首页 > 精品范文库 > 1号文库
(14)年中考数学试题(含答案) (3)
编辑:心上人间 识别码:10-314812 1号文库 发布时间: 2023-04-05 04:04:43 来源:网络

浙江省2014年初中毕业生学业考试(金华卷)

满分为120分,考试时间为120分钟

一、选择题(本题有10小题,每小题3分,共30分)

1.在数1,0,-1,-2中,最小的数是

A.1

B.0

C.-1

D.-2

【答案】D.

2.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线。能解释这一实际应用的数学知识是

A.两点确定一条直线

B.两点之间线段最短[来源:Zxxk.Com]

C.垂线段最短

D.在同一平面内,过一点有且只有一条直线与已知直线垂直

【答案】A

3.一个几何体的三视图如图所示,那么这个几何体是

【答案】D.

4.一个布袋里装有5个球,其中3个红球,2个白球,每个球除颜色外其它完全相同,从中任意摸出一个球,是红球的概率是

A.B.C.D.【答案】D.

5.在式子,,中,可以取2和3的是

A.B.C.D.【答案】C.

6.如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为,则t的值是

A.1

B.1.5

C.2

D.3[来源:学科网]

【答案】C.

7.把代数式分解因式,结果正确的是

A.B.C.D.【答案】C.

8.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到

△A’B’C,连结AA’,若∠1=20°,则∠B的度数是[来源:Zxxk.Com]

A.70°

B.65°

C.60°

D.55°

【答案】B.

9.如图是二次函数的图象,使≤1成立的的取值范围是

A.-1≤≤3

B.≤-1

C.≥1

D.≤-1或≥3

【答案】D.

10.一张圆心角为45°的扇形纸板和圆形纸板按如图方式分别剪得一个正方形,边长都为1,则扇形和圆形纸板的面积比是

A.B.C.D.【答案】A.

二、填空题(本题有6小题,每小题4分,共24分)

11.写出一个解为≥1的一元一次不等式

【答案】(答案不唯一).12.分式方程的解是

【答案】

13.小明从家跑步到学校,接着马上原路步行回家。如图是小明离家的路程(米)与时间(分)的函数图象,则小明回家的速度是每分钟步行

【答案】80.14.小亮对60名同学进行节水方法选择的问卷调查(每人选择一项),人数统计如图。如果绘制成扇形统计图,那么表示“一水多用”的扇形圆心角的度数是

【答案】240°.15.如图,矩形ABCD中,AB=8,点E是AD上一点,有AE=4,BE的垂直平分线交BC的延长线于点点F,连结EF交CD于点G,若G是CD的中点,则BC的长是

【答案】7.16.如图2是装有三个小轮的手拉车在“爬”楼梯时的侧面示意图,定长的轮架杆OA,OB,OC抽象为线段,有OA=OB=OC,且∠AOB=120°,折线NG-GH-HE-EF表示楼梯,GH,EF是水平线,NG,HE是铅直线,半径相等的小轮子⊙A,⊙B与楼梯两边都相切,且AO∥GH。

(1)如图2①,若点H在线段OB上,则的值是

(2)如果一级楼梯的高度,点H到线段OB的距离满足条件

≤3cm,那么小轮子半径的取值范围是

【答案】(1);(2).[来

三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)

17.(本题6分)

计算:

【答案】4.[来源:学科网]

18.(本题6分)

先化简,再求值:,其中

【答案】7.19.(本题6分)

在棋盘中建立如图所示的直角坐标系,三颗棋子A,O,B的位置如图,它们的坐标分别是(-1,1),(0,0)和(1,0)。

(1)如图2,添加棋子C,使A,O,B,C四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴;

(2)在其它格点位置添加一颗棋子P,使A,O,B,P成为一个轴对称图形,请直接写出棋子P的位置的坐标(写出2个即可)。

20.(本题8分)

一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式进行拼接。

(1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人?

(2)若用餐的人数有90人,则这样的餐桌需要多少张?

【答案】(1)18,34;(2)22.21.(本题8分)

九(3)班为了组队参加学校举行的“五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲乙两组,进行了四次“五水共治”模拟竞赛,成绩优秀的人数和优秀率分别绘制成如下统计图。

根据统计图,解答下列问题:

(1)第三次成绩的优秀率是多少?并将条形统计图补充完整;[来源:学科网]

(2)已求得甲组成绩优秀人数的平均数,方差,请通过计算说明,哪一组成绩优秀的人数较稳定?

【答案】(1)65%,(2)甲组,22.(本题10分)

合作学习

如图,矩形ABOD的两边OB,OD都在坐标轴的正半轴上,OD=3,另两边与反比例函数的图象分别相交于点E,F,且DE=2,过点E作EH⊥轴于点H,过点F作FG⊥EH于点G。回答下列问题:

①该反比例函数的解析式是什么?

②当四边形AEGF为正方形时,点F的坐标是多少?

(1)阅读合作学习内容,请解答其中的问题;

(2)小亮进一步研究四边形AEGF的特征后提出问题:“当AE>EG时,矩形AEGF与矩形DOHE能否全等?能否相似?”

针对小亮提出的问题,请你判断这两个矩形能否全等?直接写出结论即可;这两个矩形能否相似?若能相似,求出相似比;若不能相似,试说明理由。

【答案】(1)①;②;(2)这两个矩形不能全等,这两个矩形的相似比为.23.(本题10分)

等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连结AF,BE相交于点P

(1)若AE=CF,①求证:AF=BE,并求∠APB的度数;

②若AE=2,试求AP•AF的值;

(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径的长。

【答案】(1)①证明,120°;②12;(2).24.(本题12分)

如图,直角梯形ABCO的两边OA,OC在坐标轴的正半轴上,BC∥轴,OA=OC=4,以直线为对称轴的抛物线过A,B,C三点。

(1)求该抛物线的函数解析式;

(2)已知直线的解析式为,它与轴交于点G,在梯形ABCD的一边上取点P。

①当时,如图1,点P是抛物线对称轴与BC的交点,过点P作PH⊥直线于点H,连结OP,试求△OPH的面积;

②当时,过点P分别作轴,直线的垂线,垂足为E,F。是否存在这样的点P,使以P,E,F为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由。

【答案】(1);(2)①;②存在,或或.

(14)年中考数学试题(含答案) (3)
TOP