首页 > 精品范文库 > 1号文库
中国矿业大学钢筋混凝土结构设计原理总结
编辑:平静如水 识别码:10-1062807 1号文库 发布时间: 2024-07-08 22:09:48 来源:网络

第一篇:中国矿业大学钢筋混凝土结构设计原理总结

1、钢筋与混凝土共同工作的基础条件是什么?答:钢筋与混凝土之间产生良好的粘结力,使两者结合为整体;钢筋与混凝土两者之间线膨胀系数几乎相同,两者之间不会发生相对的温度变形使粘结力遭到破坏;设置一定厚度混凝土保护层;钢筋在混凝土中有可靠的锚固。

2、混凝土结构有哪些优缺点?答:优点:可模性好;性价比合理;耐火性能好;耐久性能好;适应灾害环境能力强,整体浇筑的钢筋混凝土结构整体性好,对抵抗地震、风载和爆炸冲击作用有良好性能;可以就地取材。缺点:自重大;抗裂性差;现场浇筑施工工序多,受施工环境和气候条件限制等。

3、简述混凝土立方体抗压强度。答:边长为150mm的标准立方体试件在标准条件下养护28天后,以标准试验方法(中心加载,加载速度为0.3~1.0N/mm/s),试件上、下表面不涂润滑剂,连续加载直至试件破坏,测得混凝土抗压强度为混凝土标准立方体的抗压强度。

4、什么叫混凝土徐变?混凝土徐变对结引起超筋;(2)同一截面内受变号弯矩作用;(3)由于某种原因(延性、构造),受压区已配置A';(4)为了提高构件抗震性能或减少结构在长期荷载下的变形。

9、双筋矩形截面受弯构件正截面承载力计算为什么要规定x2as?当x<s2as应如何计算?答:为了使受压钢筋能达到抗压强度设计值,应满足x2as,其含义为受压钢筋位置不低于受压应力矩形图形的重心。当不满足条件时,则表明受压钢筋的位置离中和轴太近,受压钢筋的应变太小,以致其应力达不到抗压强度设计值。此时对受压钢筋取矩时,公式中的右边第二项相对很小,可忽略不计,近似取x2as,即近似认为受压混凝土合力点与受压钢筋合力点重合,从而使受压区混凝土合力对受压钢筋合力点所产生的力矩等于零。

10、第二类T形截面受弯构件正截面承载力计算的基本公式及适用条件是什么?为什么要规定适用条件?答:第二类型T形截面:(中和轴在腹板内)适用条件:规定适用条件是为了避免超筋破坏,而少筋破坏一般不会发生。

11、计算T形截面的最小配筋轴心受压构件设计时,纵向受力钢筋和箍筋的作用分别

是什么?答:纵筋的作用:①与混凝土共同承受压力,提高构件与截面受压承载力;②提高构件的变形能力,改善受压破坏的脆性;③承受可能产生的偏心弯矩、混凝土收缩及温度变化引起的拉应力;④减少混凝土的徐变变形。横向箍筋的作用:①防止纵向钢筋受力后压屈和固定纵向钢筋位置;②改善构件破坏的脆性;③当采用密排箍筋时还能约束核芯内混凝土,提高其极限变形值。20、简述轴心受压构件徐变引起应力重分布?(轴心受压柱在恒定荷载的作用下会产生什么现象?对截面中纵向钢筋和混凝土的应力将产生什么影响?)答:当柱子在荷载长期持续作用下,使混凝土发生徐变而引起应力重分布。此时,如果构件在持续荷载过程中突然卸载,则混凝土只能恢复其全部压缩变形中的弹性变形部分,其徐变变形大部分不能恢复,而钢筋将能恢复其全部压缩变形,这就引起二者之间变形的差异。当构件中纵向钢于远端钢筋的受拉屈服,然后近端混凝土受压破坏;小偏心受压破坏:构件破坏时,混凝土受压破坏,但远端的钢筋并未屈服。

27、偏心受压短柱和长柱有何本质的区别?偏心距增大系数的物理意义是什么?答:(1)偏心受压短柱和长柱有何本质的区别在于,长柱偏心受压后产生不可忽略的纵向弯曲,引起二阶弯矩。(2)偏心距增大系数的物理意义是,考虑长柱偏心受压后产生的二阶弯矩对受压承载力的影响。3.附加偏心距ea的物理意义是什么?如何取值?答:附加偏心距ea的物理意义在于,考虑由于荷载偏差、施工误差等因素的影响,e0会增大或减小,另外,混凝土材料本身的不均匀性,也难保证几何中心和物理中心的重合。其值取20mm和偏心方向截面尺寸的1/30两者中的较大者。

28、偏心受拉构件划分大、小偏心的条件是什么?大、小偏心破坏的受力特点和破坏特征各有何不同?答:(1)当作用在纵向钢筋As合力点和As’合力点范围以外时,为大偏心受拉;当作用在纵向钢筋As合力点和As’合力点范围之间时,为小偏心受构有什么影响?答:在不变的应力长期持续作用下,混凝土的变形随时间而缓慢增长的现象称为混凝土的徐变。徐变有利影响,有利于防止结构物裂缝形成;有利于结构或构件的内力重分布,减少应力集中现象及减少温度应力等。不利影响,由于混凝土的徐变使构件变形增大;在预应力混凝土构件中,徐变会导致预应力损失;使受弯构件挠度增加,使偏压构件的附加偏心距增大而导致构件承载力的降低。

5、钢筋混凝土受弯构件正截面有哪几种破坏形式?其破坏特征有何不同?答:钢筋混凝土受弯构件正截面有适筋破坏、超筋破坏、少筋破坏。梁配筋适中会发生适筋破坏。受拉钢筋首先屈服钢,筋应力保持不变而产生显著的塑性伸长,受压区边缘混凝土的应变达到极限压应变,混凝土压碎,构件破坏。梁破坏前,挠度较大,产生较大的塑性变形,有明显的破坏预兆,属于塑性破坏。梁配筋过多会发生超筋破坏。破坏时压区混凝土被压坏,而拉区钢筋应力尚未达到屈服强度。破坏前梁的挠度及截面曲率曲线没有明显的转折点,拉区的裂缝宽度较小,破坏是突然的,没有明显预兆,属于脆性破坏,称为超筋破坏。梁配筋过少会发生少筋破坏。拉区混凝土一旦开裂,受拉钢筋即达到屈服,并迅速经历整个流幅而进入强化阶段,梁即断裂,破坏很突然,无明显预兆,故属于脆性破坏。

6、什么叫最小配筋率?它是如何确定的?在计算中作用是什么?答:配筋率是钢筋混凝土构件中纵向受力钢筋的面积与构件的有效面积之比(轴心受压构件为全截面的面积)。最小配筋率是指,当梁的配筋率ρ很小,梁拉区开裂后,钢筋应力趋近于屈服强度,这时的配筋率称为最小配筋率ρ。是根据M=Mcy时确定最小配筋率。控制最小配筋率是防止构件发生少筋破坏,少筋破坏是脆性破坏,设计时应当避免。

7、单筋矩形受弯构件正截面承载力计算的基本假定是什么?答:(1)平截面假定;(2)混凝土应力—应变关系曲线的规定;(3)钢筋应力—应变关系的规定;(4)不考虑混凝土抗拉强度,钢筋拉伸应变值不超过0.01。4.确定等效矩形应力图的原则是什么?(1)受压区混凝土压应力合力C值的大小不变,即两个应力图形的面积应相等;(2)合力C作用点位置不变,即两个应力图形的形心位置应相同。等效矩形应力图的采用使简化计算成为可能。

8、什么是双筋截面?在什么情况下才采用双筋截面?答:在单筋截面受压区配置受力钢筋后便构成双筋截面。在受压区配置钢筋,可协助混凝土承受压力,提高截面的受弯承载力;由于受压钢筋的存在,增加了截面的延性,有利于改善构件的抗震性能;此外,受压钢筋能减少受压区混凝土在荷载长期作用下产生的徐变,对减少构件在荷载长期作用下的挠度也是有利的。双筋截面一般不经济,但下列情况可以采用:(1)弯矩较大,且截面高度受到限制,而采用单筋截面将

率时,为什么是用梁肋宽度b而不用受压翼缘宽度bf?答:最小配筋率从理论上是由=确定的,主要取决于受拉区的形状,所以计算T形截面的最小配筋率时,用梁肋宽度b而不用受压翼缘宽度bf。

12、混凝土保护层的作用是什么?答:保护层是为了保证钢筋和混凝土之间的黏结、防止钢筋过早锈蚀。

13、什么是延性的概念?受弯构件破坏形态和延性的关系如何?影响受弯构件截面延性的因素有那些?如何提高受弯构件截面延性?答:延性是指组成结构的材料、组成结构的构件以及结构本身能维持承载能力而又具有较大塑性变形的能力。因此延性又包括材料的延性、构件的延性以及结构的延性。适筋破坏是延性破坏,超筋破坏、少筋破坏是脆性破坏。在单调荷载下的受弯构件,延性主要取决于两个综合因素,即极限压应变εcu以及受压区高度x。

14、斜截面破坏形态有几类?分别采用什么方法加以控制?

答:(1)斜截面破坏形态有三类:斜压破坏,剪压破坏,斜拉破坏(2)斜压破坏通过限制最小截面尺寸来控制;剪压破坏通过抗剪承载力计算来控制;斜拉破坏通过限制最小配箍率来控制。

13、影响斜截面受剪承载力的主要因素有哪些?答:(1)剪跨比的影响,随着剪跨比的增加,抗剪承载力逐渐降低;(2)混凝土的抗压强度的影响,当剪跨比一定时,随着混凝土强度的提高,抗剪承载力增加;(3)纵筋配筋率的影响,随着纵筋配筋率的增加,抗剪承载力略有增加;(4)箍筋的配箍率及箍筋强度的影响,随着箍筋的配箍率及箍筋强度的增加,抗剪承载力增加;(5)斜裂缝的骨料咬合力和钢筋的销栓作用;(6)加载方式的影响;(7)截面尺寸和形状的影响。

15、斜截面抗剪承载力为什么要规定上、下限?具体包含哪些条件?答:斜截面抗剪承载力基本公式的建立是以剪压破坏为依据的,所以规定上、下限来避免斜压破坏和斜拉破坏。

16、钢筋在支座的锚固有何要求?答:钢筋混凝土简支梁和连续梁简支端的下部纵向受力钢筋,其伸入梁支座范围内的锚固长度las应符合下列规定:当剪力较小(V≤0.7ftbh0)时,las≥5d;当剪力较大(V≥0.7ftbh0)时,las≤12d(带肋钢筋),las≥15d(光圆钢筋),为纵向受力钢筋的直径。如纵向受力钢筋伸入梁支座范围内的锚固长度不符合上述要求时,应采取在钢筋上加焊锚固钢板或将钢筋端部焊接在梁端预埋件上等有效锚固措施。

17、什么是鸭筋和浮筋?浮筋为什么不能作为受剪钢筋?答:单独设置的弯起钢筋,两端有一定的锚固长度的叫鸭筋,一端有锚固,另一端没有的叫浮筋。由于受剪钢筋是受拉的,所以不能设置浮筋。

18、简述无腹筋梁和有腹筋梁的抗剪性能答:无腹筋梁的抗剪性能主要有混凝土剪压区承担的剪力、纵向钢筋的销栓力、骨料咬合力以及腹筋抵抗的剪力来组成。而有腹筋梁的抗剪性能主要与腹筋的配置量的多少有关系。

19、筋的配筋率愈高,混凝土的徐变较大时,二者变形的差异也愈大。此时由于钢筋的弹性恢复,有可能使混凝土内的应力达到抗拉强度而立即断裂,产生脆性破坏。

21、对受压构件中纵向钢筋的直径和根数有何构造要求?对箍筋的直径和间距又有何构造要求?答:纵向受力钢筋直径通常在12mm~32mm范围内选用。矩形截面的钢筋根数不应小于4根,圆形截面的钢筋根数不宜少于8根,不应小于6根。纵向受力钢筋的净距不应小于50mm,最大净距不宜大于300mm。

22、进行螺旋筋柱正截面受压承载力计算时,有哪些限制条件?为什么要作出这些限制条件?答:凡属下列条件的,不能按螺旋筋柱正截面受压承载力计算:①当I0/b>12时,此时因长细比较大,有可能因纵向弯曲引起螺旋箍筋不起作用;②如果因混凝土保护层退出工作引起构件承载力降低的幅度大于因核芯混凝土强度提高而使构件承载力增加的幅度,③当间接钢筋换算截面面积Ass0小于纵筋全部截面面积的25%时,可以认为间接钢筋配置得过少,套箍作用的效果不明显。

23、附加偏心距ea的物理意义是什么?如何取值?答:附加偏心距ea的物理意义在于,考虑由于荷载偏差、施工误差等因素的影响,e0会增大或减小,另外,混凝土材料本身的不均匀性,也难保证几何中心和物理中心的重合。其值取20mm和偏心方向截面尺寸的1/30两者中的较大者。

24、受压构件设计时,《规范》规定最小配筋率和最大配筋率的意义是什么?答:《规范》规定受压构件最小配筋率的目的是改善其脆性特征,避免混凝土突然压溃,能够承受收缩和温度引起的拉应力,并使受压构件具有必要的刚度和抗偶然偏心作用的能力。考虑到材料对混凝土破坏行为的影响,《规范》规定受压构件最大配筋率的目的为了防止混凝土徐变引起应力重分布产生拉应力和防止施工时钢筋过于拥挤。

25、比较普通箍筋柱与螺旋筋柱中箍筋的作用,并从轴向力—应变曲线说明螺旋筋柱受压承载力和延性均比普通箍筋柱高。答:试验表明,螺旋箍筋柱与普通箍筋柱的受力变形没有多大区别。但随着荷载的不断增加,纵向钢筋应力达到屈服强度时,螺旋箍筋外的混凝土保护层开始剥落,柱的受力混凝土面积有所减少,因而承载力有所下降。但由于螺旋箍筋间距δ较小,足以防止螺旋箍筋之间纵筋的压屈,因而纵筋仍能继续承担荷载。使螺旋箍筋所受的环拉力增加,被拉紧的螺旋箍筋又紧紧地箍住核芯混凝土,使核芯混凝土处于三向受压状态,限制了混凝土的横向膨胀,因而提高了柱子的抗压强度和变形能力。螺旋箍筋柱在荷载保持不变的情况下有良好的变形能力。

26、判别大、小偏心

压破坏的条件是什么?大、小偏心受压的破坏特征分别

是什么?答:(1)ζ≤ζb,大偏心受压破坏;ξ≥ξb,小偏心受压破坏;(2)破坏特征:大偏心受压破坏:破坏始自

拉;(2)大偏心受拉有混凝土受压区,钢筋先达到屈服强度,然后混凝土受压破坏;小偏心受拉破坏时,混凝土完全退出工作,由纵筋来承担所有的外力。

29、大偏心受拉构件为非对称配筋,如果计算中出现x2a'或出现负值,怎么处理?答:取x=2as',对混凝土受压区合力点(即受压钢筋合力点)取矩,As'=Ne’/(fy*(h0-as’))

25、大偏心受拉构件的正截面承载力计算中,xb为什么取与受弯构件相同?答:大偏心受拉构件的正截面破坏特征和受弯构件相同,钢筋先达到屈服强度,然后混凝土受压破坏;又都符合平均应变的平截面假定,所以xb取与受弯构件相同。30、为什么小偏心受拉设计计算公式中,只采用弯矩受力状态,没有采用力受力状态,而在大偏心受拉设计计算公式中,既采用了力受力状态又采用弯矩受力状态建立?答:因为,大偏心受拉有混凝土受压区,钢筋先达到屈服强度,然后混凝土受压破坏;小偏心受拉破坏时,混凝土完全退出工作,由纵筋来承担所有的外力。

第二篇:结构设计原理 总结

结构:一般把构造物的承重骨架组成部分统称为结构

常用的结构一般可分为:混凝土结构 钢结构 圬工结构 木结构

钢筋混凝土结构:是由配置受力的普通钢筋或钢筋骨架的混凝土制成的结构 混凝土:是用水泥,砂子,石子三种材料经水拌合凝固硬化后制成的人工材料 钢筋混凝土的产生:将钢筋和混凝土结合在一起共同工作,混凝土承受压力,钢筋承受拉力,将可以充分发挥各自的优势。钢筋分类:按加工方式不同分为 热轧钢筋、冷拉钢筋、热处理钢筋、冷拔钢丝,冷加工方法有 冷轧、冷拉、冷拔,预应力钢筋分为 高强钢筋、钢绞线、高高强钢丝及钢丝束 徐变:在荷载的长期作用下,混凝土的变形将随时间而增加,亦即在应力不变的情况下,混凝土的应变随时间继续增长,这种现象被称为徐变。

徐舒:钢筋在一定拉应力值下,将其长度固定不变,则钢筋中的应力将随时间延长而降低 混凝土立方体抗压强度:以变长是150mm立方体标准试件中在20摄氏度正负2度,强度和温度95%以上潮湿空气中养护28d,依照标准制作方法和实验方法测得的抗压强度值。混凝土轴心抗压强度:按照立方体试件相同条件下制作和试验方法所得的棱柱体试件的抗压强度值 混凝土抗拉强度:用两端预埋钢筋的混凝土棱柱体做试件,试验时用试验机夹具夹紧两外伸的钢筋施加拉力,破坏在没有钢筋中部截面被拉断,其平均应力。混凝土劈裂抗拉强度:由立方体或圆柱体的劈裂试验测定的抗拉强度

设计:在预定的作用及材料性能条件下,确定构建按功能要求所需要的截面尺寸、配筋和构造要求目标可靠指标:用作公路桥梁结构设计依据的可靠指标

可靠性:结构在规定的时间(设计基准期)内,在规定的条件(结构设计时所确定的正常设计、正常施工和正常使用条件)下,完成预定功能的能力,安全性、适用性、耐久性称为结构的可靠性可靠度:结构在规定的时间内,在规定的条件下,完成预定功能的概率。设计基准期:进行结构可靠性分析时,考虑持久设计状况下各项变量与时间关系所采用的基准时间参数极限状态:当整个结构或结构的一部分超过某一特定状态而不能满足设计规定的某一功能要求时,则此特定状态称为该结构的极限状态

结构抗力:结构构件承受内力和变形的能力。它是结构材料性能扣几何参数等的函数 作用:施加在结构上的集中力或分布力,或引起结构外加变形或约束变形的原因,它分为直接作用和间接作用作用标准值:结构或结构构件设计时,采用的各种作用的基本代表值 可变作用准永久值:在设计基准期间,可变作用超越的总时间约为设计基准期一半的作用值 可变作用频遇值:在设计基准期间,可变作用超越的总时间为规定的较小比率或超越次数为规定次数的作用值梁内钢筋组成:纵向受拉钢筋(主钢筋)、弯起钢筋或斜钢筋、箍筋、架立钢筋和水平纵向钢筋绑扎钢筋骨架:将纵向钢筋与横向钢筋通过绑扎而成的空间钢筋骨架一般用于整体现浇

焊接钢筋骨架:先将纵向受拉钢筋(主钢筋)弯起钢筋或斜筋和架立钢筋焊接成平面骨架,然后用箍筋将数片焊接的平面骨架组成空间骨架。

塑性破坏(延性破坏):结构或构件在破坏前有明显变形或其他征兆 脆性破坏:结构或构件在破坏前无明显变形或其他征兆

配筋率:所有配置的钢筋截面面积与规定的混凝土截面面积的比值

腹筋:把箍筋和弯起(斜)钢筋统称为梁的腹筋

剪跨比:剪跨比是一个无量纲常数,用来表示,此处M和V分别为剪弯区段中某个竖直截面的弯矩和剪力,h0为截面有效高度。广义剪跨比:m=M/Vh0 狭义剪跨比:m=a/h0 配箍率:=Asv/bsv,Asv表示斜截面内配置在延梁长方向上一个箍筋间距sv范围内的箍筋各肢总截面积b表示截面宽度sv表示延梁长方向的箍筋的间距 剪压破坏:随着荷载的增大梁的剪弯区段内陆续出现几条斜裂缝,其中一条发展成为临界斜裂缝,它出现后梁承受的荷载还能继续增加,而斜裂缝伸展至荷载垫板下直到斜裂缝顶端的混凝土在正应力剪应力及荷载引起的竖向局部正应力的共同作用下被压酥而破坏

斜截面投影长度:自纵向构件与斜裂缝低端而橡胶至斜裂缝顶端距离水平投影长度 充分利用点:在结构中钢筋的长度被充分利用的点

弯矩包络图:沿梁长度各截面上弯矩组合设计值Md的分布图,其纵坐标表示该截面上作用的最大设计弯矩

抵抗弯矩图:以各截面实际的纵向受拉钢筋所能承受的弯矩为纵坐标,以相应的截面位置为横坐标,所作出的弯矩图形。即表示各正截面所具有的抗弯承载能力。

钢筋混凝土构件抗扭性能的两个重要衡量指标:1构件的开裂扭矩2构件的破坏扭矩 轴心受压构件:当构件受到位于截面形心的轴向压力作用时的构件

纵向稳定系数 :考虑构件长细比增大的附加效应使构件承载力降低的计算系数。

长细比:杆件的计算长度与杆件截面的回转半径之比

偏心受压构件:当轴向压力N的作用线偏离受压构件的轴线时。

压弯构件:截面上同时承受轴心压力和弯矩的构件。

界限破坏:受拉钢筋达到屈服应变时,受压区混凝土也刚好达到极限压应变而压碎。

对称配筋:截面的两侧所用钢筋的等级和数量均相同的配筋。

受拉构件:当纵向拉力作用线与构件截面形心轴线重合时成为受拉构件

换算截面:将钢筋和混土两种材料组成的实际截面换算成为一种拉压性能相同的假想材料组成的匀质截面裂缝宽度的影响因素:1混凝土强度等级2钢筋保护层厚度3受拉钢筋应力4钢筋直径5受拉钢筋配筋率6钢筋外形7直接作用性质8构件受力性质

预拱度:施工时预设的反向挠度挠度:结构构件的轴线或中面由于弯曲引起垂直于轴线或中面方向的线位移抗弯刚度:构件截面抵抗弯曲变形的能力

混凝土结构耐久性:混凝土结构在自然环境、使用环境及材料内部因素的作用下,在设计要求的目标使用期内,不需要花费大量资金加固处理而保持安全、使用功能和外观要求的能力。影响混凝土结构耐久性的主要因素:1混凝土冻融破坏2混凝土的碱骨料反应3侵蚀性介质的腐蚀4机械磨损5混凝土的碳化6钢筋锈蚀

预应力混凝土结构:事先人为地在混凝土或钢筋混凝土中引入内部应力,且其数值和分布恰好能将使用荷载产生的内力抵消到一个合适程度的混凝土。

预应力度:由预加应力大小确定的消压弯矩M0与外荷载产生的弯矩Ms的比值。

预应力损失:混凝土的收缩和徐变,使预应力混凝土构件缩短,因而将引起预应力钢筋中的预拉应力下降,成为预应力损失消压弯矩:也就是构件抗裂边缘预压应力抵消到0时的弯矩 先张法:先张法是先张拉钢筋,后浇筑构件混凝土的方法。先张法所用的预应力钢筋,一般可用高强钢丝、直径较小的钢铰线和小直径的冷拉钢筋

后张法:先浇筑混凝土后张拉钢筋的方法。张拉钢筋的同时,构件混凝土受到预压 A类部分预应力混凝土:允许出现拉应力且加以限制不允许开裂,拉而有限

B类部分预应力混凝土:允许出现裂缝,裂缝宽度不超过规定值,裂而有限 部分预应力混凝土:介于全预应力混凝土与普通钢筋混凝土之间的结构,根据要求施加适量的预应力,配置普通钢筋以保证承载力要求

无粘结预应力混凝土梁:配置主筋为无粘结预应力钢筋的后张法预应力混凝土梁

无粘结预应力钢筋:由单根或多跟刚强钢丝、钢绞线或钢筋,沿其全长涂有专用仿佛油脂涂料层和有外包层,使之与周围混凝土不建立粘结力,张拉时可沿纵向发生相对滑动

部分预应力混凝土受弯构件的设计内容:以确定所需的预应力钢筋、非预应力钢筋的面积及其布置为主要计算目标的截面设计,对初步设计的梁进行承载能力极限状态计算(截面复核)和正常使用极限状态计算(截面验算)

钢筋和混凝土两种有效结合原因:1混凝土和钢筋之间有着良好的粘结力,使两者能可靠地结合成一个整体,在和在作用下能够很好的共同变形,完成其结构功能2他们的温度线膨胀系数比较接近,当温度变化时,不致产生较大的温度应力而破坏两者之间的粘结3包围在钢筋外面的混凝土起着保护钢筋避免锈蚀的作用,保证了钢筋与混凝土的共同作用钢筋混凝土的优缺点:优点1在钢筋混凝土结构中,混凝土强度是随时间而不断增长的,同时钢筋被混凝土所包裹而不致锈蚀,所以钢筋混凝土结构的耐久性较好,其刚度较大,在使用荷载用下的变形较小2可以整体现浇也可以预制装配,并且可以根据需要浇制成各种构件形状和截面尺寸3钢筋混凝土结构所用材料中砂石所占的比例较大,砂石易就地取材,可以降低建筑成本。缺点:1自重大2抗裂性能差,带裂缝工作3施工受气候条件影响,建造期长4费较多的模具和木料5加固和改建较困难,隔热和隔声性能较差三个状况:1持久状况:桥涵建成后承受自重、车辆荷载等作用持续时间很长的状况。该状况是指桥梁的使用阶段。进行承载能力极限状态和正常使用极限状态的设计2短暂状况:桥涵施工过程中承受临时性(或荷载)的状况,该状况对应的是桥梁的施工阶段,一般只进行承载能力极限状态设计3偶然状况:在桥涵使用过程中偶然出现的状况。(可能遇到地震等作用的状况。只进行承载能力极限状态设计作用分类:1永久作用:在结构使用期内,其量值不随时间变化,或其变化与平均值相比可忽略不计的作用(结构重力 土的重力 土侧压力 水的浮力 基础变位作用)2可变作用:在结构使用期内,其量值随时间变化,且其变化值与平均值相比较不可忽略的作用(汽车荷载 汽车冲击力 汽车离心力 汽车引起的土侧压力 人群荷载 汽车制动力 风力 流水压力 冰压力 温度作用 支座摩阻力)3偶然作用:在结构使用期间出现的概率小,一旦出现其值很大且持续时间很短的作用(地震作用 船舶或漂流物的撞击作用 汽车撞击作用)受弯正截面破坏形态:1适筋梁破坏(塑性破坏):a破坏特征:受拉区钢筋先达到屈服强度,后压区凝土被压碎而破坏b破坏性质:梁破坏前产生较大的挠度和塑性变形,有明显破坏预兆,属塑性破坏。c承载能力:取决于配筋率、钢筋的强度等级和混凝土的强度等级。2超筋梁破坏(脆性破坏)a破坏特征:破坏时压区混凝土被压碎,而拉区钢筋应力未达到屈服强度b破坏性质:裂缝比较密宽度较细,破坏前没有明显征兆c承载能力:取决于混凝土的抗压强度3少筋梁破坏(脆性):a破坏特征:拉区混凝土一开裂.受拉钢筋到屈服强度梁很快破坏b破坏性质:梁破坏前出现一条集中裂缝,宽度较大但很突然,属脆性破坏。c承载能力:取决于混凝土的抗拉强度单筋矩形截面四个基本假定:1平截面假定2受压区混凝土应力图形采用等效矩形,其压力强度取fcd 3不考虑截面受拉混凝土的抗拉强度4.受拉区钢筋应力取fsd斜截面破坏形态:1斜拉破坏(脆性破坏):a产生条件:一般发生在剪跨比较大(m >3)的无腹筋梁b破坏特征:当斜裂缝一出现,很快形成一条主要斜裂缝(临界斜裂缝),并迅速延伸至荷载作用点,使梁斜向被拉断成两部分。破坏面较整齐,无压碎痕迹,同时,沿纵向钢筋往往伴随产生水平撕裂裂缝。这种破坏即为斜拉破坏。c抗剪能力:斜拉破坏主要是由于主拉应力超过混凝土的抗拉强度,因此梁的受剪承载力很低,破坏荷载等于或略高于主要斜缝出现的荷载。2 剪压破坏a产生条件:一般发生在剪跨比适中即1≤m≤3的无腹筋梁b破坏特征:梁在剪弯区段内出现斜裂缝,随着荷载的增大,陆续出现几条斜裂缝,其中一条发展成为临界斜裂缝。临界斜裂缝出现后,梁还能继续增加荷载,斜裂缝延伸至荷载垫板下,直到斜裂缝顶端的混凝土在正应力和剪应力共同作用下被压碎而破坏,这种破坏称为剪压破坏。c抗剪能力:主要与混凝土强度有关,其受剪承载力比斜拉破坏高。3斜压破坏:a当剪跨比较小(m<1)b破坏特征:在加载点和支座之间出现一条斜裂缝,然后出现若干条大体相平行的斜裂缝.梁腹被分割成若干个倾斜的小柱体。随着荷载增大,梁腹发生类似混凝土棱柱体被压坏的情况,即破坏时斜裂缝多而密,但没有主裂缝,故称为斜压破坏。c抗剪能力:斜截面受剪承载力主要取决于构件截面尺寸和混凝土抗压强度,受剪承载力比剪压破坏高。

矩形截面纯扭构件的破坏特征:1少筋破坏—一开裂,钢筋马上屈服,结构立即破坏2适筋破坏—纵筋、箍筋先屈服,混凝土受压面压碎3超筋破坏—纵筋、箍筋未屈服,混凝土受压面先压碎4部分超筋破坏—纵筋一部分钢筋先屈服,混凝土受压面被压碎变角度空间桁架模型基本假定:1混凝土只承受压力具有螺旋形裂缝2纵筋和箍筋只承受拉力3忽略核心混凝土和钢筋销栓作用斜弯曲破坏理论基本假定:1通过扭曲裂面的纵向钢筋、箍筋在构件破坏时均已达到其屈服强度2受压区高度近似地取为两倍的保护层厚度,假定受压区的合力近似地作用于受压区的形心3混凝土的抗扭能力忽略不计,扭矩全部由抗扭纵筋和箍筋承担4抗扭纵筋沿构件核心周边对称、均匀布置,抗扭箍筋沿构件轴线方向等距离布置,且均锚固可靠。弯剪扭构件的破坏类型 1弯型破坏 :弯矩作用比扭矩显著,构件破坏时体现为先是与螺旋形裂缝相交的纵筋和箍筋受拉达到屈服强度,最终截面上边缘的混凝土受压破坏 2扭型破坏:扭矩作用显著,顶部纵筋先于构件底部纵筋达到受拉屈服强度,破坏面始于构件顶面发展到两个侧面 3剪扭型破坏:剪力和扭矩都较大 ,破坏时与螺旋形裂缝相交的钢筋受拉并达到屈服强度,受压区靠近另一侧面 受拉破坏—大偏心受压破坏(塑性破坏)产生条件:相对偏心距较大,且受拉钢筋配置得不太多时。破坏特征:部分受拉、部分受压,受拉钢筋应力先达到屈服强度,随后混凝土被压碎,受压钢筋达屈服强度。构件的承载力取决于受拉钢筋的强度和数量受压破坏—小偏心受压破坏(脆性破坏)产生条件:1偏心距很小2偏心距较小,或偏心距较大而受拉钢筋较多3偏心距很小,但离纵向压力较远一侧钢筋数量少,而靠近纵向力N一侧钢筋较多时。破坏特征:一般是靠近纵向力一侧的混凝土首先达到极限压应变而压碎,该侧的钢筋达到屈服强度,远离纵向力一侧的钢筋不论受拉还是受压,一般达不到屈服强度。构件的承载力取决于受压区混凝土强度和受压钢筋强度受弯构件产生裂缝的原因:1由作用效应引起的裂缝,(弯矩剪力扭矩以及拉力等)主要通过设计计算进行验算和构造措施加以控制2由外加变形或约束变形引起的裂缝,如混凝土收缩、温度变化、基础不均匀沉降等外加变形或约束变形引起开裂,主要通过采用构造措施和施工工艺加以控制3 筋锈蚀裂缝:由于保护层混凝土碳化,冬季施工时掺氯盐过多导致钢筋锈蚀所至。计算裂缝宽度的三种理论:1粘结滑移理论:裂缝控制主要取决于钢筋和混凝土之间的粘结性能2无滑移理论:表面裂缝宽度是由钢筋至构件表面的应变梯度控制的,即裂缝宽度随着离钢筋距离的增大而增大,钢筋的混凝土保护层厚度是影响裂缝宽度的主要因素3综合理论:考虑了混凝土保护层厚度对裂缝宽度的影响,也考虑了钢筋和砼之间可能出现的滑移。受弯构件变形(挠度)演算的原因:挠度过大,损坏使用功能:如简支梁跨中挠度过大,将使梁端部转角大,引起行车对该处产生冲击,破坏伸缩缝和桥面;连续梁的挠度过大,将使桥面不平顺,行车时引起颠簸和冲击等问题。预应力混凝土结构优缺点:优点1提高了构件的抗裂度和刚度2节约材料,降低造价3结构质量安全可靠4增强结构耐久性5能促进桥梁新体系的发展 缺点1工艺较复杂,对质量要求高2需要有一定的专门设备3预应力反拱不易控制4设计要求高预应力混凝土结构的三种概念:1预加应力的目的是将混凝变变脆性为弹性材料2施加预应力的目的是使高强度钢筋和混凝土能够共同工作3预加应力的目的是实现荷载平衡钢筋预应力损失的估算:1预应力筋与管道壁间摩擦引起的应力损失2锚具变形、钢筋回缩和接缝压缩引起的应力损失3钢筋与台座间的温差引起的应力损失4混凝土弹性压缩引起的应力损失5钢筋松弛引起的应力损失6混凝土收缩和徐变引起的应力损失预拱度的设置:预应力混凝土受弯构件由预加应力产生的长期反拱值大于按荷载短期效应组合计算的长期挠度时,可不设预拱度;当预加应力的长期反拱小于按荷载短期组合计算的长期挠度时应设预拱度,预拱度值按该项荷载的挠度值与预加应力长期反拱值之差采用,即设置预拱度时,按最大的预拱值沿顺桥向做成平顺的曲线部分预应力钢筋的特点:1充分发挥预应力钢筋的作用,利用普通钢筋的作用,节省预应力钢筋与锚具2改善结构性能,允许在使用期间出现裂缝,扩大了应用范围;3设计人员可以根据结构使用要求来选择预应力度的高低 结构:一般把构造物的承重骨架组成部分统称为结构 常用的结构一般可分为:混凝土结构 钢结构 圬工结构 木结构

钢筋混凝土结构:是由配置受力的普通钢筋或钢筋骨架的混凝土制成的结构 混凝土:是用水泥,砂子,石子三种材料经水拌合凝固硬化后制成的人工材料 钢筋混凝土的产生:将钢筋和混凝土结合在一起共同工作,混凝土承受压力,钢筋承受拉力,将可以充分发挥各自的优势。钢筋分类:按加工方式不同分为 热轧钢筋、冷拉钢筋、热处理钢筋、冷拔钢丝,冷加工方法有 冷轧、冷拉、冷拔,预应力钢筋分为 高强钢筋、钢绞线、高高强钢丝及钢丝束 徐变:在荷载的长期作用下,混凝土的变形将随时间而增加,亦即在应力不变的情况下,混凝土的应变随时间继续增长,这种现象被称为徐变。

徐舒:钢筋在一定拉应力值下,将其长度固定不变,则钢筋中的应力将随时间延长而降低 混凝土立方体抗压强度:以变长是150mm立方体标准试件中在20摄氏度正负2度,强度和温度95%以上潮湿空气中养护28d,依照标准制作方法和实验方法测得的抗压强度值。混凝土轴心抗压强度:按照立方体试件相同条件下制作和试验方法所得的棱柱体试件的抗压强度值 混凝土抗拉强度:用两端预埋钢筋的混凝土棱柱体做试件,试验时用试验机夹具夹紧两外伸的钢筋施加拉力,破坏在没有钢筋中部截面被拉断,其平均应力。

混凝土劈裂抗拉强度:由立方体或圆柱体的劈裂试验测定的抗拉强度

设计:在预定的作用及材料性能条件下,确定构建按功能要求所需要的截面尺寸、配筋和构造要求目标可靠指标:用作公路桥梁结构设计依据的可靠指标

可靠性:结构在规定的时间(设计基准期)内,在规定的条件(结构设计时所确定的正常设计、正常施工和正常使用条件)下,完成预定功能的能力,安全性、适用性、耐久性称为结构的可靠性可靠度:结构在规定的时间内,在规定的条件下,完成预定功能的概率。设计基准期:进行结构可靠性分析时,考虑持久设计状况下各项变量与时间关系所采用的基准时间参数极限状态:当整个结构或结构的一部分超过某一特定状态而不能满足设计规定的某一功能要求时,则此特定状态称为该结构的极限状态

结构抗力:结构构件承受内力和变形的能力。它是结构材料性能扣几何参数等的函数

作用:施加在结构上的集中力或分布力,或引起结构外加变形或约束变形的原因,它分为直接作用和间接作用作用标准值:结构或结构构件设计时,采用的各种作用的基本代表值 可变作用准永久值:在设计基准期间,可变作用超越的总时间约为设计基准期一半的作用值 可变作用频遇值:在设计基准期间,可变作用超越的总时间为规定的较小比率或超越次数为规定次数的作用值梁内钢筋组成:纵向受拉钢筋(主钢筋)、弯起钢筋或斜钢筋、箍筋、架立钢筋和水平纵向钢筋绑扎钢筋骨架:将纵向钢筋与横向钢筋通过绑扎而成的空间钢筋骨架一般用于整体现浇

焊接钢筋骨架:先将纵向受拉钢筋(主钢筋)弯起钢筋或斜筋和架立钢筋焊接成平面骨架,然后用箍筋将数片焊接的平面骨架组成空间骨架。塑性破坏(延性破坏):结构或构件在破坏前有明显变形或其他征兆 脆性破坏:结构或构件在破坏前无明显变形或其他征兆

配筋率:所有配置的钢筋截面面积与规定的混凝土截面面积的比值 腹筋:把箍筋和弯起(斜)钢筋统称为梁的腹筋

剪跨比:剪跨比是一个无量纲常数,用来表示,此处M和V分别为剪弯区段中某个竖直截面的弯矩和剪力,h0为截面有效高度。广义剪跨比:m=M/Vh0 狭义剪跨比:m=a/h0 配箍率:=Asv/bsv,Asv表示斜截面内配置在延梁长方向上一个箍筋间距sv范围内的箍筋各肢总截面积b表示截面宽度sv表示延梁长方向的箍筋的间距

剪压破坏:随着荷载的增大梁的剪弯区段内陆续出现几条斜裂缝,其中一条发展成为临界斜裂缝,它出现后梁承受的荷载还能继续增加,而斜裂缝伸展至荷载垫板下直到斜裂缝顶端的混凝土在正应力剪应力及荷载引起的竖向局部正应力的共同作用下被压酥而破坏 斜截面投影长度:自纵向构件与斜裂缝低端而橡胶至斜裂缝顶端距离水平投影长度 充分利用点:在结构中钢筋的长度被充分利用的点

弯矩包络图:沿梁长度各截面上弯矩组合设计值Md的分布图,其纵坐标表示该截面上作用的最大设计弯矩

抵抗弯矩图:以各截面实际的纵向受拉钢筋所能承受的弯矩为纵坐标,以相应的截面位置为横坐标,所作出的弯矩图形。即表示各正截面所具有的抗弯承载能力。

钢筋混凝土构件抗扭性能的两个重要衡量指标:1构件的开裂扭矩2构件的破坏扭矩 轴心受压构件:当构件受到位于截面形心的轴向压力作用时的构件

纵向稳定系数 :考虑构件长细比增大的附加效应使构件承载力降低的计算系数。

长细比:杆件的计算长度与杆件截面的回转半径之比

偏心受压构件:当轴向压力N的作用线偏离受压构件的轴线时。压弯构件:截面上同时承受轴心压力和弯矩的构件。

界限破坏:受拉钢筋达到屈服应变时,受压区混凝土也刚好达到极限压应变而压碎。

对称配筋:截面的两侧所用钢筋的等级和数量均相同的配筋。

受拉构件:当纵向拉力作用线与构件截面形心轴线重合时成为受拉构件 换算截面:将钢筋和混土两种材料组成的实际截面换算成为一种拉压性能相同的假想材料组成的匀质截面裂缝宽度的影响因素:1混凝土强度等级2钢筋保护层厚度3受拉钢筋应力4钢筋直径5受拉钢筋配筋率6钢筋外形7直接作用性质8构件受力性质 预拱度:施工时预设的反向挠度挠度:结构构件的轴线或中面由于弯曲引起垂直于轴线或中面方向的线位移抗弯刚度:构件截面抵抗弯曲变形的能力

混凝土结构耐久性:混凝土结构在自然环境、使用环境及材料内部因素的作用下,在设计要求的目标使用期内,不需要花费大量资金加固处理而保持安全、使用功能和外观要求的能力。影响混凝土结构耐久性的主要因素:1混凝土冻融破坏2混凝土的碱骨料反应3侵蚀性介质的腐蚀4机械磨损5混凝土的碳化6钢筋锈蚀 预应力混凝土结构:事先人为地在混凝土或钢筋混凝土中引入内部应力,且其数值和分布恰好能将使用荷载产生的内力抵消到一个合适程度的混凝土。

预应力度:由预加应力大小确定的消压弯矩M0与外荷载产生的弯矩Ms的比值。预应力损失:混凝土的收缩和徐变,使预应力混凝土构件缩短,因而将引起预应力钢筋中的预拉应力下降,成为预应力损失消压弯矩:也就是构件抗裂边缘预压应力抵消到0时的弯矩 先张法:先张法是先张拉钢筋,后浇筑构件混凝土的方法。先张法所用的预应力钢筋,一般可用高强钢丝、直径较小的钢铰线和小直径的冷拉钢筋

后张法:先浇筑混凝土后张拉钢筋的方法。张拉钢筋的同时,构件混凝土受到预压 A类部分预应力混凝土:允许出现拉应力且加以限制不允许开裂,拉而有限

B类部分预应力混凝土:允许出现裂缝,裂缝宽度不超过规定值,裂而有限 部分预应力混凝土:介于全预应力混凝土与普通钢筋混凝土之间的结构,根据要求施加适量的预应力,配置普通钢筋以保证承载力要求

无粘结预应力混凝土梁:配置主筋为无粘结预应力钢筋的后张法预应力混凝土梁

无粘结预应力钢筋:由单根或多跟刚强钢丝、钢绞线或钢筋,沿其全长涂有专用仿佛油脂涂料层和有外包层,使之与周围混凝土不建立粘结力,张拉时可沿纵向发生相对滑动 部分预应力混凝土受弯构件的设计内容:以确定所需的预应力钢筋、非预应力钢筋的面积及其布置为主要计算目标的截面设计,对初步设计的梁进行承载能力极限状态计算(截面复核)和正常使用极限状态计算(截面验算)

钢筋和混凝土两种有效结合原因:1混凝土和钢筋之间有着良好的粘结力,使两者能可靠地结合成一个整体,在和在作用下能够很好的共同变形,完成其结构功能2他们的温度线膨胀系数比较接近,当温度变化时,不致产生较大的温度应力而破坏两者之间的粘结3包围在钢筋外面的混凝土起着保护钢筋避免锈蚀的作用,保证了钢筋与混凝土的共同作用钢筋混凝土的优缺点:优点1在钢筋混凝土结构中,混凝土强度是随时间而不断增长的,同时钢筋被混凝土所包裹而不致锈蚀,所以钢筋混凝土结构的耐久性较好,其刚度较大,在使用荷载用下的变形较小2可以整体现浇也可以预制装配,并且可以根据需要浇制成各种构件形状和截面尺寸3钢筋混凝土结构所用材料中砂石所占的比例较大,砂石易就地取材,可以降低建筑成本。缺点:1自重大2抗裂性能差,带裂缝工作3施工受气候条件影响,建造期长4费较多的模具和木料5加固和改建较困难,隔热和隔声性能较差三个状况:1持久状况:桥涵建成后承受自重、车辆荷载等作用持续时间很长的状况。该状况是指桥梁的使用阶段。进行承载能力极限状态和正常使用极限状态的设计2短暂状况:桥涵施工过程中承受临时性(或荷载)的状况,该状况对应的是桥梁的施工阶段,一般只进行承载能力极限状态设计3偶然状况:在桥涵使用过程中偶然出现的状况。(可能遇到地震等作用的状况。只进行承载能力极限状态设计作用分类:1永久作用:在结构使用期内,其量值不随时间变化,或其变化与平均值相比可忽略不计的作用(结构重力 土的重力 土侧压力 水的浮力 基础变位作用)2可变作用:在结构使用期内,其量值随时间变化,且其变化值与平均值相比较不可忽略的作用(汽车荷载 汽车冲击力 汽车离心力 汽车引起的土侧压力 人群荷载 汽车制动力 风力 流水压力 冰压力 温度作用 支座摩阻力)3偶然作用:在结构使用期间出现的概率小,一旦出现其值很大且持续时间很短的作用(地震作用 船舶或漂流物的撞击作用 汽车撞击作用)受弯正截面破坏形态:1适筋梁破坏(塑性破坏):a破坏特征:受拉区钢筋先达到屈服强度,后压区凝土被压碎而破坏b破坏性质:梁破坏前产生较大的挠度和塑性变形,有明显破坏预兆,属塑性破坏。c承载能力:取决于配筋率、钢筋的强度等级和混凝土的强度等级。2超筋梁破坏(脆性破坏)a破坏特征:破坏时压区混凝土被压碎,而拉区钢筋应力未达到屈服强度b破坏性质:裂缝比较密宽度较细,破坏前没有明显征兆c承载能力:取决于混凝土的抗压强度3少筋梁破坏(脆性):a破坏特征:拉区混凝土一开裂.受拉钢筋到屈服强度梁很快破坏b破坏性质:梁破坏前出现一条集中裂缝,宽度较大但很突然,属脆性破坏。c承载能力:取决于混凝土的抗拉强度单筋矩形截面四个基本假定:1平截面假定2受压区混凝土应力图形采用等效矩形,其压力强度取fcd 3不考虑截面受拉混凝土的抗拉强度4.受拉区钢筋应力取fsd斜截面破坏形态:1斜拉破坏(脆性破坏):a产生条件:一般发生在剪跨比较大(m >3)的无腹筋梁b破坏特征:当斜裂缝一出现,很快形成一条主要斜裂缝(临界斜裂缝),并迅速延伸至荷载作用点,使梁斜向被拉断成两部分。破坏面较整齐,无压碎痕迹,同时,沿纵向钢筋往往伴随产生水平撕裂裂缝。这种破坏即为斜拉破坏。c抗剪能力:斜拉破坏主要是由于主拉应力超过混凝土的抗拉强度,因此梁的受剪承载力很低,破坏荷载等于或略高于主要斜缝出现的荷载。2 剪压破坏a产生条件:一般发生在剪跨比适中即1≤m≤3的无腹筋梁b破坏特征:梁在剪弯区段内出现斜裂缝,随着荷载的增大,陆续出现几条斜裂缝,其中一条发展成为临界斜裂缝。临界斜裂缝出现后,梁还能继续增加荷载,斜裂缝延伸至荷载垫板下,直到斜裂缝顶端的混凝土在正应力和剪应力共同作用下被压碎而破坏,这种破坏称为剪压破坏。c抗剪能力:主要与混凝土强度有关,其受剪承载力比斜拉破坏高。3斜压破坏:a当剪跨比较小(m<1)b破坏特征:在加载点和支座之间出现一条斜裂缝,然后出现若干条大体相平行的斜裂缝.梁腹被分割成若干个倾斜的小柱体。随着荷载增大,梁腹发生类似混凝土棱柱体被压坏的情况,即破坏时斜裂缝多而密,但没有主裂缝,故称为斜压破坏。c抗剪能力:斜截面受剪承载力主要取决于构件截面尺寸和混凝土抗压强度,受剪承载力比剪压破坏高。

矩形截面纯扭构件的破坏特征:1少筋破坏—一开裂,钢筋马上屈服,结构立即破坏2适筋破坏—纵筋、箍筋先屈服,混凝土受压面压碎3超筋破坏—纵筋、箍筋未屈服,混凝土受压面先压碎4部分超筋破坏—纵筋一部分钢筋先屈服,混凝土受压面被压碎变角度空间桁架模型基本假定:1混凝土只承受压力具有螺旋形裂缝2纵筋和箍筋只承受拉力3忽略核心混凝土和钢筋销栓作用斜弯曲破坏理论基本假定:1通过扭曲裂面的纵向钢筋、箍筋在构件破坏时均已达到其屈服强度2受压区高度近似地取为两倍的保护层厚度,假定受压区的合力近似地作用于受压区的形心3混凝土的抗扭能力忽略不计,扭矩全部由抗扭纵筋和箍筋承担4抗扭纵筋沿构件核心周边对称、均匀布置,抗扭箍筋沿构件轴线方向等距离布置,且均锚固可靠。弯剪扭构件的破坏类型 1弯型破坏 :弯矩作用比扭矩显著,构件破坏时体现为先是与螺旋形裂缝相交的纵筋和箍筋受拉达到屈服强度,最终截面上边缘的混凝土受压破坏 2扭型破坏:扭矩作用显著,顶部纵筋先于构件底部纵筋达到受拉屈服强度,破坏面始于构件顶面发展到两个侧面 3剪扭型破坏:剪力和扭矩都较大 ,破坏时与螺旋形裂缝相交的钢筋受拉并达到屈服强度,受压区靠近另一侧面 受拉破坏—大偏心受压破坏(塑性破坏)产生条件:相对偏心距较大,且受拉钢筋配置得不太多时。破坏特征:部分受拉、部分受压,受拉钢筋应力先达到屈服强度,随后混凝土被压碎,受压钢筋达屈服强度。构件的承载力取决于受拉钢筋的强度和数量受压破坏—小偏心受压破坏(脆性破坏)产生条件:1偏心距很小2偏心距较小,或偏心距较大而受拉钢筋较多3偏心距很小,但离纵向压力较远一侧钢筋数量少,而靠近纵向力N一侧钢筋较多时。破坏特征:一般是靠近纵向力一侧的混凝土首先达到极限压应变而压碎,该侧的钢筋达到屈服强度,远离纵向力一侧的钢筋不论受拉还是受压,一般达不到屈服强度。构件的承载力取决于受压区混凝土强度和受压钢筋强度受弯构件产生裂缝的原因:1由作用效应引起的裂缝,(弯矩剪力扭矩以及拉力等)主要通过设计计算进行验算和构造措施加以控制2由外加变形或约束变形引起的裂缝,如混凝土收缩、温度变化、基础不均匀沉降等外加变形或约束变形引起开裂,主要通过采用构造措施和施工工艺加以控制3 筋锈蚀裂缝:由于保护层混凝土碳化,冬季施工时掺氯盐过多导致钢筋锈蚀所至。计算裂缝宽度的三种理论:1粘结滑移理论:裂缝控制主要取决于钢筋和混凝土之间的粘结性能2无滑移理论:表面裂缝宽度是由钢筋至构件表面的应变梯度控制的,即裂缝宽度随着离钢筋距离的增大而增大,钢筋的混凝土保护层厚度是影响裂缝宽度的主要因素3综合理论:考虑了混凝土保护层厚度对裂缝宽度的影响,也考虑了钢筋和砼之间可能出现的滑移。受弯构件变形(挠度)演算的原因:挠度过大,损坏使用功能:如简支梁跨中挠度过大,将使梁端部转角大,引起行车对该处产生冲击,破坏伸缩缝和桥面;连续梁的挠度过大,将使桥面不平顺,行车时引起颠簸和冲击等问题。预应力混凝土结构优缺点:优点1提高了构件的抗裂度和刚度2节约材料,降低造价3结构质量安全可靠4增强结构耐久性5能促进桥梁新体系的发展 缺点1工艺较复杂,对质量要求高2需要有一定的专门设备3预应力反拱不易控制4设计要求高预应力混凝土结构的三种概念:1预加应力的目的是将混凝变变脆性为弹性材料2施加预应力的目的是使高强度钢筋和混凝土能够共同工作3预加应力的目的是实现荷载平衡钢筋预应力损失的估算:1预应力筋与管道壁间摩擦引起的应力损失2锚具变形、钢筋回缩和接缝压缩引起的应力损失3钢筋与台座间的温差引起的应力损失4混凝土弹性压缩引起的应力损失5钢筋松弛引起的应力损失6混凝土收缩和徐变引起的应力损失预拱度的设置:预应力混凝土受弯构件由预加应力产生的长期反拱值大于按荷载短期效应组合计算的长期挠度时,可不设预拱度;当预加应力的长期反拱小于按荷载短期组合计算的长期挠度时应设预拱度,预拱度值按该项荷载的挠度值与预加应力长期反拱值之差采用,即设置预拱度时,按最大的预拱值沿顺桥向做成平顺的曲线部分预应力钢筋的特点:1充分发挥预应力钢筋的作用,利用普通钢筋的作用,节省预应力钢筋与锚具2改善结构性能,允许在使用期间出现裂缝,扩大了应用范围;3设计人员可以根据结构使用要求来选择预应力度的高低

第三篇:结构设计原理总结

名词解释: 结构的极限状态:当整个结构或结构的一部分超过某一特定状态而不能满足设计规定的某一功能要求时,则此特定状态称为该功能的极限状态。

2结构的可靠度:结构在规定的时间内;在规定的条件下,完成预定功能的概率。包括结构的安全性,适用性和耐久性。

3混凝土的徐变:在荷载的长期作用下,混凝土的变形将随时间而增加,亦即在应力不变的情况下,混疑土的应变随时间继续增长,这种现象被称为混凝土的徐变。

4混凝土的收缩:混凝土在空气中结硬时体积减小的现象称为混凝士的收缩。

5剪跨比m:是一个无里纲常数,用

M来表示,此处M和V分别为剪压

m=

区段中棠价竖直截面的弯矩和剪力,ho为截面有效高度。

6抵抗弯矩图:抵抗弯矩图又称材料图;就是沿梁长各个正截面按实际配置的总受拉钢筋面积能产生的抵抗弯矩图,即表示个正截面所具有的抗弯承载力。

7弯拒包络图:沿梁长度各截面上弯矩组合设计值的分布图。

9预应力度

《公路桥规》将预应力度定义为由预加应力大小确定的消压弯矩

Mo与外荷载产生的弯矩Mg的比值。

10消压弯拒:由外荷载产生,使构件抗裂边缘预压应力抵消到零时的弯矩。

l1钢筋的锚固长度:受力钢筋通过混凝土与钢筋的粘结将所受的力传递给混疑士所需的长度。

12超筋梁:是指受力钢筋的配筋率大于于最大配筋率的梁。破坏始自混凝土受压区先压;碎,纵向受拉钢筋应力尚小于屈服强度,在钢筋没有达到屈服前,压区混凝土就会压坏,表现为没有明显预兆的混疑士受压脆性破坏的特征。

13纵向弯曲系数:对于钢筋混凝土轴心受压构件,把长柱失稳破坏时的临界压力与短柱压坏时的轴心压力的比值称为纵向弯曲系

数。

14直接作用:是指施加在结构上的集中力和分布力。

15间接作用:是指引起结构外加变形和约束变形的原因

16混凝土局部承压强度提高系数:混凝士局部承压强度与混凝土棱柱体抗压强度之比。17换算截面:是指将物理性能与混凝士明显不同的钢筋按力学等效的原则通过弹性模里比值的折换,将钢筋换算为同-混凝土材料而得到的截面。

18正常裂缝:在正常使用荷载作用下产生的的裂缝,不影响结构的外观和耐久性能。

19混凝士轴心抗压强度以150mmX 150mmX 300mm的棱柱体为标准试件,在20C土2C的温度和相对湿度在95%以,上的潮湿空气中养护28d,依照标准制作方法和试验方

法测得的抗压强度值,用符号

/。表示。20混凝土立方体抗压强度:以每边边长为150mm的立方体为标准试件,在20C土2C的温度和相对湿度在95%以上的潮湿空气中养护28d,依照标准制作方法和试验方法测得的抗压强度值,用符号‘cu表示。21混凝土抗拉强度采用100X 100X 500mm混凝士棱柱体轴心受拉试验,破坏时试件在没有钢筋的中部截面被拉断,其平均拉应力即为混凝土的轴心抗拉强度。22混凝土劈裂抗拉强度:采用150mm立方体作为标准试件进行混凝士劈裂抗拉强度测

定,按照规定的试验方法操作,则混凝土劈裂抗拉强度t5按下式计算: y ==0.637

πλ

A 23张拉控制应力:张拉设备(千斤项油压表)所控制的总张拉力Np.con 除以预应力筋面积Ap得到的钢筋应力值。

24后张法预应力混凝土构件:在混凝土硬结后通过建立预加应力的构件。预应力筋的传递长度:预应力筋回缩里与初始预应力的函数。

25配筋率:筋率是指所配置的钢筋截面面积与规定的混凝士有效截面面积的比值。

26斜拉破坏:m>3时发生。斜裂缝一出现就很快发展到梁项,将梁劈拉成两半,最后由于混凝土拉裂而破坏

27剪压破坏: 1gm<3时发生。斜裂缝出现以后荷载仍可有一定的增长,最后,斜裂缝上端集中荷载附近混疑土压碎而产生的破坏o:28斜压破坏: m<1 时发生。在集中荷载与支座之间的梁腹混凝土犹如一斜向的受压短柱,由于梁腹混凝士压碎而产生的破坏。29适筋梁破坏:当纵向配筋率适中时,纵向钢筋的屈服先于受压区混凝士被压碎,粱是因钢筋受拉屈服而逐斩破坏的,破坏过程较长,有一定的延性,称之为适筋破坏

30混凝土构件的局部受压:混凝士构件表面仅有部分面积承受压力的受力状态。

31束界:按照最小外荷载和最不利荷载绘制的两条ep的限值线E1和E2即为预应力筋的束界。

32预应力损失:钢筋的预应力随着张拉、锚固过程和时间推移而降低的现象。

33相对界限受压区高度:当钢筋混凝士梁界限破坏时,受拉区钢筋达到屈服强度开始屈服时,压区混凝士同时达到极限压应变而破坏,此时受压区混凝土高度1b=2b*h0,2b 即称为

相对界限受压区高度。

34控制截面:在等截面构件中是指计算弯矩(荷载效应)最大的截面;在变截面构件中则是指截面尺寸相对较小,而计算弯矩相对较大的截面。

35最大配筋率Pex :当配筋率增大到使钢筋屈服弯矩约等于梁破坏时的弯矩时,受拉钢筋屈服与压区混凝土压碎几乎同时发生,这种破坏称为平衡破坏或界限破坏,相应的配

筋率称为最大配筋率。

36最小配筋率Prin :当配筋率减少,混凝土的开裂弯矩等于拉区钢筋屈服时的弯矩时,裂缝一旦出现,应力立即达到屈服强度,这时的配筋率称为最小配筋率。

37钢筋松弛:钢筋在一定应力值下,在长度保持不变的条件下,应力值随时间增长而逐渐降低。反应钢筋在高应力长期作用下具有随时间增长产生塑性变形的性质。

38预应力混凝土:就是事先人为地在混凝土或钢筋混凝土中引入内部应力,且其数值和分布恰好能将使用荷载产生的应力抵消到一个合适程度的配筋混凝士。

39预应力混凝土结构:由配置预应力钢筋再通过张拉或其他方法建立预应力的结构。40T梁翼缘的有效宽度:为便于计算,根据等效受力原则,把与梁肋共同工作的翼缘宽度限制在一定范围内,称为翼缘的有效宽度。41混凝土的收缩:混凝士凝结和硬化过程中体积随时间推移而减小的现象o(不受力情况下的自由变形)

42单向板:长边与短边的比值大于或等于2的板,荷载主要沿单向传递。

42双向板:当板为四边支承,佴其长边

短边的比值

时,称双向板。板沿两个方向传递弯矩,受力钢筋应沿两个方向布置。

43轴向力偏心距增大系数:考虑再弯矩作用平面内挠度影响的系数称为轴心力偏心距增

大系数。

K⊥

K 43轴向力偏心距增大系数:考虑再弯矩作用平面内挠度影响的系数称为轴心力偏心距增

大系数。

K,+ K;44抗弯效率指标: P= K,为上核心距,'K,为下核见距,h为 梁得全截面高度。

45第-类T型截面:受压高度在舆缘板厚度 内,x

46持久状况:桥函建成以后,承受自重、车辆荷载等作用持续时间很长的状况o 47截面的有效高度:受拉钢筋的重心到受压边缘的距离即hq=h-a,。h为截面的高度,as为纵向受拉钢筋全部截面的重心到受拉边缘的距离。

48材料强度标准值:是由标准试件按标准试验方法经数理统计以概率分布的0.05分位值确定强度值,即取值原则是在符合规定质里的材料强度实测值的总体中,材料的强度的标准值应具有不小于954的保证率o;49全预应力混凝土:在作用短期效应组合下控制的正截面受拉边缘不容许出现拉应力的预应力混凝土结构,即λ≥1。

50混凝土结构的耐久性:是指混凝土结构在自然环境、使用环境及材料内部因素的作用下,在设计要求的目标使用期内,不需要花费大里资金加固处理而保持安全、使用功能和外观要求的能力。

混凝士的立方体强度:我国《公路桥规》规定以每边边长为150mm 的立方体试件,在20°C士2C的温度和相对湿度在90%以_上的潮湿空气中养护28天,依照标准制作方法和试验方法测得的抗压极限强度值(以MPa计)作为混凝土的立方体抗压强度,用符号fcu 表示。

混凝土轴心抗压强度:按照与立方体时间相同条件下制作和试验方法所得的棱柱体试件

150mm X 150mm X300mm的抗压强度值,称为混凝士轴心抗压强度。

锚固长度:指钢筋达到屈服强度而不发生粘结锚固破坏的最短长度

混凝土的徐变:在荷载的长期作用下,混凝土的变形将随时间而增加,亦即在应力不变的情况下,混凝士的应变随时间继续增长,这种现象被称为混凝土的徐变。

混凝士的收缩:混凝士在空气中结硬时体积减小的现象称为混凝土的收缩。条件屈服强度:取残余应变为0.2%时的应力值作为硬钢的屈服强度指标。

极限状态:当整个结构或结构的一一部分超过某一~特定状态而不能满足设计规定的某一功能要求时,此特定状态成为该功能的极限状态。

结构的可靠性:指结构在规定的时间内,在规定的条件下,完成预定功能的能力。结构的可靠度:结构在规定的时间内,在规定的条件下,完成预定功能的概率。

结构的极限状态:当整个结构或结构的一部分超过某--特定状态而不能满足设计规定的某一功能要求时的特定状态。

承载力极限状态:指结构或构件达到最大承载力或达到不适于继续承载的变形状态。保护层厚度:是具有足够厚度的混凝士层,去钢筋边缘至构件截面表面之间的最短距离配筋率:是所配置的钢筋截面面积与规定的混凝士截面面积的百分比。相对受压高度: 此时的受压区高度x与截面有效高度h0的比例

剪跨比:剪跨比m是一一个无量纲常数,用m=M/Vh0来表示,此处M和V分别为剪压区段中某个竖直截面的弯矩和剪力,h0为截面有效高度。

抵抗弯矩图:抵抗弯矩图又称材料图,就是沿梁长各个正截面按实际配置的总受拉钢筋面积能产生的抵抗弯矩图,即表示个正截面所具有的抗弯承载力。

稳定系数:稳定系数是用来反映长柱承载力降低的程度

纵向弯曲系数:对于钢筋混凝土轴心受压构件,长柱失稳破坏时的界限压力Pc与短柱破坏时的轴心压力

稳定系数:稳定系数是用来反映长柱承载力降低的程度

纵向弯曲系数:对于钢筋混凝土轴心受压构件,长柱失稳破坏时的界限压力Pc与短柱破坏时的轴心压力Nu的比值

大偏心受压破坏:当构件的轴向压力的偏心距较大时,构件的破坏从受拉钢筋的屈服开始,最后混凝土达到极限压应变而被压碎的破坏情况,称为大偏心受压破坏。

小偏心受压破坏:当构件的轴向压力偏心距较小时,靠近轴向压力--侧的受压混凝土先达到极限压应变,受压钢筋达到屈服强度而破坏的情况,称为小偏心受压破坏。

换算截面:将受压区的混凝士和受拉区的钢筋换算面积所组成的截面称为钢筋混凝士构件开裂截面的换算面积

消压弯矩:消除构件控制截面受拉区边缘混凝士的预应力,使其恰好为零的弯矩

预应力度:按正常使用极限状态设计时受弯构件预应力度λ是由预加力大小确定的消压弯矩MO与外荷载弯矩M的比值

预应力混凝土:事先人为地在混凝土或钢筋混凝土中引入内部应力,且其数值和分布恰好能将使用荷载产生的应力抵消到一个合适程度的配筋混凝土。

先张法: 先张拉钢筋,后浇筑构件混凝土的方法。

后张法:先浇筑构件混凝士,待混凝土结硬后,在张拉预应力钢筋并锚固的方法

预应力损失:预应力钢筋的预应力随张拉、锚固过程和时间的推移而降低的现象称为预应力损失。

预拱度:桥梁上部的轴线沿纵向向.上拱起的尺寸为预拱度。预拱度是为防止使用荷载作用下过大的挠度与抵消长期荷载作用下逐渐增加的变形而设置的。

锚固长度:钢筋从应力为零的端面至钢筋应力为fpd的截面为止的这一长度la。传递长度: 钢筋从应力为零的端面到应力为σ pe的这一一长度ltr

1、钢筋和混凝土能够有效结合的原因:(1)混凝士和钢筋之间有良好的粘结力;

(2)钢筋和混凝士的温度线膨胀系数比较接近;

(3)包围在钢筋外面的混凝土起着保护钢筋免遭锈蚀的作用,保证了钢筋与砼的共同作用。

2影响徐变有哪些主要原因?减小措施?答:(1)主 要影响因素:

混凝士在长期荷载作用下产生的应力大小;加荷时混凝士的龄期;混凝土的组成成分和配合比;养护及使用条件下的温度与湿度。

(2)减小徐变的措施:

降低长期荷载的作用下产生的应力;延长加荷时砼的龄期;提高集料的弹性模量,减少集料的体积比,适当减少砼的水灰比;提高砼养护的温度和湿度,降低砼的使用环境的温度增大其湿度;扩大构件的尺寸或体表比。

3钢筋混凝士适筋梁正截面受力全过程可划分为几个阶段?各阶段受力主要特点是什么?、答:第I阶段:混凝土全截面工作,混凝土的压应力和拉应力基本上都呈三角形分布。

第I阶段末:受拉边缘混凝士的拉应变临近极限拉应变,拉应力达到混凝土抗拉强度,表示裂缝即将出现第I阶段:在梁混凝土抗拉强度最弱截面上出现了第一批裂缝。拉区混凝土退出工作,把它原承担的拉力传递给钢筋,发生了明显的应力重分布,钢筋的拉应力随荷载的增加而增加;混凝士的压应力形成微曲的曲线形,中和轴位置向上移动。

第II阶段末:钢筋拉应变达到屈服值时的应变值,表示钢筋应力达到其屈服强度,第II阶段结束。

第II阶段:钢筋的拉应变增加的很快,但钢筋的拉应力一~般仍维持在屈服强度不变。这时,裂缝急剧开展,中和轴继续上升,混凝土受压区不断缩小,压应力不断增大,压应力图成为明显的丰满曲线形。

第II阶段末:压区混凝土的抗压强度耗尽,混凝土被压碎,梁破坏

4什么叫钢筋混凝土少筋梁、适筋梁和超筋梁?各自有什么样的破坏形态?

答:实际配筋率小于最小配筋率的梁称为少筋梁;大于最小配筋率且小于最大配筋率的梁称为适筋梁;大于最大配筋率的梁称为超筋梁。

少筋梁的受拉区混凝士开裂后,受拉钢筋达到屈服点,并迅速经历整个流幅而进入强化阶段,梁仅出现一条集中裂缝,不仅宽度较大,而且沿梁高延伸很高,此时受压区混凝土还未压坏,而裂缝宽度已经很宽,挠度过大,钢筋甚至被拉断。

适筋梁受拉区钢筋首先达到屈服,其应力保持不变而应变显著增大,直到受压区边缘混凝土的应变达到极限压应变时,受压区出现纵向水平裂缝,随之因混凝士压碎而破坏。

超筋梁的破坏是受压区混凝士被压坏,而受拉区钢筋应力尚未达到屈服强度。破坏前的挠度及截面曲率曲线没有明显的转折点,受拉区的裂缝开展不宽,破坏突然,没有明显预兆。

5、简述无腹筋简支梁沿斜截面破坏的三种主要形态?

答:斜拉破坏:在荷载作用下,梁的剪跨段产生由梁底竖直裂缝沿主压应力轨迹线向上延伸发展而成斜裂缝。其中有一-条主要斜裂缝(又称临界斜裂缝)很快形成,并迅速伸展至荷载垫板边缘而使混凝土裂通,梁被撕裂成两部分而丧失承载力,同时,沿纵向钢筋往往伴随产生水平撕裂裂缝。这种破环发生突然,破坏面较整齐,无压碎现象。

剪压破坏:梁在弯剪区段内出现斜裂缝,随着荷载的增大,陆续出现几条斜裂缝,其中一条发展成为临界裂缝。临界斜裂缝出现后,梁还能继续增加荷载,斜裂缝伸展至荷载垫板下,直到斜裂缝顶端(剪压区)的混凝士在正应力、剪应力和荷载引起的竖向局部压应力的共同作用下被压酥而破坏,破坏处可见到很多平行的斜向短裂缝和混凝土碎渣。

斜压破坏:当剪跨比较小时,首先是加载点和支座之间出现一条斜裂缝,然后出现若干条大体相平行的斜裂缝,梁腹被分割成若干倾斜的小柱体。随着荷载的增大,梁腹发生类似混凝士棱柱体被压坏的情况,即破坏时斜裂缝多而密,但没有主裂缝。

填空题

1.钢筋混凝士结构使用的钢筋,不仅要强度高,而且要具有良好的_塑性_和__ 可焊性_,同时还要求与混凝士有较好的粘结性能。

2.我国一般将结构的极限状态分为两类:_承载能力极限状态_和_正常使用极限 状态_。

3.梁内的钢筋常常采用骨架形式,一般分为_焊接钢筋骨架_和_绑扎钢筋骨架_ 两种形式。

4、T型截面分为_第一类T型截面中和轴位于(翼缘内),第二类T型截面中和轴位于(梁肋内)__两类。

5、受弯构件正截面强度计算,分为_单筋承载力_和_双筋承载力_两类问题。6.一般把_ 箍筋_和_ 弯起钢筋_ 统称为梁的腹筋。

7.钢筋混凝士轴心受压构件按照箍筋的功能和配置方式的不同可分为两种:_配

有纵向钢筋和普通箍筋的轴心受压构件(普通箍筋柱)_和_配有纵向钢筋和螺旋

箍筋的轴心受压构件(螺旋箍筋柱)_。

8、钢筋混凝土梁的弯起钢筋一般与梁纵轴成_ 45_角。

9、钢筋混凝士偏心受压构件按长细比可分为_短柱)长柱)和(细长柱)。10.对于结构重力引起的变形是长期性的变形,一般采用_ 设置预拱度__加以消

除。

11.预加应力的方法有_先张法_和_后张法_两种。

12.摩擦损失,主要由于_管道的弯曲和管道的位置偏差_两部分影响产生

13、钢筋混凝土梁内的钢筋骨架由钢筋、斜筋、箍筋、架立钢筋

和水平纵向钢

筋构成。

14、影响受弯构件斜截面抗剪能力的主要因数有剪跨比,钢筋强度、钢筋配

筋率及混凝士强度等。

15、斜截面的破坏形态分为剪压 破坏

斜压破坏

和斜拉破坏。

16、我国按预应力对将以钢材为配筋的配筋混凝土结构分为预应力混凝土、部

分预应力混凝士

和钢筋混凝土三种结构。

17、预应力损失一-般需考虑

钢筋与管道壁摩擦

锚具变形

筋与台座之间温差、混凝士弹性压缩、钢筋松弛和混凝士收缩徐变引起的

六项预应力损失。

18、预应力度定义为_ 预应力度入是由预加应力大小确定的消压弯矩Mo与外

荷载产生的弯矩Ms的比值,我国《公桥规》中提出的预应力度入定义为:

λ =MO/MS。

19、后张法是靠_锚具来传递和保持预应力的,先张法是靠钢筋与混凝土之间的

粘结力来传递和保持预应力的。

20、根据受压区高度不同,满足_ x<=hf’ 情况时,为第一-类T型截面。

21、根据受压区高度不同,满足_ x>hf’ 情况时,为第二类T型截面。

22、梁的抗剪能力随着纵向钢筋配筋率的提高而_增大

23、控制截面是指控制截面指最危险内力发生的截面控制截面一般为杆件两端点、集中荷载作用点、分布荷载的起点和终点。

24、适筋梁一般发生塑性破坏破坏,超筋梁和少筋梁一般发生脆性破坏破坏。

25、钢筋混凝士受弯构件常用的截面型式有_单筋矩形截面__、双 筋矩形截面

和_ _T型截面_。

13.在双筋矩形截面梁的基本公式应用中,应满足下列适用条件:①ξ≤ξb;②x≥2a’,其中,第①条是为了防止梁破坏时受拉筋不屈服;第②条是为了防止_压筋__ 达不到抗压设计强度。

14.梁内纵向受力钢筋的弯起点应设在按正截面抗弯计算该钢筋强度全部发挥作用的截面以外ho/2处,以保证_斜截面抗弯;同时弯起钢筋与梁中心线的交点应位于按计算不需要该钢筋的截面以外,以保证正截面抗弯。

15.其他条件相同时,配筋率愈大,平均裂缝间距愈小,平均裂缝宽度愈小

其他条件相同时,混凝土保护层愈厚,平均裂缝宽度愈大。

16.当截面_ 内力大

且截面受限时,梁中可配受压钢筋。17.在一:定范围内加大配箍率可提高梁的__ 斜截面

承载力。

18.截面尺寸和材料品种确定后,在___ ρain≤ρ≤pax_

__条件 下,受弯构件正截面承载力随纵向受拉钢筋配筋率p的增加而增大。

19.为避免少筋梁破坏,要求_ ρ≥Qmin_

11.光圆钢筋与混凝士之间的粘结力包含了水泥胶体对钢筋胶结力、钢筋与混凝土之间的

摩察力

和_ 握裹力

15.双筋矩形截面梁中,为了充分发挥受压钢筋的作用并确保其达到屈服强度必须满足

x≥2a

15.双筋矩形截面梁中,为了充分发挥受压钢筋的作用并确保其达到屈服强度必须满足 x≥2a,17.混凝士的立方体抗压强度所规定的标准试件是以____ 150mm 边长的试块进行的,在实际工程中也有采用边长为200mm的混凝士立方体试件,则所测得的立方体强度应乘以_ 1.05 _的换算系数。

11.适筋梁的特点是破坏始于_受拉钢筋屈服__,钢筋经塑性伸长后,受压区边缘混凝土的压应变达到极限压应变。

17.当偏心拉力作用点在截面钢筋As合力点与A s合力点之间

_时,属于小偏心受拉,偏心拉力作用点在截面钢筋A。合力点与A s合力点_ 以外

时,属于大偏心受拉。

在轴向压力和剪力的共同作用下,混凝士的抗压强度较其单轴压强度减小。2,混凝士的抗压强度相比较,强度中等的是单轴受压。3.所谓混凝土的线性徐变是指徐变变形与压应力成正比。4.钢筋的外形常用的有光圆和带助二种。

5.混凝士的变形模量有原点弹性模量、割线模量和切线模量。

5.适筋梁的特点是破坏始于受拉钢筋屈服,钢筋经塑性伸长后,受压区边缘混凝士的压应

变达到极限压应变。

7,当截面计算弯矩大且截面受限时,梁中可配受压钢筋。

在一定范围内加大配筋率可提高梁的抗剪承载力。为避免少筋梁破坏,要求提高配筋率。

10.截面尺寸和材料品种确定后,在适筋梁条件下,受弯构件正截面承载力随纵向受拉

钢筋配筋率P的增加而增大。

11.在双筋矩形截面梁的基本公式应用中,应满足下列适用条件: 1δ≤δ8;2。X≥2A;

其中第1条是为了防止梁破环时受拉筋不屈服;第2条是为了防止受压钢筋达不到抗压设计强度。

12.斜截面抗剪强度计算公式的适用条件,其上限值相当于限制截面尺寸,防止发生斜

压破坏;其下限值为防止发生斜拉破坏。

压破坏;其下限值为防止发生斜拉破坏。

13.混凝土结构设计规范对轴压构件中用承载力影响系数,考虑纵向弯曲影响对偏心受

压构件用系数偏心距增大系数来考虑纵向的影响。简答题 2.1.正截面破坏形态及特征:

1)超筋梁破坏(脆性破坏):受压砼被压碎,此时钢筋没有达到屈服强度,梁压碎2)适筋梁破坏(塑性破坏):钢筋屈服,然后受压砼被压碎,此时梁破坏

3)少筋梁破坏(脆性破坏):受拉区砼出现裂缝后,同时钢筋屈服,形成一-条裂缝迅速贯通,梁拉断。2.无腹筋简支梁斜截面破坏:

1)斜拉破坏:特点是:斜裂缝--出现,即很快形成临界斜裂缝,并迅速延伸到集中荷载作用点处,使混凝士裂开,梁斜向倍拉断而破坏,属脆性破坏。条件:剪跨比较大(m>3),腹筋过少。措施:控制腹筋最少用量。

2)剪压破坏:特点是:当荷载增加到-一定程度后,构件上先出现的垂直裂缝和细微的倾斜裂缝,发展形成一-~根主要的斜裂缝,称为“临界斜裂缝”,属塑性破坏。条件:剪跨比为1≤m≤3,腹筋适量的情。措施:按计算配腹筋。

3)斜压破坏:特点是:随着荷载的增加,梁腹被一系列平行的斜裂缝分割成许多倾斜的受压柱体,这些柱体最后在弯矩和剪力的复合作用下被压碎,属脆性破坏。条件:剪跨比较小(m<1),腹筋过量,尺寸过小。措施:控制最小截面。

3.斜截面配筋设计上、下限值意义:

1).上限值验算是通过限定最小截面尺寸来限制斜压破坏的发生。斜截面抗剪计算公式上限值通过时,说明该梁截面尺寸满足要求,梁不发生斜压破坏

2)下限值验算时通过限定最小箍筋用量来限制斜拉破坏的发生。下限值验算时,限制就是混凝土抗剪强度的下限值。若满足(4-7),则不需进行斜截面抗剪承载力的计算,仅按构造要求配置箍筋。否则需根据计算配置箍筋和弯起钢筋。4.偏心受压破坏形态及类型:

1)受拉破坏-大偏心受压破坏,属于塑性破坏:相对偏心距(e0/h)较大时,且受拉钢筋配置较少时发生2)受压破坏-小偏心受压破坏,属于脆性破坏:初始偏心距较小时发生5.圆形截面偏心受压截面设计步骤:

1)截面设计:①计算偏心距增大系数η;②计算受压区高度系数:由公式1除以公式2整理得ρ;采用试算法,先假设ξ(ξ =x0/2r), 查表得相应系数ABCD,代入公式3得到配筋率ρ。再将ACρ值代入式1可得Nu。若Nu值与已知的N基本相符,允许误差在2%以内,则假定的ξ及由此计算的ρ值即为设计用值。若两者不符,需重新假定ξ值重复以上步骤,直至基本相符为止。③将按最后确定的ξ值计算所得的ρ值带入下式,即得到所需的纵向钢筋面积As=ρ∩r2。

2)截面复合:仍采用试算法,将公式7-67除以式7-66,整理得7-70;①先假设ξ值,由表查得系数ABCD值,代入式7-70算到ηe0.若此ηe0与M和N考虑偏心距增大系数后得到的ηe0基本符合(允许误差在2%以内),则基本假定的ξ值可为计算用的ξ值,若两者不符,需重新假定ξ值重复以_上步骤,直至基本相符为止。②按确定的ξ值及其所相应的系数ABCD值带入式7-66中,则可求得截面承载力6.预应力钢筋估算步骤:

1)按作用短期效应组合进行正截面抗裂验算得到Npe;

2)求得Npe后,再确定适当的张拉控制应力σcon并扣除相应的应力损失σ1(对于配高强钢丝或钢绞线的后张法构件σ1约为0.2σcon),可以估算出所需的预应力钢筋总面积Ap;

3)Ap确定后,则可按一束预应力钢筋面积Ap1算出所需的预应力钢束束数(n1).7.先、后张法预应力损失:

1)预应力筋与管道壁间摩擦引起的应力损失(σ11后):原因:管道弯曲和位置的偏差;措施:采用两端张拉,减少θ值及管道长度x值;采用超张拉

2)锚具变形、钢筋回缩和接缝压缩引起的应力损失(σ 12后):原因:锚具变形、钢筋回缩、接缝变形;措施:采用超张拉;采用变形小的锚具。

3)钢筋与台座间的温差引起的应力损失(σ 13 先):原因:温度差、砼浇筑是水化热;措施:二次升温养护4)混凝土弹性压缩引起的应力损失(σ 14):原因:砼弹性压缩;措施:分批次张拉

5)钢筋松弛引起的应力损失(σ 15):原因:应力松弛;措施:采用超张拉;采用低松弛钢筋6)混凝土收缩和徐变引起的应力损失(σ 16):原因:砼收缩、徐变;不采取措施。

3、为什么砌体的抗压强度远小于块体的抗压强度? 答:当砌体受压时,砌块实际上处于不均匀收压、局部受压、受弯、受剪以及竖缝处的应力集中状态下。另外,由于砖和砂浆受压后的横向变形不同,使得砖还处于受拉状态,而砖则处于受拉状态,而砂浆则处于三向受压状态,由于砖的抗折强度仅其抗压强度的0.2倍,砖的抗拉强度更低,故砖砌体受压后总是先在砖块上出现因弯矩应力过大而产生的竖向裂缝,这种裂缝还会随着荷载加大而上下贯通,以致将整个砌体分裂成细长的半砖小柱而压屈破坏,因而砖砌体抗压强度必然在很大程度.上低于砖的抗压强度。

4、抵抗弯矩图:即按实际的纵向钢筋布置画出的受弯构件正截面所能抵抗的弯矩图。

四、简答题

1、钢筋和混凝土共同工作基础是什么?

答:(1)钢筋与混凝土之间存在有粘结力,使二者在荷载作用下能够协调变形,共用受力;

(2)钢筋与混凝土的温度线膨胀系数相近;

(3)钢筋至构件边缘之间的混凝t保护层,起着防止钢筋发生锈蚀的作用,保证结构的耐久性。

3、砂浆按其成分可分为哪几类?以及适用范围。

答:(1)纯水泥砂浆,适用于水中及潮湿环境中的砖砌体;(2)有塑性掺合料的水泥石灰混合砂浆或水泥粘土混合砂浆,适用于非地下水位以下的砖 砌体;(3)纯石灰、石膏或粘士砂浆,仅适用于地面以上一般建筑物的砖砌体,其中粘上砂浆仅

适用于气候干燥地区的小城镇和边远地区的低层建筑及临时性辅助房屋。

4、风荷载作用于外纵墙的水平传递力路线? 答:作用于外纵墙的风荷载醒 禳卜纵墙 卜纵墙基础 屋盖水平梁 山墙 山墙基础 ⑧地基

1、砂浆按其成分可分为哪几类?以及适用范围。

答:(1)纯水泥砂浆(强化快、强度高、耐久性好、但和易性差,适用于水中及潮湿环境中的砖砌体);(2)有塑性掺合料的水泥石灰混合砂浆或水泥粘士混合砂浆(适用于非地下水位以下的砖砌体);(3)纯石灰、石膏或粘土砂浆(和易性虽好,但硬化慢、强度低、抗水性差,仅适用于地面以.上一般建筑物的砖砌体,其中粘士砂浆仅适用于气候干燥地区的小城镇和边远地区的低层建筑及临时性辅助房屋)。

2、无腹筋梁的剪切破坏形态?我们在设计过程中期望那种破坏形态出现?答:

1、斜拉破坏

2、剪压破坏

3、斜压破坏。

在设计过程中允许剪压破坏出现。不许斜拉和斜压破坏。

3、混合结构房屋的静力计算方案有哪些?并画出每种方案的计算简图。答: 1.弹性方案;2.刚性方案;3.刚弹性方案。

7TT77 1777 177777 171h7 1TT77 177777 弹性方案

刚性方案

刚弹性方案

三、简答题

1.试分析素混凝士梁与钢筋混凝土梁在承载力和受力性能方面的差异。答:素混凝土梁的承载力很低,变形发展不充分,属脆性破坏。钢筋混凝土梁的承载力比素混凝土梁有很大的提高,在钢筋混凝士梁中,混凝士的抗压能力和钢筋的抗拉能力都得到了充分利用,而且在梁破坏前,其裂缝充分发展,变形明显增大,有明显的破坏预兆,属延性破坏,结构的受力特性得到显著改善。

2.钢筋与混凝土共同工作的基础是什么?答:钢筋和混凝士两种材料能够有效的结合在一起而共同工作,主要基于三个条件:钢筋与混凝土之间存在粘结力;两种材料的温度线膨胀系数很接近;混凝士对钢筋起保护作用。这也是钢筋混凝土结构得以实现并获得广泛应用的根本原因。

3.混凝土结构有哪些优点和缺点?答:混凝士结构的主要优点在于:取材较方便、承载力高、耐久性佳、整体性强、耐火性优、可模性好、节约钢材、保养维护费用低。混凝土结构存在的缺点主要表现在: 自重大、抗裂性差、需用大量模板、施工受季节性影响。

4.什么叫做混凝土的强度?工程中常用的混凝土的强度指标有哪些?混凝土强度等级是按哪-种强度指标值确定的?答:混凝土的强度是其受力性能的基本指标,是指外力作用下,混凝土材料达到极限破坏状态时所承受的应力。工程中常用的混凝士强度主要有立方体抗压强度、棱柱体轴心抗压强度、轴心抗拉强度等。混凝士强度等级是按立方体抗压强度标准值确定的。5.混凝士一般会产生哪两种变形?混凝士的变形模量有哪些表示方法?答:混凝土的变形一般有两种。一种是受力变形,另一种是体积变形。混凝土的变形模量有三种表示方法:混凝士的弹性模量、混凝土的割线模量、混凝土的切线模量。

3.6.与普通混凝士相比,高强混凝土的强度和变形性能有何特点?答:与普通混凝土相比,高强混凝士的弹性极限、与峰值应力对应的应变值、荷载长期作用下的强度以及与钢筋的粘结强度等均比较高。但高强混凝土在达到峰值应力以后,应力一应变曲线下降很快,表现出很大的脆性,其极限应变也比普通混凝土低。7.何谓徐变?徐变对结构有何影响?影响混凝土徐变的主要因素有哪些?答:结构在荷载或应力保持不变的情况下,变形或应变随时间增长的现象称为徐变。混凝士的徐变会使构件的变形增加,会引起结构构件的内力重新分布,会造成预应力混凝士结构中的预应力损失。影响混凝土徐变的主要因素有施加的初应力水平、加荷龄期、养护和使用条件下的温湿度、混凝土组成成分以及构件的尺寸。8.混凝土结构用的钢筋可分为哪两大类?钢筋的强度和塑性指标各有哪些?答:混凝士结构用的钢筋主要有两大类: 一类是有明显屈服点(流幅)的钢筋;另一类是无明显屈服点

(流幅)的钢筋。钢筋有两个强度指标:屈服强度(或条件屈服强度)和极限抗拉强度。钢筋还有两个塑性指标: 延伸率和冷弯性能。9.混凝土结构设计中选用钢筋的原则是什么?答:混凝土结构中的钢筋一般应满足下列要求:较高的强度和合适的屈强比、足够的塑性、良好的可焊性、耐久性和耐火性、以及与混凝土具有良好的粘结性。

10.钢筋与混凝士之间的粘结强度一般由哪些成分组成?影响粘结强度的主要因素有哪些?为保证钢筋和混凝土之间有足够的粘结力要采取哪些措施?答:钢筋与混凝土之间的粘结强度一般由胶着力、摩擦力和咬合力组成。混凝士强度等级、保护层厚度、钢筋间净距、钢筋外形特征、横向钢筋布置和压应力分布情况等形成影响粘结强度的主要因素。采用机械锚固措施(如末端弯钩、末端焊接锚板、末端贴焊锚筋)可弥补粘结强度的不足。2.钢筋混凝土梁内有几种钢筋?每种钢筋有何作用?它们各自如何确定?(10分)答:五

种。纵筋:承受纵向拉、压力,由正截面承载力计算确定。箍筋:抗剪、定位、构成钢筋骨

架,由计算和构造要求确定。斜筋:抗剪,由计算和构造要求共同确定。架立钢筋:形成钢

筋骨架,定位,由构造确定;纵向水平钢筋,防止混凝士收缩、温度变化而引起的开裂,由 构造确定。

3.为什么预应力混凝土结构必须采用高强混凝士和高强钢筋?(10分)

答:采用高强混凝土的原因:预应力混凝士结构相对于普通钢筋混凝士结构而言, 处在更高 的应力状态,因而要求有较高的承压和其它能力,而高强混凝土具有较高的抗拉、抗弯、局

部抗压等能力,而且有大的弹性模量,使得受力变形小、收缩徐变小、应力损失小,为了能

充分发挥高强钢筋的作用, 也必须采用高标混凝士。如果不使用高强钢筋,就无法克服由于

预应力损失而建立起有效预应力。

第四篇:钢筋混凝土框架结构设计(模版)

框架结构梁板柱的布置原则

1太原理工大学

建筑与土木工程学院 郭瑶雪

山西省第一建筑工程公司

刘春红 摘 要:

改革开放以来,随着我国经济的迅猛发展,我国的建筑也发展迅速,设计思想也在不断更新。钢筋混凝土框架结构就是符合社会发展要求的一种结构,目前应用也是最为广泛,但其结构设计中还存在许多问题。该文从结构设计计算、构造措施等方面探讨了框架结构梁板柱设计中需要注意的问题

关键词:框架结构 基本原则 构造要求

1.概述

框架结构是由梁、柱构件组成的空间结构,既承受竖向荷载,又承受风荷载和地震作用,因此,必须设计成双向结构体系,并且应具有足够的侧向刚度,以满足规范、规程的楼层层间最大位移与层高之比的限制。由于框架的平面布置灵活,可以最大程度的满足使用要求,所以在合理的高度和层数的情况下,框架结构能够提供较大的建筑空间。

2.结构布置原则

2.1结构体系

合理的建筑结构体系应该是刚柔相济的。结构刚性强则变形能力差,强大的破坏力瞬间袭来时,需要承受的力很容易造成局部受损最后全部毁坏;而韧性大的结构虽然可以很好的消减外力,但容易造成变形过大而无法使用甚至建筑倾倒。因此框架应沿建筑的两个主轴双向设置,形成双向梁柱抗侧力体系。且在刚接体系除个别部位外,框架的梁柱应采用刚接,以增大结构刚度和整体性。

2.2 结构受力

结构传力路径要求简单、合理且有利于抵抗水平和竖向荷载,受力明确,传力直接,以减少扭转

平面布置应简单、规则、对称、均匀,以保证良好的整体性;避免过大内收和外伸(凹角处应力集中);质心于刚心宜接近,避免平面不规则结构,建筑的立面和竖向剖面宜规则,结构的侧向刚度宜均匀变化,竖向抗侧力构建的截面尺寸和裁量强度宜自下而逐渐减小,避免抗侧力结构的侧向刚度和承载力突变,以免出现薄弱层。

3.结构布置

3.1框架梁截面尺寸

根据《高规》6.3.1条规定,框架结构的主梁截面高度hb可按

11lb~lb确定,1018梁净跨与截面高度之比不宜小于4,梁的截面宽度不宜小于200lb为主梁计算跨度;㎜,梁截面的高宽比不宜大于4。

当梁高较小或采用扁梁时,除验算其承载力和受剪截面要求外,尚应满足刚度和裂缝的有关要求。在计算梁的挠度时,可扣除梁的合理起拱值;对现浇梁板结构,宜考虑梁受压翼缘的有利影响。

框架梁是框架结构在地震作用下的主要耗能构件,因此梁的塑性铰区必须保证有足够的延性。梁的剪跨比、截面的剪压比和配筋率、受压区高度比等都是影响梁延性的因素。按照不同抗震等级对上述各因素的要求,在地震作用下,梁端塑性铰区保护层容易脱落,如果框架梁的截面宽度过小,梁的截面损失比例则比较大。为了对节点核心区提供约束以提高梁的受剪承载力,梁截面宽度不宜小于柱宽的1/2,如不能满足其要求,则应考虑核心区的有效受剪截面。3.2 柱网尺寸

框架结构的柱网布置既要满足生产工艺和建筑平面布置的要求,又要使结构受力合理,施工方便。柱网尺寸及层高应根据建筑功能要求、施工条件及材料设备等各方面因素来确定。

框架柱的截面尺寸可根据柱支撑的楼层面积计算由竖向荷载产生的轴力设计值,按下列公式估算柱截面积Ac,然后再确定柱边长。Nv(荷载分项系数可取1.30)⑴仅有风荷载作用或无地震作用组合时

N1.05~1.1Nv

N Acfc ⑵有水平地震作用组合时

NNv

为增大系数,框架结构外柱取1.3,不等跨内柱取1.25,等跨内柱取1.2;框剪结构外柱取1.1~1.2,内柱取1.0.有地震作用组合时柱所需截面面积为:

N AcNfc式中

N——柱轴压比限值见《混凝土规范》表11.4.16 fc——混凝土轴心抗压强度设计值

校核框架柱截面尺寸是否满足构造要求:非抗震设计时,不宜小于250mm,抗震设计时,不宜小于300mm;圆柱截面直径不宜小于350mm;柱截面高宽比不宜大于3;柱剪跨比宜大于2,以避免产生剪切破坏。在设计中,楼梯间、设备层等部位难以避免短柱时,除应验算柱的受剪承载力外,还应采取措施提高其延性和抗剪能力。

框架柱剪跨比可按下式计算:

MVh

0式中 ——框架柱的剪跨比,反弯点位于柱高中部的框架柱,可取柱净高与2倍柱截面的有效高度之比值

M——柱端截面组合的弯矩计算值,可取上下端的较大值 V——柱端截面与组合弯矩计算值对应的组合剪力计算值 h0——计算方向上截面的有效高度

框架柱截面的组合最大剪力设计值应符合下列条件: 无地震作用组合时:V0.25cfcbh0 有地震作用组合时:

1剪跨比大于2 V0.2cfcbh0

RE剪跨比不大于2 V1RE0.15cfcbh0

式中

V——剪力设计值

b——矩形截面的宽度,T形截面、工形截面的腹板宽度

h0——计算方向上截面的有效高度

c——混凝土强度的折减系数

3.3现浇板的厚度

按照受力特征,混凝土楼盖的周边支撑板可分为单向板和双向板。用l02、l01分

l别表示长短跨方向的计算跨度,将02l3的板称为单向板,即主要在一个跨度方

01l向受弯曲的板;02l2的板称为双向板,即在两个跨度方向受弯的板。对于2<01l02l01<3的板,可按单向板设计,但应适当增加沿长跨方向的分布钢筋。各类现浇板为满足承载力和刚度、防火和预埋暗管的要求,板的最小厚度和板厚与跨度的比值都必须满足:一般楼层现浇板厚不应小于80mm,当板内有预埋暗管时不宜小于100mm;顶层楼板厚度不宜小于120mm,宜双层双向配筋;普通地下室顶板厚度不宜小于160mm;等等《混凝土设计规范》的相关规定。

单向板:为了保证刚度,单向板的厚度应不小于跨度的1/40(连续板)、1/35(简支板)以及1/12(悬臂板)。在满足上述要求的前提下,为减轻现浇板的自重并且节约资源,板厚应尽量的薄些。

双向板:板厚不宜小于80mm,由于挠度不再另外验算,双向板的板厚与短跨跨度的比值h需满足刚度的要求: l01简支板 h≥1/45 l01连续板 h≥1/50 l01对于周边与梁整体连接的双向板,由于在两个方向受到支撑结构对变形的约束,整块板内存在穹顶作用,使板内弯矩大大减小。所以,对四边都与梁整体连接的现浇板,规范允许对其弯矩设计值按以下几种情况进行折减:

⑴中间跨和跨中截面以及中间支座截面处,可减小20%

l⑵边跨的跨中截面以及楼板边缘算起的第二个支座截面处,当bl<1.5,时可

01l减小20%;当1.5≤bl≤2.0时可减小10%,式中l0为垂直与楼板边缘方向板的计

01算跨度;lb为沿楼板边缘方向板的计算跨度。

⑶楼板的角区格不折减。3.4抗震设防

建筑在设计时应满足当地的抗震设防烈度,对于重要的建筑物还要提高设防等级。因此结构布置应能抵抗地震来袭时的地震力。即应满足“三水准,两阶段”的基本抗震设防要求。结束语

对框架的研究可以提高对框架结构性能的认识,使得结构具有良好的承载能力。钢筋混凝土框架结构虽然相对简单,但设计中仍有很多问题需要注意,只有熟练地掌握规范,并具有良好的结构概念,才能设计出既安全又经济适用的优秀作品。

参考文献:

[1]中华人民共和国建设部.GB50010-202_,混凝土结构设计规范[S].北京:中国建筑工业出版社,202_.[2]东南大学、同济大学、天津大学.混凝土结构(中册)[V], 北京:中国建筑工业出版社.202_.[3]李国胜.多高层钢筋混凝土结构设计优化与合理构造[S]..北京:中国建筑工业出版社.202_.

第五篇:钢筋混凝土结构设计 2

钢筋混凝土结构设计

一、受弯构件正截面承载力计算

1、了解适筋梁的三个受力阶段,以及配筋率对梁正截面破坏形态的影响。

2、掌握单筋矩形、双筋矩形和T形截面受弯构件正截面设计和复核方法。

3、掌握梁、板的一般构造要求。

【1】 单筋矩形截面受弯构件截面设计计算步骤(表格法): 【2】单筋矩形截面受弯构件截面复核步骤(表格法): 【3】双筋矩形截面梁截面设计计算步骤(表格法): 【4】T形截面梁截面设计计算步骤(表格法):

小结:

(1)根据配筋率不同,受弯构件正截面破坏形态有三种:适筋破坏、超筋破坏和少筋破坏。其中,超筋破坏和少筋破坏在设计中不允许出现,必须通过限制条件加以避免。

(2)适筋梁的破坏经历了三个阶段,受拉区砼开裂和受拉钢筋屈服是划分三个阶段的界限状态。(3)根据适筋梁第阶段截面的实际应力图形,经过计算假定的简化,并取得等效矩形压力图形代替实际的曲线压力应力图形,就可以得到受弯构件正截面承载力计算的计算应力图形。(4)在单筋矩形截面应力图形中,纵向钢筋承担的拉力为fyAs,受压区砼承担的压力为

(单筋矩形截面),或者α1 fcb′f x(第一类T形截面),或者α1 fcb x +α1 fc(b′f-b)h′f(第二类T形截面)。双筋截面时,受压区再加上纵向钢筋承担的压力f ′yA′s。正截面受弯承载力的基本计算公式,就是根据这个应力图的平衡条件∑N =0和∑M =0列出的。基本公式的适应条件:单筋矩形截面ξ≤ξb和ρ≥ρξ≤ξb和x≥2α′s。

(5)受弯构件的正截面承载力计算分截面设计和截面复核两类问题。

min

;双筋截面截面设计时一般有两个未知数x和As,对单筋矩形截面,可通过联立基本公式求解和表格法求解。

对双筋矩形截面,分As未知和As已知两种情况。当As未知时,有三个未知数As,As,x,可取补充条件x=ξbh0按基本公式求解。当As已知时,可分解成单筋矩形截面和受压钢筋与部分受拉钢筋组成的截面,用表格法求解。

对T形截面,计算时先要判别T形截面的类型,对第一类T形截面可按宽度为b′f的单筋矩形截面求解;对第二类T形截面可分解成单筋矩形截面和受压翼缘砼与部分受拉钢筋组成的截面,用表格法求解。

截面复核时一般有两个未知数x和Mu,可用基本公式联立方程求解。梁、板的一般构造要求

1)梁的截面高度可根据高跨比h/l0来估计。(详见《规范》)

2)梁的截面宽度b,对矩形截面取(1/2~1/3)h;对T形截面取(1/2.5~1/4)h。(详见《规范》)3)梁的支承长度应满足纵向受力钢筋的锚固和支座局部抗压承载力要求。4)梁的钢筋(弯起钢筋见《规范》):①纵筋及搭接,通常用12~25mm,不宜大于28mm,上部纵筋在梁中1/3跨内搭接,(具体配筋应由计算确定)下部纵筋在距支座0.1l0外搭接,搭接长度为ll,搭接区段长度为1.3ll,凡中点在此区段内的搭接接头都属于同一搭接区段,同一搭接区段的钢筋搭接接头面积百分率对于梁、板及墙不宜小于25%,对于柱类构件不宜大于50%,工程有必要放大时,梁不应大于50%,板、墙可以适当放宽。②纵筋锚固,抗震设计时,楼层框架梁上部和下部纵筋伸入边支座内水平段≥0.4laE,弯折段为15d,伸入中间支座或节点≥{laE,0.5hc+5d}max,梁上部的弯矩负筋两排时,不论边支座还是中支座或节点,上排在ln1/

3、下排在ln/4处均截断。屋面框架梁上部纵筋当柱外侧纵筋配筋率小于1.2%时,伸至柱外侧向下弯折至梁底或腋的根部;当柱外侧纵筋配筋率大于1.2%时,伸入柱内长度为1.7laE。下部纵筋伸入边柱内水平段≥0.4laE,弯折段为15d。非抗震设计时,楼层框架梁上部和下部纵筋伸入端支座内水平段≥0.4la,弯折

段为15d(当下部筋在中间支座或节点弯锚时也符合),直锚时伸入端支座和中间支座均≥la,下部纵筋在端支座也可直锚,直锚长度≥la,梁上部的弯矩负筋两排时,不论端支座还是中支座或节点,上排在ln1/

3、下排在ln/4处均截断。屋面框架梁上部纵筋当柱外侧纵筋配筋率大于1.2%时,伸至柱外侧向下弯折至梁底或腋的根部;当梁上部纵筋配筋率大于1.2%时,也伸至柱外侧向下弯折至梁底或腋的根部。③纵向构造筋及扭筋,当梁腹板hw≥450mm时,应设置截面积≥0.1%bh的构造筋,其间距不宜大于200mm,构造筋和扭筋用拉结筋联系,直径与箍筋相同,间距常取箍筋间距的2倍。④梁箍筋抗震设计,当一级抗震时,箍筋最小直径为10mm,箍筋加密区长为{2h,500}max,间距为{箍筋直径6倍,h/4,100}min;当二至四级抗震时,箍筋最小直径为8mm,箍筋加密区长为{1.5h,500}max,间距二级抗震为{箍筋直径8倍,h/4,100} min(三、四级抗震间距可适当加大d);⑤吊筋、拉结筋及附加箍筋(应注意吊筋直径具体见设计说明,构造见101图集;当b<350mm时,拉结筋直径为6mm,当b>350mm时,其直径为8mm,间距为2倍箍筋间距且上下相互错开;附加箍筋间距为8d,附加箍筋区梁箍筋正常照设)⑥不伸入支座的梁下部纵筋的截断点在距端支座、中间支座或节点0.1l0处截断。

5)板的截面、厚度及板的钢筋按设计计算和《规范》10.1节有关规定确定。

二、受弯构件斜截面承载力计算

1、了解影响斜截面受剪承载力的主要因素和斜截面受剪破坏的三种主要形态。

2、熟练掌握斜截面受剪承载力破坏的计算方法。

3、掌握抵抗弯矩图的画法以及纵向受力钢筋弯起和截断的构造要求。

4、掌握钢筋锚固、连接和箍筋、弯筋的构造要求。

【1】斜截面受剪承载力计算截面设计计算步骤(表格法):

(注:

1、集中荷载作用情况包括多种作用荷载,其中集中荷载对支座截面或节点边缘所产生的剪力占总剪力值的75﹪以上的独立梁;

2、当λ<1.5时,取λ=1.5;λ>3时,取λ=3。)

小结:

(1)根据剪跨比和箍筋用量不同,斜截面受剪的破坏形态有三种:斜压破坏、斜拉破坏和剪压破坏。其中,斜压和斜拉破坏在工程中不允许出现,应通过限制截面尺寸和控制箍筋的最小配筋率来防止这两种破坏,而对剪压破坏是通过计算来防止。

(2)斜截面受剪承载力计算公式是以剪压破坏为依据建立的。其受剪承载力有三部分组成:Vu=Vc+Vsv+Vsb,对于一般情况,Vc=0.7ft bh0,Vsv=1.25fyvAsv h0/s,Vsb=0.8fyAsbsinαs;对集中荷载作用的独立梁(包括作用有多种荷载,其中集中荷载对支座截面或节边缘产生的剪力值大于总剪力的75﹪的情况),只要将一般情况中Vc的系数0.7换成1.75/(λ+1),将Vsv的系数1.25换成1,其余不变就可以了。

(3)斜截面承载力计算包括斜截面受剪承载力和斜截面受弯承载力两个方面,斜截面受剪承载力是经过计算在梁中配置足够的腹筋来保证的,而斜截面受剪承载力则是通过构造措施来保证的,这些构造措施有纵向钢筋的弯起和截断等。

(4)抵抗弯矩图是实际配置的钢筋在梁各正截面所承受的弯矩图,通过抵抗弯矩图可以确定钢筋弯起和截断的位置。抵抗弯矩图必须包住设计弯矩图,两者越贴近,钢筋利用越充分。同一根梁、同一个设计弯矩图,可以有不同的纵筋布置方案、不同的抵抗弯矩图。

三、受压构件承载力计算

1、了解配有普通箍筋和配有螺旋式箍筋轴心受柱的破坏特征,掌握轴心受压构件的设计方法。

2、深入理解偏心受压构件正截面的两种破坏形式(ξ≤ξb,大偏心受压;ξ>ξb,小偏心受压)及各自的破坏特征,并能熟练掌握其判别方法。

3、熟练掌握对称配筋矩形截面偏心受压构件正截面承载力的计算方法,了解对称配筋工字型截面偏心受压构件正截面承载力计算方法,了解偏心受压构件斜截面受剪承载力计算方法。

4、掌握受压构件的一般构造要求。

【1】轴心受压构件承载力计算公式:

【2】配有螺旋式间接钢筋的轴心受压柱计算公式:

【3】对称配筋矩形截面偏心受压构件截面设计计算步骤(表格法): 【4】工字型截面偏心受压构件正截面承载力计算公式: 【5】偏心受压构件斜截面受剪承载力计算公式:(注:e=ηei+h/2-αs;e′=ηei-h/2+αs)

小结:

(1)配有普通箍筋的轴心受压构件承载力由砼和纵向受力钢筋两部分抗压承载力组成,同时对长细比较大的柱子还要考虑纵向弯曲的影响,其计算公式为N≤0.9φ(fcAcor+f′cAs)。

配有螺旋式和焊接环式间接钢筋的轴心受压构件承载力,除了应考虑砼和纵向钢筋影响外,还应考虑间接钢筋对承载力提高的影响。其计算公式为N≤0.9(fcAcor+fyAs+2αfyAsso)。

(2)偏心受压构件按其破坏特征不同,分大偏心受压和小偏心受压。大偏心受压破坏时,受拉钢筋先达到屈服强度,最后另一侧受压砼被压碎,并且受压钢筋也达到受压屈服强度。小偏心受压破坏时,距轴力近测砼先被压碎,受压钢筋也达到受压屈服强度,而距轴力远侧的钢筋无论受拉还是受压均未达到屈服强度。此外,对非对称配筋的小偏心受压构件,还可能发生距轴力远侧砼先被压坏而反向破坏。

(3)大偏心受压构件,应该用相对受压高度ξ(或受压区高度x)判别,当ξ≤ξb(或x≤ξb h0)时,为大偏心受压;当ξ≥ξb(或x≥ξbh0)时,为小偏心受压。

(4)计算偏心受压构件时,无论哪种情况,都必须先计算ηei。其中初始偏心距ei=e0+ea,e0=M/N,ea取{20mm,h/30}max,对于偏心距增大系数η,当l0/h≤5时,取η=1;当l0/h>5时,η用(7.10)计算。

(5)对小偏心受压构件,无论截面设计还是截面复核都必须由轴心受压构件验算垂直于力矩作用平面的受压承载力,其稳定系数φ应取矩形截面短边尺寸b计算。

(6)偏心受压构件斜截面受剪承载力计算公式是在受弯构件受剪受剪承载力计算公式的基础上加上一项影响得到的,这项影响是由于轴向压力存在对构件受剪承载力产生的有利影响。

柱的一般构造要求

(1)一般柱截面用正方形和圆形,截面尺寸不宜小于250mm×250mm,当长边超过600~800mm时,为节省砼和减轻自重常用工字形截面。为避免长细比过大,常取l0/h≥25和l0/b≥30,偏心受压柱h/b控制在1.5~3之间,工字形截面柱翼缘厚度h′f不宜小于120mm,腹板厚度b不宜小于100mm。

(2)柱(QZ、LZ锚固见101图集)的钢筋:①纵向受力钢筋及其搭接

纵筋直径常用12~32mm,根数不宜少于4根,圆形柱不宜少于6根,(具体配筋应由计算确定)当h≥600mm时,侧面应设直径10~16mm的纵向构造筋,及相应的复合箍筋和拉结筋,柱内纵筋的净距不应小于50mm,全部纵筋的配筋率不宜大于5%且不小于《规范》要求,一般在0.6%~2%之间。不论哪种连接,其接头位置应错开,同一截面内钢筋接头面积百分率不应大于50%,101图集规定抗震设计时搭接位置在离柱根部l0/3外,当中间节点时搭接位置在上下{ l0/6,h,500}max外,钢筋直径d>28mm以及偏心受压时,纵筋不宜绑扎搭接。②纵筋锚固

抗震设计时在柱顶,当柱外侧纵筋配筋率大于1.2%时,65%的柱外侧纵筋弯锚与梁上部纵筋搭接,其他纵筋伸至柱内侧下弯8d,柱内侧纵筋伸至柱顶弯折12d,满足要求时亦可直锚;当梁上部纵筋配筋率大于1.2%时,柱外侧纵筋弯锚12d,内部纵筋同上。非抗震时同上。③箍筋(101图集41页有抗震箍筋加密区长度选用表)

柱上下两端加密一级抗震时,箍筋间距为{6d,100}min,最小直径为10mm,二级抗震时,箍筋间距为{8d,100}min,最小直径为8mm,三级抗震时,箍筋间距为{8d,150(柱根100)}min,最小直径为8mm,四级抗震时,箍筋间距为{8d,150(柱根100)}min,最小直径为6mm(柱根8mm),底层柱根部的加密区长度取≥l0/3。

四、受扭构件承载力计算

1、了解受扭构件在实际工程中的应用,了解平衡扭矩与协调扭转的区别。

2、掌握受扭构件承载力计算方法和受扭构件的构造要求。

【1】矩形截面钢筋混凝土纯扭构件承载力计算(工程中采用受扭箍筋和受扭纵筋共同承担扭矩的作用)【2】 弯剪扭构件承载力计算(计算公式见课本第六章)

小结

(1)在实际工程中,钢筋砼构件截面只要有扭矩作用,就称为受扭构件,常见的受扭构件的弯矩、剪力和扭矩同时存在的构件。

(2)钢筋砼受扭构件由砼、抗扭箍筋和抗扭纵筋来抵抗由外荷载在构件截面产生的扭矩。

(3)钢筋砼矩形截面纯扭构件的破坏形态分为少筋破坏、超筋破坏、适筋破坏和部分超筋破坏。其中,适筋破坏是计算构件承载力的依据,少筋破坏和超筋破坏在工程中严禁出现。设计时通过最小箍筋配筋率和最小纵筋配筋率防止少筋破坏;通过限制截面尺寸防止超筋破坏;通过控制受扭纵向钢筋与箍筋的配筋强度比ζ防止部分超筋破坏。

(4)构件抵抗某种内力的能力受其他同时作用内力影响的性质,称为构件承受各种内力的相关性。砼的抗剪能力随扭矩的增大而降低,而砼的抗扭能力随剪力的增大而降低,《规范》规定通过扭矩承载力降低系数βt来考虑剪扭构件砼抵抗剪力和扭矩之间的相关性。

(5)弯剪扭构件的配筋可按叠加法进行计算,即纵向钢筋截面面积由受弯承载力受扭承载力所需纵向钢筋进行叠加,其箍筋截面面积由受剪承载力和受扭承载力所需箍筋相加。

受扭构件的构造要求

1)计算的简化(见课本87页)2)配筋构造要求(见课本88页)3)最小配筋率(见课本88页)

五、受拉构件承载力计算

(1)掌握大小偏心受拉构件的判别和偏心受拉构件正截面承载力计算方法。

(2)掌握偏心受拉构件斜截面承载力计算方法。

【1】轴心受拉构件承载力计算

【2】偏心受拉构件承载力计算

小结

1)偏心受拉构件分大偏心受拉和小偏心受拉,当轴向力作用在钢筋As和A΄s合力点之间时,为小偏心受拉;当轴向力未作用在钢筋As和A΄s合力点之间时,为大偏心受拉。

2)大偏心受拉构件与大偏心受压构件正截面承载力计算公式是相似的,其计算方法可参照大偏心受压构件进行;所不同的是N为拉力,而且不考虑偏心距增大系数η和附加偏心距ea。

3)偏心受拉构件斜截面受剪承载力公式是在无轴向力作用受剪承载力公式基础上加一项得到的,这一项是由于轴向拉力存在对构件承载力产生的不利影响。

六、钢筋砼构件变形和裂缝宽度验算

(1)了解受弯构件的变形特点,短期刚度和长期刚度的概念、裂缝出现的机理。(2)掌握受弯构件挠度和裂缝宽度的验算方法。(3)掌握减小构件挠度和裂缝宽度的措施。

小结

(1)钢筋混凝土受弯构件的抗弯刚度是一个变量,随荷载的增大而降低,随时间的增长而降低。

(2)钢筋混凝土受弯构件挠度的计算可以采用材料力学的方法进行,但计算时,必须用构件考虑荷载长期作用的刚度B代替E1。在等截面直杆中,B取同号弯矩区段内最大弯矩处值。

七、与预应力混凝土构件

(1)理解预应力混凝土构件的基本概念,了解施加预应力的方法,掌握预应力混凝土构件对材料的要求。

(2)掌握张拉控制应力的概念,了解预应力想损失的计算及其组合。

(3)掌握预应力混凝土构件的构造要求。

预应力混凝土构件是指在构件承受外荷载之前,预先对外荷载作用的受拉区的混凝土施加压应力的构件。

施加预应力的方法:先张法(在浇灌混凝土前先张拉钢筋的方法,用夹具固定一端,另一端张拉,之后夹具重复使用)和后张法(混凝土硬结后在构件上张拉钢筋的方法,张拉钢筋之后用锚具固定,利用锚具固定钢筋工作,锚具不可重复使用)

张拉控制应力和预应力损失的计算及预应力损失值的组合(详见具体《钢筋混凝土结构设计规范相关规定)

小结

(1)采用预应力混凝土构件的主要原因在于它既能很好的满足裂缝控制的要求又能充分的利用高强度材料,同时还可以提高构件的刚度、减小构件的变形。

(2)根据张拉钢筋与浇灌混凝土先后顺序的不同,预加应力的方法一般有两种,即先张法和后张法。先张法适应于工厂成批生产中、小型预应力混凝土构件;后张法适应于生产大型预应力混凝土构件。

(3)张拉控制应力是张拉钢筋时,钢筋所达到的最大应力,其取值既不能过高又不能过低。

(4)预应力损失是指由于张拉工艺和材料特性等原因,预应力钢筋从张拉开始直至使用的整个过程中,预应力钢筋的应力逐渐降低的现象。同时混凝土的预压应力也随之而降低。由于构件中预应力损失的存在,会使构件达不到预期的效果,因此应采取各种有效的措施,以减少各项预应力损失。

(5)构造要求是保证设计意图顺利实现的重要措施,必须严格按规定执行。

钢结构设计

钢结构材料

【1】 钢材的疲劳强度和疲劳计算

轴心受压构件

【2】 钢结构的连接,焊接、铆钉连接、螺栓连接,对焊焊缝的构造和计算,角焊缝的构造和计算 【3】 普通螺栓连接的构造和计算

【4】 摩擦型高强度螺栓的连接和计算 【5】 承压型高强度螺栓的计算

【6】 轴心受压构件的强度、刚度和稳定性计算

【7】 实腹式轴心受压构件的整体稳定性、局部稳定性计算及截面设计、截面选择和构造规定 【8】 格构式轴心受压构件截面设计原则、截面选择方法和构造规定

【9】 格构式轴心受压构件整体稳定性承载力、分肢稳定性验算缀材设计及设计步骤

【10】 柱头与柱角,梁与柱的连接

受弯构件

【11】 梁的抗弯强度计算、梁的抗剪强度计算、梁的局部承压强度计算、梁的折算应力计算

【12】 梁刚度计算、整体稳定计算、局部稳定计算

【13】 梁的拼接与连接 【14】 型钢梁的设计

【15】 刚与混凝土组合梁

拉弯与压弯构件

【16】

中国矿业大学钢筋混凝土结构设计原理总结
TOP