第一篇:人口增长模型
人口增长模型
篇一:数学建模logistic人口增长模型
Logistic人口发展模型
一、题目描述
建立Logistic人口阻滞增长模型,利用表1中的数据分别根据从1954年、1963年、1980年到2005年三组总人口数据建立模型,进行预测我国未来50年的人口情况.并把预测结果与《国家人口发展战略研究报告》中提供的预测值进行分析比较。分析那个时间段数据预测的效果好?并结合中国实情分析原因。表1各年份全国总人口数(单位:千万)
二、建立模型
阻滞增长模型(Logistic模型)阻滞增长模型的原理:阻滞增长模型是考虑到自然资源、环境条件等因素对人口增长的阻滞作用,对指数增长模型的基本假设进行修改后得到的。阻滞作用体现在对人口增长率r的影响上,使得r随着人口数量x的增加而下降。若将r表示为x的函数r(x)。则它应是减函数。于是有:
dx ?r(x)x,x(0)?x0 dt 对r(x)的一个最简单的假定是,设r(x)为x的线性函数,即
r(x)?r?sx(1)
(r?0,s?0)(2)
设自然资源和环境条件所能容纳的最大人口数量长率
xm,当x?xm时人口不再增长,即增
r(xm)?0,代入(2)式得
s? r xm,于是(2)式为
x)xm(3)
r(x)?r(1?将(3)代入方程(1)得: x?dx ??rx(1?)xm?dt ?x(0)?x0 ? 解得:
(4)
x(t)? 1?(xmxm ?1)e?rtx0(5)
三、模型求解
用Matlab求解,程序如下: t=1954:1:2005;
x=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988,130.756];
x1=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988];
x2=[61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988,130.756];dx=(x2-x1)./x2;a=polyfit(x2,dx,1);r=a(2),xm=-r/a(1)%求出xm和r x0=61.5;
f=inline('xm./(1+(xm/x0-1)*exp(-r*(t-1954)))','t','xm','r','x0');%定义函数 plot(t,f(t,xm,r,x0),'-r',t,x,'+b');title('1954-2005年实际人口与理论值的比较')x2010=f(2010,xm,r,x0)x2020=f(2020,xm,r,x0)x2033=f(2033,xm,r,x0)解得:x(m)= 180.9516(千万),r= 0.0327/(年),x(0)=61.5 得到1954-2005实际人口与理论值的结果:
根据《国家人口发展战略研究报告》 我国人口在未来30年还将净增2亿人左右。过去曾有专家预测(按照总和生育率2.0),我国的人口峰值在2045年将达到16亿人。根据本课题专家研究,随着我国经济社会发展和计划生育工作加强,20世纪90年代中后期,总和生育率已降到1.8左右,并稳定至今。实现全面建设小康社会人均GDP达到3000美元的目标,要求把总和生育率继续稳定在1.8左右。
按此预测,总人口将于2010年、2020年分别达到13.6亿人和14.5亿人,2033年前后达到峰值15亿人左右(见图1)。劳动年龄人口规模庞大。我国15-64岁的劳动年龄人口2000年为8.6亿人,2016年将达到高峰10.1亿人,比发达国家劳动年龄人口的总和还要多。在相当长的时期内,中国不会缺少劳动力,但考虑到素质、技能等因素,劳动力结构性短缺还将长期存在。同时,人口与资源、环境的矛盾越来越突出。
而据模型求解:
2010年人口:x(2010)= 137.0200(千万)专家预测13.6亿
误差为0.7% 2020年人口:x(2020)= 146.9839(千万)专家预测14.5亿
误差为1.3% 2033年人口:x(2033)= 157.2143(千万)专家预测
15亿
误差为4.8% 2045年人口:x(2045)= 164.6959(千万)专家预测
16亿
误差为4.1%
五、预测 1.1954-2005总人口数据建立模型:
r=0.0327xm=180.9516 2010年人口:x(2010)= 137.0200(千万)专家预测13.6亿
误差为0.7% 2020年人口:x(2020)= 146.9839(千万)专家预测14.5亿
误差为1.3% 2033年人口:x(2033)= 157.2143(千万)专家预测
15亿
误差为4.8% 2045年人口:x(2045)= 164.6959(千万)专家预测
16亿
误差为4.1% 2.1963-2005总人口数据建立模型:
r=0.0493 xm=150.5261 2010年人口:x(2010)= 134.1612(千万)专家预测13.6亿
误差为1.4% 2020年人口:x(2020)= 140.0873(千万)专家预测14.5亿
误差为
3.4% 2033年人口:x(2033)= 144.8390(千万)专家预测
15亿
误差为3.4% 2045年人口:x(2045)= 147.3240(千万)专家预测
16亿
误差为7.6% 3.1980-2005总人口数据建立模型:
r=0.0441xm=156.3297 2010年人口:x(2010)= 135.2885(千万)专家预测13.6亿
误差为0.5% 2020年人口:x(2020)= 142.1083(千万)专家预测14.5亿
误差为2.0% 2033年人口:x(2033)= 147.9815(千万)专家预测
15亿
误差为1.3% 2045年人口:x(2045)= 151.3011(千万)专家预测
16亿
误差为5.4% 总体来看,1980-2005这一组数据拟合出的人口模型比较好,即与已有数据吻合,又与专家预测误差较小。从历史原因来分析:1954年之后的1959-1961年间,有三年自然灾害故而使得实际人口数据与估计有所偏颇。1960年之后为过渡时期。1983年之后开始实施“计划生育政策”,一直至今,所以1980-2005年间的数据与预测分析最好。
篇二:人口增长模型
Logistic人口阻滞增长模型
一、模型的准备
阻滞增长模型的原理:阻滞增长模型是考虑到自然资源、环境条件等因素对人口增长的阻滞作用,对指数增长模型的基本假设进行修改后得到的。阻滞作用体现在对人口增长率r的影响上,使得r随着人口数量x的增加而下降。若将r表示为x的函数r(x)。则它应是减函数。于是有:
dx ?r(x)x,x(0)?x0dt(1)
对r(x)的一个最简单的假定是,设r(x)为x的线性函数,即
r(x)?r?sx(r?0,s?0)(2)
设自然资源和环境条件所能容纳的最大人口数量xm,当x?xm时人口不再增长,即
r 增长率r(xm)?0,代入(2)式得s?,于是(2)式为
xm r(x)?r(1?将(3)代入方程(1)得:
x?dx ??rx(1?)?dtxm ??x(0)?x0 x)xm(3)
(4)
解方程(4)可得:
x(t)? xm x 1?(m?1)e?rt x0(5)
二、模型的建立
我国从1954年到2005年全国总人口的数据如表1
1、将1954年看成初始时刻即t?0,则1955为t?1,以次类推,以2005年为t?51作为终时刻。用函数(5)对表1中的数据进行非线性拟合,运用Matlab编程得到相关的参数xm? 180.9871,r?-0.0336,可以算出可决系数(可决系数是判别曲线拟合效果的一个指标): R2?1? ?(y i?1 5i?1 i ?i)2?y ?0.9959 i ?(y ?)2 由可决系数来看拟合的效果比较理想。所以得到中国各年份人口变化趋势的拟合曲
线:
180.9871(6)
180.98711?(?1)e?0.0.0336t 60.2 根据曲线(6)我们可以对2010年(t?56)、2020年(t?66)、及2033年(t?79)进行预测得(单位:千万):
x(56)?138.6161,x(66)?148.5400,x(79)?158.6028 结果分析:从所给信息可知从1951年至1958年为我国第一次出生人口高峰,形成了中国人口规模“由缓到快”的增长基础;因此这段时期人口波动较大,可能影响模型结果的准确性。1959、1960、1961年为三年自然灾害时期,这段时期人口的增长受到很大影响,1962年处于这种影响的滞后期,人口的增长也受到很大影响。总的来说1951-1962年的人口增长的随机误差不是服从正态分布,程序:
x(t)? 结果:
2、将1963年看成初始时刻即t?0,以2005年为t?32作为终时刻。运用Matlab编程得到相关的参数xm? 151.4513可以算出可决系数R2?0.9994得到中国,r? 0.0484,各年份人口变化趋势的另一拟合曲线:
151.4513(7)
151.45131?(?1)e?0.0484t 69.1 根据曲线(7)我们可以对2010年(t?47)、2020年(t?57)、及2033年(t?70)进行预测得(单位:千万):
x(47)? 134.9190,x(57)?140.8168,x(70)? 145.5908 结果分析:1963年-1979年其间,人口的增长基本上是按照自然的规律增长,特别是在农村是这样,城市受到收入的影响,生育率较低,但都有规律可寻。总的来说,人口增长的外界大的干扰因素基本上没有,可以认为这一阶段随机误差服从正态分布;1980-2005年这一时间段,虽然人口的增长受到国家计划生育政策的控制,但计划生育的政策是基本稳定的,这一阶段随机误差也应服从正态分布,因此用最小二乘法拟合所得到的结果应有较大的可信度。
程序:
x(t)?
结果:
3、从1980-2005年,国家计划生育政策逐渐得到完善及贯彻落实,这个时期的人口增长受到国家计划生育政策的控制,人口的增长方式与上述的两个阶段都不同。因此我们进一步选择1980年作为初始年份2005年作为终时刻进行拟合。运用Matlab编程得到相关的参数xm? 153.5351可以算出可决系数R2?0.9987得到中国各年,r? 0.0477,份人口变化趋势的第三条拟合曲线: 153.5351(8)
153.53511?(?1)e?0.0477t 98.705 根据曲线(7)我们可以对2010年(t?30)、2020年(t?40)、及2033年(t?53)进行预测得(单位:千万):x(30)? 135.5357 ,x(40)? 141.8440,x(53)? 147.0172 结果分析:这一时期,国家虽然对人口大增长进行了干预,但国家的计划生育的政策是基本稳定的,在此其间没有其他大的干扰,所以人口增长的随机误差应服从正态分布。所以结果应是比较可信的。
程序:
x(t)? 结果:
篇三:人口增长模型
人口增长模型
摘要
本文主要根据某地区的人口统计数据,通过合理的假设 和严密的分析来建立模型,和估计该地区2010年的人口数量,并对其做出相应的分析。
首先,我们利用Matlab软件画出该地区1800至2000年的人口数据图,通过直观观察人口的变化规律后,我们认为该地区的人口数据呈现类似线性增长和指数增长,于是我们分别建立线性增长模型和指数增长模型,在假设人口增长率保持不变的前提下,用最小二乘法对数据进行拟合,最后得出2010年的人口预报数:线性时为283.114百万,指数时为374.789百万。
但实际上人口增长率是不断地变化着的,即人口增长率不可能是一个常数,所以我们建立的线性增长模型和指数增长模型都比较粗糙,不能描述和预测较长时间人口变化过程。而且从该地区历年的人口数据描述图可看出,从1980年开始,该地区的人口增长明显变慢,即人口增长受到一定的阻滞,所以为了更好地符合实际情况,以及更好地预报出长期的人口数,我们再建立了阻滞增长模型,利用此模型我们最后求出2010年的人口预报数为295.368百万。
关键字
人口预报,线性增长模型,指数增长模型,阻滞增长模型(Logistic模型)
问题重述
根据某地区人口从1800年到2000年的人口数据(如下表),建立模型估计出该地区2010年的人口(单位:百万),同时画出拟合效果的图形。
模型假设
1、该地区历年的人口统计记录数据准确无误;
2、在模型一、二中,假设人口增长率不变,是一个常数,即单位时间内人口的增长量与当时的人口量成正比。;
符号说明
x(t)t时刻的人口数量
x0 初始时刻的人口数量
r人口增长率
xm 环境所能容纳的最大人口数量,即r(xm)?0 模型分析
首先,我们运用Matlab软件编程(见附件1),把1800年到2000年的人口数据通过绘图描点如下图
图1 1800年到2000年的人口数据图
从图我们可以看出1800年到2000年的人口数是呈现增长的趋势的,而且图像呈现类似线性函数和指数函数,于是我们猜测人口增长随时间的变化规律为线性函数或指数函数,所以我们分别用两种函数建立线性增长模型和指数增长模型,用最小二乘法对数据进行拟合,确定其中的未知参数。
然而上述两种模型都是在假设人口增长率不变的前提下建立的,比较粗糙,但在现实生活中,我们知道人口增长率是不可能不固定不变的,也就是人口不可能无限增长,无限增长将会导致人口爆炸,而政府对这种情形不可能置之不理的,也就是说政府对人口无限增长会采取相应的措施,所以但人口增长到一定的程度下,人口增长率将会随人口的增长而呈线性递减,而且考虑到自然资源、环境条件等因素都会对人口增长起阻滞作用,并且随着人口增加,阻滞作用越来越大。因此,我们改进了模型,建立了阻滞增长模型。
模型建立
模型一:线性增长模型
首先,我们假设满足线性关系
x(t)?at?b,根据最小二乘法,a和b是以下函数的最小值:
E(a,b)?n?(ati?b?xi)2,其中xi是ti时刻该地区的人口数。
i?1 即有 E?(a,b)?(a.1800?b?7.2)2?(a.1810?b?13.8)2?...?(a.2000?b?280.3)2 ?E?E?0,?0,可解得a和b。?a?b 我们用Matlab编程(见附件2),解得a=1.5,b=-2755.3 令
故 x(t)?1.5t?2755.3 然后用该方程对1800年到2000年的人口数据进行拟合,拟合的效果图如下:
从上图可以看出拟合的效果不是很好,模型比较粗糙,所以我们有必要建立其他的模型进行预测。但对于后期的人口拟合得还是可以的,用这线性增长模型 预报出x(2010)?1.5*2010?2755.3?283.1148百万。
模型二:指数增长模型
由于今年人口为x0,k年后人口为xk,年增长率为r,则有xk?x0(1?r)k。则在t到t+?t时间内的人口增量为x(t??t)?x(t)?rx(t)?t 上式两边同时除以?t得:
x(t??t)?x(t)?rx(t)?t 令?t?0,取极限得到x(t)满足的微分方程为
dx?rx(t)dt 于是我们得到一个指数增长的人口模型为
?dx??rx(t)?dt??x(0)?x0 解这个方程得到
x(t)?x0ert(2)
然后,我们利用数据拟合(程序见附件3),效果
图3 指数增长模型的拟合图
注:*号为准确值,曲线为计算结果
从图3可以看出,拟合效果还好,但到了后期时段时,该地区人口增长明显变慢,这个明显就不适合了,拟合效果就不那么好了,说明该地区的人口增长率时随着人口的增长而递减的,有一定的阻滞使人口增长得不如前那么快,此模型还是有点粗糙,所以我们要对模型进行进一步的改进。
用该地区的数据拟合(2)式,可解得r =5.94e-007 年,x0=1e-006,然后)?374.789百万。把它们代进模型,我们可算得x(2010
结果分析
用此模型基本是上能够描述1980年以前的人口增长,但我们从指数增长模型的拟合图可以看出,此模型对1980年以后的数据就拟合得不是很好,从1980年后,该地区的人口增长明显变慢,所以用此模型对2010年的人口进行预报不是那么适合,结果存在一定的误差,从图3可以看出所得的结果并不准确,精度不高。
模型三:阻滞增长模型
随着人口的增加,人口的增长速度会降低,所以我们假设人口数的减函数为
r(x)?r-sx 人口数量最终会达到饱和,且趋于一个常数xm,当x?xm时,增长率为0,即有 r?sxm?0 由上面的关系式可得出:
?x?r(x)?r?1??x??(3)
m?? 把(3)式代进指数增长模型的微分方程中可以得到:
?dx?xr1?xdt?xm? ?x(0)?x0? 解得
x(t)?xm ?xm??rt?1???1?x?e?0?(4)
把x(1800)?7.2代进(4)式得
x(t)?xm ?10xm?1???1?e?r(t?1800)?132?
第二篇:人口增长与计划生育
第24章:人与环境
第一节:人口增长与计划生育教学设计
二十五中崔兴凯
一、教学目标
1.通过查询有关资料,了解世界和我国人口增长状况,并学习查询资料的方法。
2.通过对具体实例和统计数字的分析与讨论,了解人口增长对环境、资源和生态平衡造成的影响,认识控制人口数量的重要意义。
3.在讨论控制人口数量和提高人口素质的相互关系以及人口数量与环境关系协调等问题的基础上,理解计划生育作为我国一项基本国策的重要性和必要性。
二、重点、难点分析
1.人口过度增长对环境、资源和生态平衡的影响是本小节学习的难点。学生理解了这个问题,有助于理解控制人口的重要性。教师在教学中可以从生态平衡的角度引入,人类必须考虑自己的生活与生产活动对环境的影响,对生态平衡的影响。人口数量的不断增长必将影响环境、资源以及生态平衡。近年来,中外电影界拍摄了一些有关人类与环境关系的电影,如《侏罗纪公园》、《与狼共舞》、《横冲直撞》等等,这些电影告诉我们一些关于人类如何与其它生物共存,告诉我们人类在采取一些活动时必须考虑对环境、对生态平衡的影响。我们可以利用这些电影资料于教学过程中。
2.控制人口的意义是本小节的重点。通过多年广泛的宣传教育,学生已经知道我国实行计划生育。控制中国人口的增长的政策。但是,为什么要控制人口,控制人口的意义是什么,需要在本小节的教学过程中让学生认识。
教学策略:这一节内容的教学最好通过学生讨论的方式进行。教师可以准备一些资料,包括有关的数字、挂图、录像等供学生讨论,教师也可以通过提出一些问题组织学生的讨论。
三、教学过程
1.课前准备:
有关中国和世界人口资料以及资源资料的查询。
【查询方法】:
(1)到有关单位,如国家、市、区计生委了解情况。
(2)查找有关书刊、报纸、环境公报、人口公报。
(3)计算机检索,输入关键词,可获得相应的资料。
【查询内容】:
(1)中国人口数量的有关资料以及世界人口状况。
(2)中国土地、水、森林等资源状况以及世界土地、水、森林等资源状况。
(3)人口对资源的影响。
(4)人口数量与住房、交通、升学、就业等社会问题的关系。
2.复习上一节课,引入新课:
利用池塘生态系统教学挂图提问:在这个池塘中,若饲养的鱼过多,池塘会发生什么变化?这种变化的实质是什么?
一个生态系统,生物生存的空间是有一定限度的。若鱼类过多,鱼呼吸消耗水中的氧气会造成水中氧气不足,最终危及鱼类自身的生存。所以,鱼类密度过大,会影响到生态系统的平衡状态。生物的生存和发展受到环境的制约,同时也会对环境产生影响。维持生物与生物之间、生物与无机环境之间的相对平衡状态,对于生态系统的稳定性是非常重要的。
与其他生物相同,人类的生存与发展同样受到环境的制约,同样也会对环境产生影响。本小节讨论的主题就是人口与环境的关系。
3.关于“世界和我国人口的增长”的教学:
我国是世界上人口最多的国家。中国的人口众多是怎样形成的?
根据教材(我国人口增长示意图)讨论以下几个问题:
(1)从这个示意图,我们可以看到什么?
(2)这个示意图只记录到1989年,10年过去了,目前中国人口数量是多少?
(3)结合教材(我国人口增长示意图),看这张表,说明中国人口增长的特点。为什么近年来增长速度比较稳定?
1760年-1995年中国人口每增加2亿各需要的时间
时间
1760-1900
1900-1954 人口 2亿-4亿 4亿-6亿 人口增加2亿需要的时间 1400年 54年
1954-1969
1969-198
21982-1995 6亿-8亿 8亿-10亿 10亿-12亿 15年 13年 13年
(4)在查询资料中,世界人口增长的特点如何?
世界人口每增加十亿所需要的时间
年 人口(亿)增加数(亿)
10时间数(年)约100 32 13 10 14 1830 10 1930 20 1962 30 1975 40 1985 50 1999 60(估计)
【小结】: 1928~1949年的21年间,我国人口增加了0.7亿,1982~1989年期间,我国人口也增加了0.7亿,但同样的增长却只用了5年时间。这说明我国人口增长的速度加快。近年来,人口增长的速度比较稳定是由于国家采取了一定的政策,使增长的速度得到了一定的控制。但是,我们必须看到,由于中国人口基数大,虽然国家采取了一定的控制措施,但每年净增长量仍然很高,每年增长人口在千万以上。
4.关于“人口增长与资源危机”:
【讨论】:人口增长必须增加对各种资源的需求。人口增长带来的资源危机有哪些方面?(学生在课前进行了相关问题的调查和资料查询,可以结合学生的调查,并提供有关录像资料组织学生的讨论。)
讨论可以分为几个问题:
(1)人口增长与粮食问题。耕地是粮食生产的基地。人口增加使人均占有耕地面积减少,由此引起粮食问题。
(2)人口增长与水资源。水是人类生存不可缺少的物质。地球上淡水资源有限。人口增必然会造成水资源的短缺。历史上曾因水的问题而引起的战争正说明水资源的重要性。
(3)人口增长与能源。随着社会的发展与进步,人类对能源的需求量越来越大,因此需要消耗越来越多的能源物质,需要提供更多的石油、煤、天然气等能源物质。但是,这些物质都是不能再生的物质。人口数量的增长也将引发能源的危机。
【小结】:我国的土地资源、水资源以及能源都是有限的。如果不能控制住人口的数量,最终会由于资源的缺少影响我们的生存。
【提问】:人口增长会不会影响生态系统,影响生态平衡?
5.关于“人口增长与生态平衡”:
人类是生态系统的重要成员。人类的生存依赖着生态系统,同时也对生态系统产生了影响。在人类的发展过程中,人类基本上能够处理好与生态系统的关系。但是,随着人口增长和科学技术的不断进步,人类对环境的冲击和压力越来越大,人类与生态系统的关系越来越紧张。人类为了解决自身的需要,维持自身的生存,在生产活动中改变了生态系统的结构。这些改变,不仅破坏了生态系统原有的平衡状态,同时也触发了一些自然灾害的发生。
有关这个问题,教师可以引导学生介绍自己所听到、看到的一些情况,认识人口增长与生态平衡的关系。
6.人口增长与人口素质的关系:
【讨论】:(1)人口数量与城市住房、城市交通、升学、就业等关系。
(2)人口数量与人口素质是否有关?说明理由。
学生可以根据自己的调查结果发表自己的观点,教师应注意引导让学生认识到人口数量的无限制的增加会造成众多的社会问题,而解决这些问题只能通过控制人口的数量。
7.计划生育与控制人口数量、提高人口素质:
【讨论】:(1)怎样解决人口增长带来一系列的问题?
(2)我国政府采取了什么政策控制人口数量?
(3)控制人口增长的具体要求有哪些?
(4)控制人口增长的意义是什么?
(5)我们可以做些什么?
【小结】:当今有四大环境问题,人口、粮食、资源和环境。这些问题中,核心问题是人口问题。不控制人口数量的增长,就无法解决其他三个方面的问题。中国是世界上人口最多的国家,中国人口的增长对世界影响很大,所以中国应该、同时也能做到控制中国的人口增长。只有这样,才有利于这个自身的发展和世界的发展。
第三篇:《人口增长与计划生育》习题
《人口增长与计划生育》习题
一、基础过关
1.在人类发展史中,世界人口增长最快的100年是()
A.1601~1700年
B.1701~1800年
C.1801~1900年
D.1901~2000年
2.与人口增长较快无关的因素是()
A.科学技术的发展
B.医疗水平的提高
C.人的出生率超过死亡率
D.克隆技术的成熟
3.我国水资源的现状是()
A.水资源供大于求
B.水资源基本保证人口需求
C.水资源与人口矛盾开始呈现
D.水资源严重缺乏
4.随着世界人口的增多、森林的破坏和工业规模的扩大等,生物圈中某气体的浓度不断增加,这种气体可能是()
A.氧气
B.氮气
C.二氧化碳
D.水蒸气
5.计划生育是指()
A.每个人要有汁划地进行生育
B.国家对人们的生育实行统一计划
C.一对夫妻一定生育一个孩子
D.一对夫妻只能生育一个孩子
6.控制人口增长最有效的选择是()
A.降低出生率
B.降低死亡率
C.提高优生率
D.提高生育年龄
7.在下列各种节约资源的措施中,我们中学生目前还不能做到的是()
A.节约粮食
B.节约用水
C.节约用电
D.节约用汽油
二、综合训练
1.填空题
(1)我国计划生育的具体要求_____、_____、_____、______。
(2)世界人口的增长特点是______,当今世界人口已突破______亿,可以说______已 成为当今人类面临的重大问题。
2.判断题
(1)计划生育是我国的一项基本国策()
(2)人口越多,产生的社会财富会越多()
(3)晚婚、晚育有利于控制人口过快增长()
(4)少生是控制人口过快增长的关键;晚育对人口没影响()
(5)温室效应的主要原因是由于人口的急剧增长,呼出的二氧化碳增多()
三、拓展应用
1.识图分析
如图为我国人口的增长曲线图,从1949年开始,我国人口增长的趋势为____。计划生育是我国的一项基本国策,具体要求是____、晚育、____、优育。
2.发散思维
管道漏水──20天300吨自来水流入下水道。2004年3月12日《哈尔滨日报》报道,位于哈尔滨通达街道里区城管局楼下的地下室漏水已有半个多月。当地下室居民分别找到物业公司、自来水公司和房屋的产权单位时,三家都说责任不归自己,致使问题至今没有得到解决。由于每天地下室不断渗水,居民自己买了一个抽水泵,不停将室内积水抽出。居民粗略计算了一下,20多天来,少说也有300吨自来水白白流入下水道。
随着人口增长和经济高速发展,水的供求矛盾已成为制约我国工农业生产和城市发展的瓶颈。2010年后,我国将进入严重缺水时期。根据水利部《21世纪中国水供求》分析,2010年我国工业、农业、生活及生态环境总需水量在中等干旱年为6 988亿立方米,供水总量6 670亿立方米,缺水318亿立方米.这表明,2010年后我国将开始进入严重的缺水期。这份报告还称,2030年,我国将缺水400亿立方米至500亿立方米,缺水高峰将会出现。
(1)水是生命的源泉,水是生物赖以生存的重要条件之一、从资料中你获得了哪些启示?
(2)缺水对我们的生活有哪些影响?
(3)通过资料分析获得的启示,在日常生活中你将如何身体力行来节约水资源?
《人口增长与计划生育》习题参考答案
一、基础过关
1.D
2.D
3.C
4.C
5.B
6.A
7.A
二、综合训练
1.填空题
(1)晚婚、晚育、少生、优生
(2)越来越快; 60; 人口问题
2.判断题
(1)√
(2)×
(3)√
(4)×
(5)×
三、拓展应用
1.识图分析
迅速增长;晚婚;少生
2.发散思维
(1)保护水资源,节约用水。
(2)缺水首先使我们人类无法生存,工业无法发展,农业不能生产粮食。
(3)及时关闭水龙头、用淘米水浇花、用洗菜水托地、用生活中的废水冲马桶、使用节水龙头、刷牙时用口杯接水、防止水体污染,保护水资源。
第四篇:《人口增长模式》教学设计
一.教材 湘教版 二.章节
第一章 第一节 三.学时 1个学时
四.课程标准解读
“分析不同人口增长模式的主要特点及地区分布。”
本课标主要包含以下三个方面的内容。首先,学生需先知道什么是人口增长模式,世界上主要的人口增长模式;之后,学生需将不同的增长模式进行比较,了解不同增长模式的特点;最后学生需学会运用资料判断不同地区不同人口增长模式及不同人口增长模式在世界的分布。五.教学重点和难点 1.重点
人口增长模式特点及其分布;中国人口增长状况 2.难点
分析人口增长模式的出生率、死亡率、自然增长率的高低及其影响因素 六.教学方法
1.多媒体教学法。通过课件向学生展示丰富的文字、图片、动画等材料。2.案例分析法。通过文字和图片材料,让学生自主分析,得出结论。七.教学过程 【引入】“世界70亿人口日”
2011年10月31日,世界人口达70亿。10月31日,丹妮卡·卡马乔在媒体聚光灯的环绕下,于31日零点前2分钟在菲律宾首都马尼拉一家医院降生。她将成为全球范围内几名被宣布成为象征性的世界第70亿人口的婴儿之一。【人口增长】 1.人口增长历程
2、衡量人口增长速度指标:人口自然增长率
自然增长率是指一地区一年内的自然增长人口与总人口之比 出生率是指一年内一定地区的出生人口与总人口之比 死亡率是指一年内一定地区的死亡人口与总人口之比 自然增长率=出生率-死亡率
阅读教材p3,思考为什么发达国家人口自然增长率低,发展中国家人口自然增长率高?
发达国家人口自然增长率低的原因: ①工业化程度较高,劳动者必须具备较高的知识水平和劳动技能,并接受系统的教育和技术培训,参加劳动的人口年龄较大,劳动力培训费用比较高,对家庭造成的经济压力较大,导致出生率降低;②老年人的社会保障程度高,对子女的依赖程度低,人们逐渐消除了“养儿防老”的传统观念;③妇女的受教育水平高,易于接受少生、优生和优育的新观念。相反,发展中国家人口自然增长率较高。
3.影响人口增长因素 ①生物学规律
②经济基础与上层建筑 如:经济发达程度、文化教育水平、医疗卫生条件、妇女就业状况、婚姻生育观、宗教信仰、风俗习惯、战争、自然灾害、人口政策、社会保障等。【人口增长模式】 1.人口增长模式
人口增长模式,又称为人口转变模式,它反映了不同国家和地区的人口出生率、死亡率和自然增长率随社会经济条件的变化而变化的规律。① 高—高—低”模式 模式
原始型人口增长模式 特点
出生率极高(﹥3%)死亡率极高(﹥3%)自然增长率极低(≈0)
人均寿命短,人口增长极为缓慢。社会发展阶段
狩猎文明。原始社会。原因
以采集、狩猎经济为主。生产力水平极为低下。分布
热带森林等极落后地区
模式
传统型人口增长模式 特点
出生率极高(﹥3%)死亡率高(﹥2%)
自然增长率较低(﹥1%)
人均寿命有所延长,人口增长缓慢 社会发展阶段
农业文明。奴隶社会、封建社会、资本主义社会初期 原因
与以手工劳动为主的自然经济相适应 生产力水平低下 分布
落后的发展中国家或地区
②“高—低—高”模式(过渡型)特点
出生率高(﹥2%),死亡率低(﹤2%),自然增长率高(﹥1%)。
人均寿命继续延长,人口快速增长。社会 发展 阶段
工业文明时期(工业化初期)。
发达国家:18世纪末19世纪初~19世纪末20世纪初; 发展中国家:20世纪50年代~现在 原因
以近代科学技术为基础的工业化生产使生产力水平明显提高,医疗卫生事业迅速发展,粮食产量大幅度增加 分布
亚、非、拉等洲的发展中国家或地区(如坦桑尼亚、肯尼亚等)讨论分析: 措施:大力实行计划生育
③“低—低—低”模式(现代型)特点
出生率低(﹤2%),死亡率低(﹤2%),自然增长率低(﹤1%)。人均寿命进一步延长,人口零增长或负增长。社会发展阶段
后工业文明(新技术革命)时期,目前主要是发达国家 原因
现代科学知识的普及和医疗卫生技术的进步,人类生活水平和文化水平的提升,人们的生育观念和生育行为的变化 分布
主要分布在发达国家(如意大利、匈牙利、芬兰等)和部分发展中国家(如韩国、新加坡等)讨论分析: 影响:发达国家人口出生率低、人口增长慢 ⑴劳动力紧缺:
发达国家人口死亡率低 ⑵老龄化现象严重:
①增加社会保障和青壮年人的生活负担;②老年人生活孤单, 也不利于社会和谐发展 措施:鼓励生育、吸纳移民
2、我国的人口增长和人口政策
①我国正由高-低-高向低-低-低的现代模式转化。②控制人口数量,提高人口素质是我国的基本国策。
第五篇:2021中国人口增长情况一览
从人的经济活动二重性方面来考察,人口对社会发展的作用体现在人口的经济活动之中。下面是小编为大家整理的2021中国人口增长情况一览,喜欢可以分享一下哟!
2021中国人口增长情况
据国家统计局消息,2021年末全国人口(包括31个省、自治区、直辖市和现役军人的人口,不包括居住在31个省、自治区、直辖市的港澳台居民和外籍人员)141260万人,比上年末增加48万人。全年出生人口1062万人,人口出生率为7.52‰;死亡人口1014万人,人口死亡率为7.18‰;人口自然增长率为0.34‰。
从性别构成看,男性人口72311万人,女性人口68949万人,总人口性别比为104.88(以女性为100)。
从年龄构成看,16-59岁的劳动年龄人口88222万人,占全国人口的比重为62.5%;60岁及以上人口26736万人,占全国人口的18.9%,其中65岁及以上人口20056万人,占全国人口的14.2%。
从城乡构成看,城镇常住人口91425万人,比上年末增加1205万人;乡村常住人口49835万人,减少1157万人;城镇人口占全国人口比重(城镇化率)为64.72%,比上年末提高0.83个百分点。
全国人户分离人口(即居住地和户口登记地不在同一个乡镇街道且离开户口登记地半年以上的人口)50429万人,比上年增加1153万人;其中流动人口38467万人,比上年增加885万人。
人口对社会发展作用
人口对社会发展作用是人口作为人类社会存在和发展的前提,对促进或延缓社会发展所产生的影响。人口是社会生活的主体。“因为人是社会物质生活条件的必要因素,没有一定的最低限度的人口,就不可能有任何社会物质生活”(《斯大林选集》下卷,第440页)。在人类社会中,以一定的人口及其发展为前提的劳动力人口,作为社会生产力的构成要素,成为社会生产过程的主体,在生产力的诸因素中起着主导作用。
老龄化的危害
1、减少劳动力
中国老龄化严重。未来十年,20-24岁青年劳动力规模将减少30%。出生率下降很严重。中国的老龄化是我们面临的一个严重问题。我国老龄化严重,出生率下降将带来严重危害。未来十年,年轻劳动力的数量将减少。
2、基本养老保险支出总额增加
人口老龄化的加剧,有可能增加今后老年人患病、致残、智障的比例。它不仅会增加企业和政府在基本医疗保险方面的经济负担,还会增加老年人的医疗和护理支出,从而需要更多的个人基本养老金和各种补充养老金收入。
3、医疗问题
老年人是医疗卫生资源的重要消费者。卫生部曾经统计,60岁以上老年人慢性病患病率是全国人口的3.2倍,残疾率是全国人口的3.6倍,老年人消耗的卫生资源是全国人口的1.9倍。
与经济发展相比,我国医疗卫生事业的发展相对落后。老年人看病难、看病难的问题尤为突出。
2021中国人口增长情况一览