第一篇:线性代数心得体会
矩阵——1张神奇的长方形数表
关键词:矩阵与线性方程组高阶矩阵简化方法财务数据分析工具
在本学期的线性代数课程的第二章中,我接触了矩阵的相关概念,发现其不仅能够在数学中帮助研究线性变换、向量的线性相关性及线性方程的解法,还能为日常许多数据统计与分析中看似杂乱无章毫无关系的数据按一定的规则清晰展现,并能通过矩阵的运算刻画其内在联系,这对于审计专业的我们将来开展财务数据统计与分析能带来巨大的帮助。
在运用矩阵解方程组时,可以将线性方程组简化为矩阵形式:AX=B,来进行矩阵计算,这种方法不仅书写方便,而且可以把线性方程组的理论与矩阵理论联系起来,给线性方程组的讨论带来很大的便利。
在具体的矩阵运算过程中,我们可以通过等式两边同时左乘−1来求X,这就引出了第二章第三节的逆矩阵概念,逆在以前高中的实数乘法中便起着重要作用,在学习线性代数课程中,逆矩阵也是一个重要概念,且因为两矩阵乘积的定义,我们需要注意所讨论的矩阵是方阵形式,否则就会带来运算上的错误。
而对于高阶的复杂矩阵,还可以利用分块矩阵,将大矩阵的运算化成若干小矩阵,间接使高阶矩阵转化成多个低阶矩阵来运算,以及矩阵的初等变换规律对矩阵进行转换:如通过公式(AE)
(−1)可以对前面逆矩阵的运算起到简化作用,通过公式(AB)初等行变换初等行变换
(−1B)则可以借此求解矩阵方程AX=B。通过一步一步的学习,我慢慢对线性代数矩阵这一章节有了进一步的理解掌握,发现各个章节看似无关的概念,其实最后都可以联系在一起,为求解线性方程组、甚至后面章节的线性变换、线性相关性等都起到极大的铺垫基础作用。
谈了这么多矩阵对于求解线性方程组过程中的体会,更吸引我的是矩阵对于数据处理方面的作用,作为审计专业的学生,未来工作中会遇到很多处理产品成本的核算的问题,而通过矩阵这一工具,可以通过特殊的“数型结合”恰当的显示出各种数据间的内在联系,例如:可12以用矩阵(12)来表示一个公司的单位产品成本构成(两列分别代表产品1和产品2,121三行分别代表材料成本、劳动力成本、其他辅助成本),当与产品产量矩阵()
211+22相乘时,则可以得出两种材料的总成本矩阵(11+22)将产品总成本的构成以更清晰
11+22明了的方式呈现出来,可以为财务数据的处理带来很大的助益。
第二篇:线性代数心得体会
矩阵——1张神奇的长方形数表
关键词:矩阵与线性方程组高阶矩阵简化方法财务数据分析工具
在本学期的线性代数课程的第二章中,我接触了矩阵的相关概念,发现其不仅能够在数学中帮助研究线性变换、向量的线性相关性及线性方程的解法,还能为日常许多数据统计与分析中看似杂乱无章毫无关系的数据按一定的规则清晰展现,并能通过矩阵的运算刻画其内在联系,这对于审计专业的我们将来开展财务数据统计与分析能带来巨大的帮助。
在运用矩阵解方程组时,可以将线性方程组简化为矩阵形式:AX=B,来进行矩阵计算,这种方法不仅书写方便,而且可以把线性方程组的理论与矩阵理论联系起来,给线性方程组的讨论带来很大的便利。
在具体的矩阵运算过程中,我们可以通过等式两边同时左乘−1来求X,这就引出了第二章第三节的逆矩阵概念,逆在以前高中的实数乘法中便起着重要作用,在学习线性代数课程中,逆矩阵也是一个重要概念,且因为两矩阵乘积的定义,我们需要注意所讨论的矩阵是方阵形式,否则就会带来运算上的错误。
而对于高阶的复杂矩阵,还可以利用分块矩阵,将大矩阵的运算化成若干小矩阵,间接使高阶矩阵转化成多个低阶矩阵来运算,以及矩阵的初等变换规律对矩阵进行转换:如通过公式(AE)
(−1)可以对前面逆矩阵的运算起到简化作用,通过公式(AB)初等行变换初等行变换
(−1B)则可以借此求解矩阵方程AX=B。通过一步一步的学习,我慢慢对线性代数矩阵这一章节有了进一步的理解掌握,发现各个章节看似无关的概念,其实最后都可以联系在一起,为求解线性方程组、甚至后面章节的线性变换、线性相关性等都起到极大的铺垫基础作用。
谈了这么多矩阵对于求解线性方程组过程中的体会,更吸引我的是矩阵对于数据处理方面的作用,作为审计专业的学生,未来工作中会遇到很多处理产品成本的核算的问题,而通过矩阵这一工具,可以通过特殊的“数型结合”恰当的显示出各种数据间的内在联系,例如:可12以用矩阵(12)来表示一个公司的单位产品成本构成(两列分别代表产品1和产品2,121三行分别代表材料成本、劳动力成本、其他辅助成本),当与产品产量矩阵()
211+22相乘时,则可以得出两种材料的总成本矩阵(11+22)将产品总成本的构成以更清晰
11+22明了的方式呈现出来,可以为财务数据的处理带来很大的助益。
第三篇:线性代数心得体会
矩阵——1张神奇的长方形数表
关键词:矩阵与线性方程组高阶矩阵简化方法财务数据分析工具
在本学期的线性代数课程的第二章中,我接触了矩阵的相关概念,发现其不仅能够在数学中帮助研究线性变换、向量的线性相关性及线性方程的解法,还能为日常许多数据统计与分析中看似杂乱无章毫无关系的数据按一定的规则清晰展现,并能通过矩阵的运算刻画其内在联系,这对于审计专业的我们将来开展财务数据统计与分析能带来巨大的帮助。
在运用矩阵解方程组时,可以将线性方程组简化为矩阵形式:AX=B,来进行矩阵计算,这种方法不仅书写方便,而且可以把线性方程组的理论与矩阵理论联系起来,给线性方程组的讨论带来很大的便利。
在具体的矩阵运算过程中,我们可以通过等式两边同时左乘−1来求X,这就引出了第二章第三节的逆矩阵概念,逆在以前高中的实数乘法中便起着重要作用,在学习线性代数课程中,逆矩阵也是一个重要概念,且因为两矩阵乘积的定义,我们需要注意所讨论的矩阵是方阵形式,否则就会带来运算上的错误。
而对于高阶的复杂矩阵,还可以利用分块矩阵,将大矩阵的运算化成若干小矩阵,间接使高阶矩阵转化成多个低阶矩阵来运算,以及矩阵的初等变换规律对矩阵进行转换:如通过公式(AE)
(−1)可以对前面逆矩阵的运算起到简化作用,通过公式(AB)初等行变换初等行变换
(−1B)则可以借此求解矩阵方程AX=B。通过一步一步的学习,我慢慢对线性代数矩阵这一章节有了进一步的理解掌握,发现各个章节看似无关的概念,其实最后都可以联系在一起,为求解线性方程组、甚至后面章节的线性变换、线性相关性等都起到极大的铺垫基础作用。
谈了这么多矩阵对于求解线性方程组过程中的体会,更吸引我的是矩阵对于数据处理方面的作用,作为审计专业的学生,未来工作中会遇到很多处理产品成本的核算的问题,而通过矩阵这一工具,可以通过特殊的“数型结合”恰当的显示出各种数据间的内在联系,例如:可12以用矩阵(12)来表示一个公司的单位产品成本构成(两列分别代表产品1和产品2,121三行分别代表材料成本、劳动力成本、其他辅助成本),当与产品产量矩阵()
211+22相乘时,则可以得出两种材料的总成本矩阵(11+22)将产品总成本的构成以更清晰
11+22明了的方式呈现出来,可以为财务数据的处理带来很大的助益。
第四篇:线性代数心得体会
浅谈线性代数的心得体会
系别:XXX系 班级:XXX班 姓名:XXX
线性代数心得
姓名:XXX 学号:XXX 通过线性代数的学习,能使学生获得应用科学中常用的矩阵、线性方程组等理论及其有关基本知识,并具有较熟练的矩阵运算能力和用矩阵方法解决一些实际问题的能力。同时,该课程对于培养学生的逻辑推理和抽象思维能力、空间直观和想象能力具有重要的作用。
在现代社会,除了算术以外,线性代数是应用最广泛的数学学科了。但是线性代数教学却对线性代数的应用涉及太少,课本上涉及最多的应用只有算解线性方程组,但这只是线性代数很初级的应用。而线性代数在计算机数据结构、算法、密码学、对策论等等中都有着相当大的作用。
线性代数被不少同学称为天书,足见这门课给同学们造成的困难。我认为,每门课程都是有章可循的,线性代数也不例外,只要有正确的方法,再加上自己的努力,就可以学好它。
线性代数主要研究三种对象:矩阵、方程组和向量。这三种对象的理论是密切相关的,大部分问题在这三种理论中都有等价说法。因此,熟练地从一种理论的叙述转移到另一种中去,是学习线性代数时应养成的一种重要习惯和素质。如果说与实际计算结合最多的是矩阵的观点,那么向量的观点则着眼于从整体性和结构性考虑问题,因而可以更深刻、更透彻地揭示线性代数中各种问题的内在联系和本质属性。由此可见,只要掌握矩阵、方程组和向量的内在联系,遇到问题就能左右逢源,举一反三,化难为易。
线性代数课程特点比较鲜明:概念多、运算法则多内容相互纵横交错正是因为线性代数各知识点之间有着千丝万缕的联系,线性代数题的综合性与灵活性较大,线性代数的概念多比如代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,矩阵的秩,线性组合与线性表示,线性相关与线性无关等。
线性代数中运算法则多比如行列式的计算,求逆矩阵,求矩阵的秩,求向量组的秩与极大线性无关组,线性相关的判定,求基础解系,求非齐次线性方程组的通解等。
应用到的东西才不容易忘,比如高等数学。因为高等数学在很多课程中都有广泛的应用,比如在开设的大学物理和机械设计课中。所以要尽可能地到网上或图书馆了解线性代数在各方面的应用。也可以试着用线性代数的方法和知识证明以前学过的定理或高数中的定理。
线性代数作为数学的一门,体现了数学的思想。数学上的方法是相通的。比如,考虑特殊情况这种思路。线性代数中行列式按行或列展开公式的证明就是从更简单的特殊情况开始证起;解线性方程组时先解对应的齐次方程组,这些都是先考虑特殊情况。高数上解二阶常系数线性微分方程时先解其对应的齐次方程,这用的也是这种思路。
通过思想方法上的联系和内容上的关系,线性代数中的内容以及线性代数与高等数学甚至其它学科可以联系起来。只要建立了这种联系,线代就不会像原来那样琐碎了。
在线性代数的学习中,注重知识点的衔接与转换,努力提高综合分析能力。线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,学习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。
第五篇:线性代数心得体会
线性代数心得体会
本学期选修了田亚老师《线性代数精讲》的课程,而且这个学期我们的课程安排中也是有线性代数的,正好和选修课相辅相成,让我的线性代数学的更好。
本来这门学修课是准备面向考研生做近一步拔高的,但是有很多同学没有学过线性代数,或者说像我们一样是正在学习线性代数的,所以老师还是很有耐心的从基础开始讲,适当的增加一些考研题作为提高,这样就都可以兼顾大家。
线性代数的主要内容是研究代数学中线性关系的经典理论。由于线性关系是变量之间比较简单的一种关系,而线性问题广泛存在于科学技术的各个领域,并且一些非线性问题在一定条件下, 可以转化或近似转化为线性问题,因此线性代数所介绍的思想方法已成为从事科学研究和工程应用工作的必不可少的工具。尤其在计算机高速发展和日益普及的今天,线性代数作为高等学校工科本科各专业的一门重要的基础理论课,其地位和作用更显得重要。
我觉得线代是一门比较费脑子的课,因为这门课中的概念、运算法则很多,而且大多都很抽象,所以一定要注重对基本概念的理解与把握,应整理清楚不要混淆,正确熟练运用基本方法及基本运算。而且,线代作为一门数学,各知识点之间有着千丝万缕的联系,其前后连贯性很强,所以学习线代一定要坚持,循序渐进,注意建立各个知识点之间的联系,形成知识网络。除此之外,代数题的综合性与灵活性也较大,所以我们在平时学习中一定要注重串联、衔接与转换。一定要掌握矩阵、方程组和向量的内在联系,遇到问题才能左右逢源,举一反三,化难为易。
在此我要感谢田亚老师细心、认真的教育和无微不至的照顾。田老师大一时教我们高数,从那时起就是这样认真,负责,上课准备的很充分,讲课也很细致,有问题也会耐心、认真的为我们讲解。本学期选修田老师的课还是很开心的,一是讲课方式比较熟悉,二是田老师的课确实讲的细致有条理。除了讲授课本的知识以外,田老师还会讲一些有关考研,人生规划之类的事情,我觉得这对激励我们努力学习有很大的帮助。
线代本身作为数学,其实是比较枯燥乏味的,所以如果在选修课中能加入一些比较有趣味性的东西,那讲课效果应该更好。
微风细雨,润物无声。再次感谢田老师本学期的教诲。老师辛苦了!