以阅读,虽然是按数学发展的历史编写的,但不一定非得从头读起,无论阅读哪一部分都可获得简单的数学知识以及了解与数学有关的故事,特别是我们数学教师在讲课时引用《有趣的数学》中与讲课内容相关的简单的数学故事,可以让学生更容易接受所学的知识。
本书诠释“什么是数学”时,讲的第一个小故事是:有两名罪犯,一名是数学教授,另一名是教授的学生,他们都因做了坏事犯了罪,被判死刑。当时法律规定,临刑前可以满足除免死以外的任何一个要求。死刑执行官先问教授有什么要求,教授说:“我的最后要求是为那个学生讲一节数学课。”执行官答应了他的要求,于是执行官又问教授的学生有什么要求,学生深思了一会儿说:
“我的最后要求是在教授讲课前杀了我。”执行官也答应了他的要求。随后,执行官犯了难:答应教授的要求,就得先给那名学生上课;答应学生的要求,在教授上课前就得处死学生。最终,教授和学生都没有被处死。
这个故事可以唤起厌学学生的兴趣,使他感受到数学在危急时刻还能挽救人的生命,足可见数学是一门多么了不起的学科。同时还可以引导学生明白,面对一个新问题时,要善于深入思考,要向故事中教授的学生学习,多给自己一些时间作深入思考,以便于作出正确的选择。
当课堂上遇到特别爱提无用问题的学生时,可以给他讲讲这则故事:某一数学老师总是因为一名学生的不断提问而不能进行正常教学,一天,这位老师做了一个决定,走进教室后对那位学生说:“每堂课总是因为你而影响上课,从今往后,每堂课只允许你提两个问题。”于是,这名学生问道:“只能提两个问题吗?”老师回答说:“现在还剩一个问题了。”不用说教,不用批评,用一个风趣的小故事,使学生明白了课堂不能乱发问,要想好了再说,提有用的问题的道理。
书中像这样的故事很多,如:生物学家、数学家、计算机专家等人去非洲旅行时看到一群斑马,他们作出不同的反映的故事;工程师、物理学家、数学家遇到一起火灾时的不同做法的故事,等等。我们都可以在合适的时机讲给学生听,让学生深切感受到数学在生活中的作用,从而爱上数学。
通过读这本书,也让我对数学史上一些重要的数学家,如阿贝尔和伽罗华、笛卡儿、高斯、泰勒斯、毕达哥拉斯、欧拉、欧几里得、牛顿、费尔马等等有了更深刻地了解,增长了自己的数学课外知识,使自己能更好的教好数学。正如书中所说的:“对自己所做的事要竭尽全力,而且知道自己在做什”。
【篇四:有趣的数学读后感】
暑假期间机会看到了一本书,叫《好玩的数学》。也许是出于职业的习惯,我个人对于数学比较感兴趣。这本书可好看了,有许多引人入胜的魔术。像拓扑变换呀,间隔相等哪,钟面猜心术什么的,原本乱糟糟谁也听不懂的怪东西都被它用深入浅出的手法,一个一个写得生动传神。一口气读完后真正感觉到《好玩的数学》的确是一本有趣而长知识的书。
本书是“如何教好新课程丛书”中的一本,全书共分四章:从哪里获得数学教学素材、怎样用好教材实施教学、怎样开发学具与教具的新价值、如何在网络环境下开发教学资源。
第二章第一节“如何让学生在活动中学习概念”。我最感兴趣。在我记忆中的数学概念学习是较为枯燥的,几乎总是遵循“简单感受——告知结论——变式练习——理解概念”这样的教学模式。而本书推崇的是:对概念的学习与建构应该主要依靠学生自主、自觉的探究活动。在经历概念的形成过程之后,学生对概念的理解、掌握就会在脑子里生根发芽,在适合的土壤中,它能自主地生长,而不是教师用大量的练习“催熟”。书中所举的例子,关于“质数与合数”的教学,采用游戏方式教学效果非常好:让学生准备印有自己学号的卡片,贴在自己的身上,并把学号的因数写在卡片上,做成头饰戴在头上。上课时,先交流自己的学号号数以及号数的因数。随后,提出要求:在小组里把号数按因数的特点分成两类……另外,还有“自制扑克牌”(张数在50~100张之间,一张只写一个数,不能重复)可用来复习《数的整除》单元的知识。
第三节“计算教学的思考”。也是比较吸引人的。在平时的教研活动中,几乎很难遇上计算教学方面的研讨。传统的计算教学往往是“算对就是硬道理”“一道例题一条法则”“读一读,记一记”“死记法则多练题”。于是,多年来,老师们便慨叹“这道题,我都不知道讲了多少遍,怎么学生还不会?”较好的办法是,让学生亮出“心中”的法宝,再自己举例,尝试计算中体会算法,然后通过小组交流归纳出计算法则。与老师或书本将计算法则强加给学生相比,这种让学生经历学习过程后得到的感悟和理解,更有利于学生计算能力的提高。在比如教学三位数减法“300-97”时,可通过导演“没零钱,怎么办”的小品,在课上要求“演员”把“300-100+3”作为重要剧情进行展示。这样,在欣赏“找钱的过程”中,学生不知不觉地就能弄清“多减要加”的算理。对待学生的计算错误,不能因学生的一句“粗心呗”就草草了事,可以组织学习小组从计算心态、计算习惯、计算能力等方面找出出错的原因,并商议改进措施,使错误成为学生前进的铺路石。
总的说来,这是一本值得小学数学教师读的书。