第一篇:《钢铁冶金概论》课程考核论文封面
选课课号:
(202_-202_-1)-B110343-600025-1
课程性质:
选修课
《钢铁冶金概论》课程考核
题目:
教师评语: 成绩:
(课程论文)
学生姓名:
学 号: 授课教师: 袁 晓 丽
专业班级:
重庆科技学院冶金与材料工程学院 202_年12月
中国
重庆
第二篇:《冶金工程概论》课程考核论文封面
选课课号:
(202_-202_-1)-BG11191-600025-1
课程性质:
公选课
《冶金工程概论》课程考核
题目:
教师评语: 成绩:
(课程论文)
学生姓名: 王远航 学 号: 2010442016 授课教师: 袁晓丽 班 级:
化学工程工艺10-3 重庆科技学院冶金与材料工程学院 202_年11月
中国
重庆
第三篇:《冶金工程概论》课程考核论文封面
选课课号:(202_-202_-2)-BG11191-320105-1课程类别:公选课
题目:钢铁冶金联合企业生产环节与管理
《冶金工程概论》课程考核(课程论文)作者: 袁浪 学号: 2011443710 授课教师: 田世龙 班级: 物流管理11-01班
重庆科技学院冶金与材料工程学院
二零一二年 11 月中国重庆
钢铁冶金联合企业生产环节与管理
摘要:钢铁工业是国家的基础工业之一,钢铁产量往往是衡量一个国家工业水平和生产能力的主要标志,钢铁的质量和品种对国民经济其它工业部门产品的质量,都有着极大的影响。目前,我国冶金技术已进入成熟发展阶段,大型高炉的技术经济指标不断改善,但很多冶金企业重视科学技术而忽视了其中的管理,这就暴露了诸多问题,如果能实现科技进步的同时注重企业的现代化管理,将对钢铁冶金企业实现节能减排,节约成本,提高效率的长远发展需求提供促进作用。
关键词:冶金钢铁工序管理
一.生产环节
1.1采矿
原料是高炉冶炼的物质基础,冶炼1t生铁大约需要1.6~2.0t矿石,0.4~0.6t焦炭和0.2~0.4t溶剂。高炉冶炼是连续生产过程,因此必须尽可能为其提供数量充足,品位高,杂质少,强度好,粒度均匀,粉末少以及性能稳定的原料,对一些不能满足上诉要求的原料,要进行一系列的准备处理,以确保高炉操作稳定顺行
采矿方法就是根据矿床的赋存要素和矿石与围岩的物理力力学
等因素所确定的矿石开采方法,它包括采区的采准,切割和回采。根据回采时地区管理方法分为三大类:空场采矿法,充填采矿法和崩落采矿法。
1.2选矿
(1)铁矿石:我国是世界上铁矿石资源较为丰富的国家之一,已探明的铁矿石储量有443亿吨。作为炼铁原料的铁矿石主要有赤铁矿,磁铁矿,褐铁矿及菱铁矿四种。磁铁矿坚硬致密,具有磁性,故其复合矿适合用磁选的方法富集,但还原能力差。赤铁矿质软,组织疏松易破碎,还原性能优于磁铁矿。褐铁矿和菱铁矿在受热时,所含结晶水及碳酸盐分解货挥发后,形成疏松多孔的结构,还原性好。对于含铜或含钒钛类型铁矿石,为了综合回收各种有用矿物,多采用磁,浮,重,化等联合流程进行选别。
(2)多金属矿石 :典型多金属硫化矿石是铜,铅,锌硫化矿石。
其特点:硫化矿物种类多,品位低,嵌布细,各种有用矿物共生,可
选性不一。
1.2人工造矿(球团和烧结)
粉矿造块的方法:烧结法和球团法,以烧结法为主。
1)烧结是分矿造块的主要方法,其工艺是将粉矿,燃料和熔剂
按一定比例混合;利用其中燃料燃烧产生的热量使混合料发生一系列
物理化学反应,部分原料颗粒表面发生软化和熔化,产生一定液相,并润湿其他未熔化的矿石颗粒;当冷却后,液相将粉矿颗粒粘结成块,这个过程成为烧结。
2)主要设备:吸风带式烧结机。
2·炼铁
目前常用的炼铁方法有高炉炼铁,直接还原和熔融还原铁三种方法。
高炉炼铁是以焦炭为能源基础的传统炼铁方法,利用焦炭作为发热剂
和还原剂,把铁矿石还原成生铁的碳热还原熔炼过程。
2.1高炉炼铁的过程如下:
1)烧结矿及部分块状铁矿石与焦炭,溶剂从高炉顶装入高炉中;
2)从高炉下不得风口鼓入1000~1300℃的热风,炉料中的焦炭
在风口前与鼓风中的氧发生燃烧反应;
3)同鼓入空气中的氧燃烧生成的一氧化碳和氢气,在炉内上升
过程中除去铁矿石中的氧,从而还原得到铁。
4)反应产生的202_℃以上的炽热的具有还原性的煤气,在炉内
上升过程中加热缓慢下降的炉料。矿石料在下降过程中逐步被还原,熔化成生铁和渣,聚集在炉缸中,并定期从铁口,渣口放出。
5)上升的高炉煤从炉顶排出。所以,可以把高炉看成是一个炉料
下降,煤气上升的两个逆向物流运动的反应器。
2.2高炉炼铁的特点
1)高炉冶炼是在炉料与氧气气流逆向运动过程中完成各种错综
复杂的化学反应和物理变化的,炉内主要是还原性反应。
2)高炉是密闭的容器,除装料,出铁,出渣及煤气外,操作人员
无法直接观察到反应过程的状况,只能凭借仪器。
3)高炉是连续的大规模的高温生产过程,机械化自动化水平高
3.炼钢
1)造渣:调整钢、铁生产中熔渣成分、碱度和粘度及其反应能
力的操作。目的是通过渣——金属反应炼出具有所要求成分和温度的金属。例如氧气顶吹转炉造渣和吹氧操作是为了生成有足够流动性和碱度的熔渣,能够向金属液面中传递足够的氧,以便把硫、磷降到计划钢种的上限以下,并使吹氧时喷溅和溢渣的量减至最小。
2)出渣:电弧炉炼钢时根据不同冶炼条件和目的在冶炼过程中所采取的放渣或扒渣操作。如用单渣法冶炼时,氧化末期须扒氧化渣;用双渣法造还原渣时,原来的氧化渣必须彻底放出,以防回磷等。
3)熔池搅拌:向金属熔池供应能量,使金属液和熔渣产生运动,以改善冶金反应的动力学条件。熔池搅拌可藉助于气体、机械、电磁感应等方法来实现。
4)电炉底吹:通过置于炉底的喷嘴将N2、Ar、CO2、CO、CH4、O2等气体根据工艺要求吹入炉内熔池以达到加速熔化,促进冶金反应过程的目的。采用底吹工艺可缩短冶炼时间,降低电耗,改善脱磷、脱硫操作,提高钢中残锰量,提高金属和合金收得率。并能使钢水成分、温度更均匀,从而改善钢质量,降低成本,提高生产率。
5)熔化期:炼钢的熔化期主要是对平炉和电炉炼钢而言。电弧炉炼钢从通电开始到炉料全部熔清为止、平炉炼钢从兑完铁水到炉料全部化完为止都称熔化期。熔化期的任务是尽快将炉料熔化及升温,并造好熔化期的炉渣。
6)氧化期和脱炭期:普通功率电弧炉炼钢的氧化期,通常指炉料溶清、取样分析到扒完氧化渣这一工艺阶段。也有认为是从吹氧或加矿脱碳开始的。氧化期的主要任务是氧化钢液中的碳、磷;去除气体及夹杂物;使钢液均匀加热升温。脱碳是氧化期的一项重要操作工艺。为了保证钢的纯净度,要求脱碳量大于0.2%左右。随着炉外精炼技术的发展,电弧炉的氧化精炼大多移到钢包或精炼炉中进行。
7)还原期:普通功率电弧炉炼钢操作中,通常把氧化末期扒渣完毕到出钢这段时间称为还原期。其主要任务是造还原渣进行扩散、脱氧、脱硫、控制化学成分和调整温度。目前高功率和超功率电弧炉炼钢操作已取消还原期。
8)炉外精炼:将炼钢炉(转炉、电炉等)中初炼过的钢液移到另一个容器中进行精炼的炼钢过程,也叫二次冶金。炼钢过程因此分为初炼和精炼两步进行。初炼:炉料在氧化性气氛的炉内进行熔化、脱磷、脱碳和主合金化。精炼:将初炼的钢液在真空、惰性气体或还原性气氛的容器中进行脱气、脱氧、脱硫,去除夹杂物和进行成分微调等。将炼钢分两步进行的好处是:可提高钢的质量,缩短冶炼时间,简化工艺过程并降低生产成本。
9)钢液搅拌:炉外精炼过程中对钢液进行的搅拌。它使钢液成分和温度均匀化,并能促进冶金反应。多数冶金反应过程是相界面反应,反应物和生成物的扩散速度是这些反应的限制性环节。钢液在静止状态下,其冶金反应速度很慢,如电炉中静止的钢液脱硫需30~60分钟;而在炉精炼中采取搅拌钢液的办法脱硫只需3~5分钟。
10)出钢:钢液的温度和成分达到所炼钢种的规定要求时将钢水放出的操作。
4·轧钢
热轧,每一阶段的主要生产过程为:1)加热。将钢坯在加热炉中,加热到再结晶温度以上的某一适当温度。2)轧制。不同品种或规格产品,分别在不同类型的轧机上进行轧制。3)精整。包括剪切、冷却、矫正、检验、表面处理等。
冷轧的主要生产过程为:1)酸洗。除去坯料表面的氧化铁皮。
2)轧制。3)退火。消除加工硬化。4)精整。
二、管理
1.针对企业管理
(1)建立健全和完善企业的用人机制
随着经济的迅速发展,科学技术已成为企业最重要的无形资产,已成为生产力的首要要素。而掌握科学技术的就是人。因此,企业若要在市场竞争中始终立于不败之地,就必须牢固地确立“人力资源是第一资源”、“人力资源的开发与管理战略是企业发展的第一战略”的理念,根据人力资源配置的合理性和有效性原则,确立科学的、灵活的用人机制,为企业生产经营提供充足的人力资源保障。
(2)加强规划,优化人力资源结构
企业对于决定引进、提高、流出的人力资源,应做出科学预测和相关规划安排。针对企业中专业技术人才少、冗员多的现象,一方面要培养、引进大批人才,另一方面要实行淘汰制,坚决分流出那些不适应岗位要求的富余人员,只有“有进有出”,才能保持企业人力资源的持续优势。企业在进行人力资源规划时,要注意充分关注员工期望,建立企业关键岗位的继任规划并优先从内部提拔员工,完善健全科学的激励机制。
(3)加大资金投入,提高系统开发的能力
企业人力资源的开发是一项复杂的系统工程,包括人力资源的生
理开发、心理开发、专业技能、知识技能和创造力开发等方面。要系统开发企业人力资源,必须加大资金投入,加强对员工的全方位培训。
2.针对生产管理
(1)明确岗位责任制
公司领导起到公司总体规划,决策的作用,无需亲临一线指挥,二级厂领导的责任是加强员工思想政治工作、组织建设和完善管理制度,指挥生产,把握生产技术方向等。主要依靠专业现代化企业管理者作为管理队伍,深入到生产第一线了解生产环节,制定出合理的人力资源管理规划并严格执行。
(2)强化对工长的管理和培养
工长是企业生产管理的基层,对企业生产经营起到关键作用。工长的工作应包括对生产的指挥和开展对人员的思想工作,要体现出管理上的两手都要抓,两手都要硬。
(3)实行岗位轮换,培养职工一专多能
为实现企业减员增效,提高企业的劳动生产率,同时减少工作相互不了解,缺乏沟通和衔接的情况,对职工展开多技能培训以及岗位轮换工作,让每个岗位职工掌握多种技能,了解上下工序生产技术内容和要求,进而整体提高企业的竞争力、创造力和凝聚力。
将企业目标与职工个人目标相契合,企业需营造一种的企业文化,这种企业文化,在这里有较好的沟通渠道,可以畅所欲言。采取各种各样的方式使员工能够很好地融合在一起,让员工感觉到在这样一种环境中工作,虽然比较辛苦,但是很快乐,很高兴。在实现自身目标的同时,也是在实现企业的目标。
参考文献:
[1] 冶金管理.202_年 第六期
[2] 冶金信息导刊.202_年第四期
[3] 陈维政.人力资源管理.高等教育出版社,202_年10月第二版
第四篇:《冶金工程概论》课程考核论文
选课课号:
(202_-202_-1)-BG11191-320105-课程类别:
公选课
题目:浅谈钢铁冶金联合企业的生产
《冶金工程概论》课程考核
(课程论文)
——化学在冶金领域的应用
作 者: 李纯杰 学 号: 2011442249 授课教师: 田世龙 班 级:
应化普11-4 重庆科技学院冶金与材料工程学院 二零一二年
11月
中国
重庆
浅谈钢铁冶金联合企业的生产
——化学在冶金领域的应用
摘要:随着国家的发展,工业也跟着发展。在这个快速发展的社会,钢铁工业占着重要的地位,对发展钢铁工业的意义及其对国民经济发展的重要性越来越受重视,中国冶金工业科技水平也逐步上升。中国应当以提高竞争力为目标,进一步提高冶金工业科技水平。冶金行业安全问题要引起高度重视,解决安全问题要采用综合性措施,常抓不懈。完善中国冶金行业的标准从一定意义上来讲是解决冶金安全的关键,应构建安全标准体系来保障行业健康发展。然而要完善中国冶金行业的标准,就要加深对冶金行业发展现状的了解,增长与冶金相关的知识,宽阔自己的眼界。
Abstract: with the development of the country, the industry also follow development.In the rapid development of society, the iron and steel industry takes important position, the development of iron and steel industry and its significance to the development of national economy is more and more valued the importance of, China metallurgical industry science and technology level also to rise gradually.China should to improve competitiveness as the goal, further improve the metallurgical industry science and technology level.Metallurgical industry safety problems to draw high attention, solve the safety problems to the comprehensive measures, and pay special attention to be solved.Perfect China metallurgical industry standard in a certain sense, is the key to solve the metallurgical safety, should build up safety standard system to guarantee the healthy development of industry.However, to perfect China's metallurgical industry standard, will deepen our understanding of the current situation of the development of metallurgical industry of understanding, growth and metallurgical related knowledge, broad his horizon.关键词:冶金 钢铁 程序 采矿 化学
Keywords: metallurgical steel program mining chemical 引言:通过了接近十周的《冶金工程概论》课的学习,让我这个从来都不接触钢铁冶炼的学生了解了钢铁的冶炼和我国钢铁业的发展历程。这个课程即将结束,我将通过这篇论文将我所学到的展现出来,一方面检测自己的学习情况,另一方面来对所学知识进行概括复习。不仅扩充了自己额外的知识,更重要的是对自己以后在某一领域的发展起到了一定的作用。本篇文章主要是将钢铁冶金联合企业主要有哪些生产环节,每一个生产环节的主要过程、主要设备、生产方法以及特点进行描述。并结合自己的专业谈谈化学在冶金领域上的应用。Introduction: through the close to ten weeks of the metallurgical engineering "introduction to course of study, let me this never contact iron and steel smelting students know the of steel and iron smelting and China's steel industry development course.This course is coming to an end, I will pass through this paper I have learned show come out, on the one hand, testing their learning situation, on the other hand to generalization knowledge review.Not only expanded their extra knowledge, more important is to oneself later in a certain area development, and play a certain role.This article mainly is to iron and steel metallurgical joint enterprise what are the main production link, each production link of the main process, main equipment, production methods and features of the description.And combining with my own professional talk about chemistry in metallurgical field application.钢铁冶金联合企业生产环节 1采矿和选矿 1.1采矿
原料是高炉冶炼的物质基础,冶炼1t生铁大约需要1.6~2.0t矿石,0.4~0.6t焦炭和0.2~0.4t溶剂。高炉冶炼是连续生产过程,因此必须尽可能为其提供数量充足,品位高,杂质少,强度好,粒度均匀,粉末少以及性能稳定的原料,对一些不能满足上诉要求的原料,要进行一系列的准备处理,以确保高炉操作稳定顺行
采矿方法就是根据矿床的赋存要素和矿石与围岩的物理力力学等因素所确定的矿石开采方法,它包括采区的采准,切割和回采。根据回采时地区管理方法分为三大类:空场采矿法、充填采矿法和崩落采矿法。
铁矿石的开采方式主要有露天开采和液体开采,a矿石的品位要高于其他矿石。矿石的品位(含铁量)愈高,脉石含量愈少,冶炼是所需溶剂量和产出的渣量就少,因而能耗相应降低,产量增加。经验表明,含铁量每增加1%,则焦比降低2%,产量提高3%:贫矿石直接入炉冶炼在经济上是不合算的,应该选矿提高品位后,制成烧结矿或球团矿再入炉冶炼。B酸性脉石要低。一般的铁矿石脉石属酸性,主要成分为SiO2和Al2O3。在高铁冶炼条件下,Al2O3不被还原,SiO2只有很少量的被还原,最终进入炉渣与金属分离为未获得熔点,粘度,碱度等性能适当的熔渣,就需要在炉料中配加一定数量的碱性溶剂(CaCo3)。因此,矿石中SiO2和Al2O3愈多,加入的溶剂就愈多,渣量就愈多,燃料消耗量愈多。所以矿石中酸性脉石含量越低愈好。C有害杂质要少。
铁矿石中的主要杂质主要是硫和磷,他们在高炉冶炼中很容易进入生铁,从而对钢铁性能带来危害。在钢铁冶炼过程中,硫的脱除主要是在冶炼过程中进行的,磷的脱除主要是在炼钢过程完成的,因此铁矿石中硫和磷含量高会大大增加炼铁和炼钢的负担,获得高产,优质,低耗既长寿的生产技术经济指标。1.2选矿
(1)铁矿石:我国是世界上铁矿石资源较为丰富的国家之一,已探明的铁矿石储量有443亿吨。我国铁矿资源优点:一是贫矿多,富矿少,品均含铁量为34%,含铁量在50%以上可以直接入炉的富矿仅占5.7%,因此必须大力发展选矿和造块工业;二是复合矿多,含多种金属的复合矿约占总储量的25%。铁矿石的的种类较多,在自然界中已经发现有300多种含铁矿物。作为炼铁原料的铁矿石主要有赤铁矿,磁铁矿,褐铁矿及菱铁矿四种。磁铁矿坚硬致密,具有磁性,故其复合矿适合用磁选的方法富集,但还原能力差;赤铁矿质软,组织疏松易破碎,还原性能优于磁铁矿;褐铁矿和菱铁矿在受热时,所含结晶水及碳酸盐分解挥发后,形成疏松多孔的结构,还原性好。对于含铜或含钒钛类型铁矿石,为了综合回收各种有用矿物,多采用磁、浮、重、化等联合流程进行选别。总的来说,铁矿石的富选过程包括破碎、磨碎、筛分、分级和选别作业。
(2)多金属矿石 :典型多金属硫化矿石是铜,铅,锌硫化矿石。其特点是硫化矿物种类多,品位低,嵌布细,各种有用矿物共生,可选性不一。此类矿石的筛选用混合浮选流程:加硫酸钠活化闪锌矿,加少量氰化物抑制硫化铁矿物,之后用石灰石将矿浆调制pH=9~10,并加“氰化钠+硫酸锌”抑制闪锌矿,实现铜,铅与锌矿分离,从而获得闪锌矿精矿。铜铅分离时,加重铬酸钾搅拌90~100min,调pH=9~9.5,抑铅浮铜,获得铜精矿。尾矿中主要是铅精矿,还有一部分易浮的锌矿进入,此时用硫酸铜活化锌矿物浮锌抑铅,分别获得铅精矿和锌中矿。1.3 人工造矿(球团和烧结)
粉矿造块的方法:烧结法和球团法,以烧结法为主。
1)烧结是粉矿造块的主要方法,其工艺是将粉矿,燃料和熔剂按一定比例混合,利用其中燃料燃烧产生的热量使混合料发生一系列物理化学反应,部分原料颗粒表面发生软化和熔化,产生一定液相,并润湿其他未熔化的矿石颗粒;当冷却后,液相将粉矿颗粒粘结成块,这个过程成为烧结。
2)主要设备:吸风带式烧结机。2.炼铁
目前常用的炼铁方法有高炉炼铁,直接还原和熔融还原铁三种方法。高炉炼铁是以焦炭为能源基础的传统炼铁方法,利用焦炭作为发热剂和还原剂,把铁矿石还原成生铁的碳热还原熔炼过程。
2.1高炉炼铁的过程如下:
1)烧结矿及部分块状铁矿石与焦炭,溶剂从高炉顶装入高炉中;
2)从高炉下不得风口鼓入1000~1300℃的热风,炉料中的焦炭在风口前与鼓风中的氧发生燃烧反应;
3)一同鼓入空气中的氧燃烧生成的一氧化碳和氢气,在炉内上升过程中除去铁矿石中的氧,从而还原得到铁。
4)反应产生的202_℃以上的炽热的具有还原性的煤气,在炉内上升过程中加热缓慢下降的炉料。矿石料在下降过程中逐步被还原,熔化成生铁和渣,聚集在炉缸中,并定期从铁口,渣口放出。
5)上升的高炉煤从炉顶排出。所以,可以把高炉看成是一个炉料下降,煤气上升的两个逆向物流运动的反应器。2.2.1 冶炼的主要设备
高炉是冶炼生铁的主要设备,除高炉本体外,还包括许多附属设备。现代高炉类型一般有炉缸、炉腹、炉腰、炉身和炉喉五段部分。炉喉 炉喉呈圆筒形。在此进行炉顶布料相妒料的初步加热。
炉身 炉身呈圆台形,它适应了炉料和煤气因温度变化而引起的体积改变。矿石在这里完成在固体状态下的整个加热过程,是高炉容积最大一部分。
炉腹 炉腹为倒圆台形适应炉料熔化体积收缩的特点。利于媒气流的均布。
炉缸 炉缸是圆筒形,它既要贮存一定数量的铁水和炉渣,又要能保证燃料有足够数量的焦炭。铁口、渣口和风口都设置在炉缸部位。风口设在渣口水平上方一定距离舶位置,要求渣面不要上升到风口平面,风口下应留有一定的焦炭燃烧空间。2.2.2 高炉炼铁的特点
1)高炉冶炼是在炉料与氧气气流逆向运动过程中完成各种错综复杂的化学反应和物理变化的,炉内主要是还原性反应。
2)高炉是密闭的容器,除装料,出铁,出渣及煤气外,操作人员无法直接观察到反应过程的状况,只能凭借仪器。
3)高炉是连续的大规模的高温生产过程,机械化自动化水平高 3.炼钢
1)造渣:调整钢、铁生产中熔渣成分、碱度和粘度及其反应能力的操作。目的是通过渣——金属反应炼出具有所要求成分和温度的金属。例如氧气顶吹转炉造渣和吹氧操作是为了生成有足够流动性和碱度的熔渣,能够向金属液面中传递足够的氧,以便把硫、磷降到计划钢种的上限以下,并使吹氧时喷溅和溢渣的量减至最小。
2)出渣:电弧炉炼钢时根据不同冶炼条件和目的在冶炼过程中所采取的放渣或扒渣操作。如用单渣法冶炼时,氧化末期需要扒氧化渣;用双渣法造还原渣时,原来的氧化渣必须彻底放出,以防回磷等。
3)熔池搅拌:向金属熔池供应能量,使金属液和熔渣产生运动,以改善冶金反应的动力学条件。熔池搅拌可藉助于气体、机械、电磁感应等方法来实现。
4)电炉底吹:通过置于炉底的喷嘴将N2、Ar、CO2、CO、CH4、O2等气体根据工艺要求吹入炉内熔池以达到加速熔化,促进冶金反应过程的目的。采用底吹工艺可缩短冶炼时间,降低电耗,改善脱磷、脱硫操作,提高钢中残锰量,提高金属和合金收得率。并能使钢水成分、温度更均匀,从而改善钢质量,降低成本,提高生产率。
5)熔化期:炼钢的熔化期主要是对平炉和电炉炼钢而言。电弧炉炼钢从通电开始到炉料全部熔清为止、平炉炼钢从兑完铁水到炉料全部化完为止都称熔化期。熔化期的任务是尽快将炉料熔化及升温,并造好熔化期的炉渣。
6)氧化期和脱炭期:普通功率电弧炉炼钢的氧化期,通常指炉料溶清、取样分析到扒完氧化渣这一工艺阶段。也有认为是从吹氧或加矿脱碳开始的。氧化期的主要任务是氧化钢液中的碳、磷;去除气体及夹杂物;使钢液均匀加热升温。脱碳是氧化期的一项重要操作工艺。为了保证钢的纯净度,要求脱碳量大于0.2%左右。随着炉外精炼技术的发展,电弧炉的氧化精炼大多移到钢包或精炼炉中进行。
7)还原期:普通功率电弧炉炼钢操作中,通常把氧化末期扒渣完毕到出钢这段时间称为还原期。其主要任务是造还原渣进行扩散、脱氧、脱硫、控制化学成分和调整温度。目前高功率和超功率电弧炉炼钢操作已取消还原期。
8)炉外精炼:将炼钢炉(转炉、电炉等)中初炼过的钢液移到另一个容器中进行精炼的炼钢过程,也叫二次冶金。炼钢过程因此分为初炼和精炼两步进行。初炼,即炉料在氧化性气氛的炉内进行熔化、脱磷、脱碳和主合金化。精炼,即将初炼的钢液在真空、惰性气体或还原性气氛的容器中进行脱气、脱氧、脱硫,去除夹杂物和进行成分微调等。将炼钢分两步进行的好处是可提高钢的质量,缩短冶炼时间,简化工艺过程并降低生产成本。
9)钢液搅拌:炉外精炼过程中对钢液进行的搅拌。它使钢液成分和温度均匀化,并能促进冶金反应。多数冶金反应过程是相界面反应,反应物和生成物的扩散速度是这些反应的限制性环节。钢液在静止状态下,其冶金反应速度很慢,如电炉中静止的钢液脱硫需30~60分钟;而在炉精炼中采取搅拌钢液的办法脱硫只需3~5分钟。钢液在静止状态下,夹杂物*上浮除去,排除速度较慢;搅拌钢液时,夹杂物的除去速度按指数规律递增,并与搅拌强度、类型和夹杂物的特性、浓度有关。
10)出钢:钢液的温度和成分达到所炼钢种的规定要求时将钢水放出的操作。4.轧钢
轧钢有热轧和冷轧两种。
热轧,每一阶段的主要生产过程为:1)加热。将钢坯在加热炉中,加热到再结晶温度以上的某一适当温度。2)轧制。不同品种或规格产品,分别在不同类型的轧机上进行轧制。3)精整。包括剪切、冷却、矫正、检验、表面处理等。
冷轧的主要生产过程为:1)酸洗。除去坯料表面的氧化铁皮。2)轧制。3)退火。消除加工硬化。4)精整。
化学在冶金方面的应用
化学是一门是实用的学科,它与数学物理等学科共同成为自然科学迅猛发展的基础。化学的核心知识已经应用于自然科学的各个区域,化学是改造自然的强大力量的重要支柱。20世纪的化学取得了辉煌的成就,21世纪的化学将在与物理学、生命科学、材料科学、信息科学、能源、环境、海洋、空间科学的相互交叉,相互渗透,相互促进中共同大发展。当今,化学日益渗透到生活的各个方面,特别是与人类社会发展密切相关的重大问题。总之,化学与人类的衣、食、住、行以及能源、信息、材料、国防、环境保护、医药卫生、资源利用等方面都有密切的联系,它是一门社会迫切需要的实用学科。本专业培养培养目标:具备化学工程与化学工艺方面的知识,能在化工、炼油、冶金、能源、轻工、医药、环保和军工等部门从事工程设计、技术开发、生产技术管理和科学研究等方面工作的工程技术人才。
冶金工程是一门实用性技术学科,专业培养的学生基础宽厚、理论扎实、技能全面,同时,也要具备冶金和金属材料加工等方面的知识和技能。加之,冶金行业属于国民经济的基础和支柱产业之一,必然它和许多学科有千丝万缕的关系,例如化学知识就在冶金领域得到了更好的体现,比如湿法冶金过程中所用到的原理如流体力学、热力学及动力学等等, 基本上与化学工业中所到的原理一样,至于所用的设备如高压釜、过滤机、沉降槽等等也有很多上是基本一样的。所以它可以利用很多化工及石油方面的研究成果、新的技术及新的投备。最近几十年来, 化学工业及石油工业发展得很快。从这些工业中总结出来的原理, 发展出来的新技术及新投备, 都可以川到湿法冶金中去。
化学中的光谱分析仪在冶金方面也有应用,光谱冶金分析是指冶金生产过程中利用化学知识对各物料的化学组成及其含量的分析。它对原料的选择,在冶炼前的炉料计算,冶炼工艺流程的控制中,产品的检验,新产品的试制,以及冶金工厂中环保分析都是必不可少的。特点是:①在保证生产质量的前提下,分析速度要快,特别是分析;②冶金分析物料种类繁多,有固体、粉末和液体等,因此要求分析方法适应性强;③分析数量大,任务重,并且要求日夜连续不断进行。
总结
本文给出了钢铁冶金的主要生产环节,每一环节的主要生产过程、主要设备、生产方法及其特点,并简要介绍了化学知识在冶金方面的应用。祖国蓬勃的建设事业需要冶金工程方面大量的专业人才,众多的钢铁冶金,有色金属冶金企业等也需要拥有相当好的化学知识作为基础,例如冶金过程中所涉及的反应及其原理无不与化学知识相联系,随着当代环境问题的日益突出,冶金过程中所产生的“工业三废”都需要从化学的角度去思考,去衡量,去解决。总之一句话冶金离不开化学,为了更好的提升自己以后在冶金方面的价值,学好化学知识是必不可少的。
【参考文献】
[1]赵玉祥,现代冶金原理,[M].北京冶金工业出版社,1993.03:57~59.[2] 王筱留, 钢铁冶金学(炼铁部分), 冶金工业出版社, 1991 [3]陈家镛,湿法冶金,中国科学报,1998 [4] 沈时英,冶金概论,冶金工业出版社,1988
第五篇:钢铁冶金概论论文-粉末冶金工艺
粉末冶金工艺
学生姓名: 年级: 学号:
摘要:粉末冶金是制取金属或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结,制造金属材料、复合以及各种类型制品的工艺技术。粉末冶金法与生产陶瓷有相似的地方,因此,一系列粉末冶金新技术也可用于陶瓷材料的制备。由于粉末冶金技术的优点,它已成为解决新材料问题的钥匙,在新材料的发展中起着举足轻重的作用。关键词:粉末冶金 高密度 硬质合金 粉末高速钢
前言
我国粉末冶金行业已经经过了近60年的发展,经历了从无到有、多领域发展。但与国外的同行业仍存在以下几方面的差距:(1)企业多,规模小,经济效益与国外企业相差很大。(2)产品交叉,企业相互压价,竞争异常激烈。(3)多数企业缺乏技术支持,研发能力落后,产品档次低,难以与国外竞争。(4)再投入缺乏与困扰。(5)工艺装备、配套设施落后。(6)产品出口少,贸易渠道不畅。随着我国加入WTO以后,以上种种不足和弱点将改善,这是因为加入WTO后,市场逐渐国际化,粉末冶金市场将得到进一步扩大的机会;而同时随着国外资金和技术的进入,粉末冶金及相关的技术水平也必将得到提高和发展。
【1】【2】【3】
【4】1.粉末冶金基础
1.1粉末的化学成分及性能
尺寸小于1mm的离散颗粒的集合体通常称为粉末,其计量单位一般是以微米(μm)或纳米(nm)。1.1.1粉末的化学成分
常用的金属粉末有铁、铜、铝等及其合金的粉末,要求其杂质和气体含量不超过1%~2%,否则会影响制品的质量。1.1.2粉末的物理性能
(1)粒度及粒度分布
粉料中能分开并独立存在的最小实体为单颗粒。实际的粉末往往是团聚了的颗粒,即二次颗粒。实际的粉末颗粒体中不同尺寸所占的百分比即为粒度分布。
(2)颗粒形状即粉末颗粒的外观几何形状。常见的有球状、柱状、针状、板状和片状等,可以通过显微镜的观察确定。
(3)比表面积
即单位质量粉末的总表面积,可通过实际测定。比表面积大小影响着粉末的表面能、表面吸附及凝聚等表面特性。1.1.3粉末的工艺性能
粉末的工艺性能包括流动性、填充特性、压缩性及成形性等。
(1)填充特性
指在没有外界条件下,粉末自由堆积时的松紧程度。常以松装密度或堆积密度表示。粉末的填充特性与颗粒的大小、形状及表面性质有关。
(2)流动性
指粉末的流动能力,常用50克粉末从标准漏斗流出所需的时间表示。流动性受颗粒粘附作用的影响。
(3)压缩性
表示粉末在压制过程中被压紧的能力,用规定的单位压力下所达到的压坯密度表示,在标准模具中,规定的润滑条件下测定。影响粉末压缩性的因素有颗粒的塑性或显微硬度,塑性金属粉末比硬、脆材料的压缩性好;颗粒的形状和结构也影响粉末的压缩性。
(4)成形性指粉末压制后,压坯保持既定形状的能力,用粉末能够成形的最小单位压制压力表示,或用压坯的强度来衡量。成形性受颗粒形状和结构的影响。1.2粉末冶金的机理
1.2.1压制的机理
压制就是在外力作用下,将模具或其它容器中的粉末紧密压实成预定形状和尺寸压坯的工艺过程。钢模冷压成形过程如图7.1.2所示。粉末装入阴模,通过上下模冲对其施压。在压缩过程中,随着粉末的移动和变形,较大的空隙被填充,颗粒表面的氧化膜破碎,颗粒间接触面积增大,使原子间产生吸引力且颗粒间的机械楔合作用增强,从而形成具有一定密度和强度的压坯。1.2.2等静压制
压力直接作用在粉末体或弹性模套上,使粉末体在同一时间内各个方向上均衡受压而获得密度分布均匀和强度较高的压坯的过程。按其特性分为冷等静压制和热等静压制两大类。
(1)冷等静压制
即在室温下等静压制,液体为压力传递媒介。将粉末体装入弹性模具内,置于钢体密封容器内,用高压泵将液体压入容器,利用液体均匀传递压力的特性,使弹性模具内的粉末体均匀受压。因此,冷等静压制压坯密度高,较均匀,力学性能较好,尺寸大且形状复杂,已用于棒材、管材和大型制品的生产。
(2)热等静压制
把粉末压坯或装入特制容器内的粉末体置入热等静压机高压容器中,施以高温和高压,使这些粉末体被压制和烧结成致密的零件或材料的过程。在高温下的 等静压制,可以激活扩散和蠕变现象的发生,促进粉末的原子扩散和再结晶及以极缓慢的速率进行塑性变形,气体为压力传递媒介。粉末体在等静压高压容器内同一时间经受高温和高压的联合作用,强化了压制与烧结过程,制品的压制压力和烧结温度均低于冷等静压制,制品的致密度和强度高,且均匀一致,晶粒细小,力学性能高,消除了材料内部颗粒间的缺陷和孔隙,形状和尺寸不受限制。但热等静压机价格高,投资大。热等静压制已用于粉末高速钢、难熔金属、高温合金和金属陶瓷等制品的生产。1.2.3粉末轧制
将粉末通过漏斗喂入一对旋转轧辊之间使其压实成连续带坯的方法。将金属粉末通过一个特制的漏斗喂入转动的轧辊缝中,可轧出具有一定厚度、长度连续、强度适宜的板带坯料。这些坯体经预烧结、烧结,再轧制加工及热处理等工序,就可制成具有一定孔隙度的、致密的粉末冶金板带材。粉末轧制制品的密度比较高,制品的长度原则上不受限制,轧制制品的厚度和宽度会受到轧辊的限制;成材率高为80%~90%,熔铸轧制的仅为60%或更低。粉末轧制适用于生产多孔材料、摩擦材料、复合材料和硬质合金等的板材及带材。1.2.4粉浆浇注
是金属粉末在不施加外力的情况下成形的,即将粉末加水或其它液体及悬浮剂调制成粉浆,再注入石膏模内,利用石膏模吸取水分使之干燥后成形。常用的悬浮剂有聚乙烯醇、甘油、藻肮酸钠等,作用是防止成形颗粒聚集,改善润湿条件。为保证形成稳定的胶态悬浮液,颗粒尺寸不大于5μm~10μm,粉末在悬浮液中的质量含量为40%~70%。粉浆成形工艺参见本书6.2.2。1.2.5挤压成形
将置于挤压筒内的粉末、压坯或烧结体通过规定的模孔压出。按照挤压条件不同,分为冷挤压和热挤压。冷挤压是把金属粉末与一定量的有机粘结剂混合在较低温度下(40℃~200℃)挤压成坯块;粉末热挤压是指金属粉末压坯或粉末装入包套内加热到较高温度下压挤,热挤压法能够制取形状复杂、性能优良的制品和材料。挤压成形设备简单,生产率高,可获得长度方向密度均匀的制品。
挤压成形能挤压出壁很薄直经很小的微形小管,如厚度仅0.01mm,直径1mm的粉末冶金制品;可挤压形状复杂、物理力学性能优良的致密粉末材料,如烧结铝合金及高温合金。挤压制品的横向密度均匀,生产连续性高,因此,多用于截面较简单的条、棒和螺旋形条、棒(如麻花钻等)。1.2.6松装烧结成形
粉末未经压制而直接进行烧结,如将粉末装入模具中振实,再连同模具一起入炉烧结成形,用于多孔材料的生产;或将粉末均匀松装于芯板上,再连同芯板 一起入炉烧结成形,再经复压或轧制达到所需密度,用于制动摩擦片及双金属材料的生产。
将置于挤压筒内的粉末、压坯或烧结体通过规定的模孔压出。按照挤压条件不同,分为冷挤压和热挤压。冷挤压是把金属粉末与一定量的有机粘结剂混合在较低温度下(40℃~200℃)挤压成坯块;粉末热挤压是指金属粉末压坯或粉末装入包套内加热到较高温度下压挤,热挤压法能够制取形状复杂、性能优良的制品和材料。挤压成形设备简单,生产率高,可获得长度方向密度均匀的制品。1.2.7爆炸成形
借助于爆炸波的高能量使粉末固结的成形方法。爆炸成形的特点是爆炸时产生压力很高,施于粉末体上的压力速度极快。如炸药爆炸后,在几微秒时间内产生的冲击压力可达106MPa(相当于107个大气压),比压力机上压制粉末的单位压力要高几百倍至几千倍。爆炸成形压制压坯的相对密度极高,强度极佳。如用炸药爆炸压制电解铁粉,压坯的密度接近纯铁体的理论密度值。
爆炸成形可加工普通压制和烧结工艺难以成形的材料,如难熔金属、高合金材料等,还可压制普通压力无法压制的大型压坯。
除上述方法外,还有注射成形及热等静压制新技术等新的成形方法。
2.粉末冶金特点
粉末冶金具有独特的化学组成和机械、物理性能,而这些性能是用传统的熔铸方法无法获得的。运用粉末冶金技术可以直接制成多孔、半致密或全致密材料和制品,如含油轴承、齿轮、凸轮、导杆、刀具等,是一种少无切削工艺。(1)粉末冶金技术可以最大限度地减少合金成分偏聚,消除粗大、不均匀的铸造组织。在制备高性能稀土永磁材料、稀土储氢材料、稀土发光材料、稀土催化剂、高温超导材料、新型金属材料(如Al-Li合金、耐热Al合金、超合金、粉末耐蚀不锈钢、粉末高速钢、金属间化合物高温结构材料等)具有重要的作用。
(2)可以制备非晶、微晶、准晶、纳米晶和超饱和固溶体等一系列高性能非平衡材料,这些材料具有优异的电学、磁学、光学和力学性能。
(3)可以容易地实现多种类型的复合,充分发挥各组元材料各自的特性,是一种低成本生产高性能金属基和陶瓷复合材料的工艺技术。
(4)可以生产普通熔炼法无法生产的具有特殊结构和性能的材料和制品,如新型多孔生物材料,多孔分离膜材料、高性能结构陶瓷磨具和功能陶瓷材料等。
(5)可以实现近净形成形和自动化批量生产,从而,可以有效地降低生产的资源和能源消耗。
(6)可以充分利用矿石、尾矿、炼钢污泥、轧钢铁鳞、回收废旧金属作原料,是一种可有效进行材料再生和综合利用的新技术。
我们常见的机加工刀具,五金磨具,很多就是粉末冶金技术制造的。
3.粉末的制取方法
(1)还原法
这是一种应用最广的金属粉末制取方法,是采用氢气、一氧化碳等作为还原剂,使金属氧化物或氧化物矿石在高温下与之反应,制得金属粉末。这种粉末多呈多面体形,其成形性与烧结性良好。粉末粒度可由原料的粒度及还原条件的不同任意调整并均匀化。目前,粉末成形使用的铁粉大部分由还原法产生;难熔化合物粉末(如硬质合金)的制取也用此类方法。(2)雾化法
这是一种生产效率较高、成本较低、易于制得高纯度粉末的生产方法。它利用高压惰性气体或高速旋转的叶片将从小孔喷嘴中熔融的金属扩散成雾状液滴并迅速使之冷却成金属微粒的制粉方法。雾化粉末的颗粒形状因雾化条件而异。金属液的温度越高,球化的倾向越显著。其缺点是易产生偏析和不易制得超细粉末。(3)电解沉积法
在金属熔盐或金属盐的水溶液中通入直流电,使金属离子重新获得外层电子,变成金属粉末。电解沉积法制取的粉末纯度高,颗粒成树枝状或针状,成形性和烧结性都很好,但生产率低,成本较高,仅适用于制造要求纯度高、密度高的粉末材料和制品。(4)机械粉碎法
利用机械,通过压碎、击碎和磨削等作用,使金属块、合金或化合物机械地粉碎成粉末。这种方法生产效率低,动力消耗大,成本较高。
3.1粉末冶金的基本工序
(1)原料粉末的制备。现有的制粉方法大体可分为两类:机械法和物理化学法。而机械法可分为:机械粉碎及雾化法;物理化学法又分为:电化腐蚀法、还原法、化合法、还原-化合法、气相沉积法、液相沉积法以及电解法。
(2)粉末成型为所需形状的坯块。成型的目的是制得一定形状和尺寸的压坯,并使其具有一定的密度和强度。成型的方法基本上分为加压成型和无压成型。加压成型中应用最多的是模压成型。
(3)坯块的烧结。成型后的压坯通过烧结使其得到所要求的最终物理机械性能。烧结又分为单元系烧结和多元系烧结。除普通烧结外,还有松装烧结、熔浸法、热压法等特殊的烧结工艺。
(4)产品的后序处理。烧结后的处理,可以根据产品要求的不同,采取多种 方式。此外,近年来一些新工艺如轧制、锻造也应用于粉末冶金材料烧结后的加工,取得较理想的效果。
4.粉末冶金材料
粉末冶金是一项很有发展的新技术、新工艺,已广泛应用在农机、汽车、机床、冶金、化工、轻工、地质勘探、交通运输等各方面。粉末冶金材料有工具材料及机械零件和结构材料。工具材料大致有粉末高速钢、硬质合金、超硬材料、陶瓷工具材料及复合材料等。机械零件和结构材料有粉末减摩材料,包括多孔减摩材料和致密减摩材料;粉末冶金铁基零件及粉末冶金非铁金属零件等。
【5】
4.1硬质合金
硬质合金由硬质基体(质量分数为70%~97%)和粘结金属两部分组成。硬质基体是难熔金属的碳化物,如碳化钨及碳化钛等;粘结金属为铁族金属及合金,以钴为主。
(1)硬质合金的种类和牌号
硬质合金为一种优良的工具材料,主要用作切削刀具、金属成形工具、矿山工具、表面耐磨材料及高刚性结构部件。类型有含钨硬质合金,钢结硬质合金,涂层硬质合金,细晶粒硬质合金等。钢结硬质合金是一种新型的工模具材料,性能介于高速工具钢和硬质合金之间,是以一种或几种碳化物(如WC、TiC)为硬化相,以碳钢或合金钢(如高速工具钢、铬钼钢等)粉末为粘结剂,经配料、压制、烧结而制成的粉末冶金材料。退火处理后,可进行切削加工;淬火、回火处理后,有相当于硬质合金的高硬度和耐磨性,一定的耐热、耐蚀和抗氧化性。适于制造麻花钻、铣刀等形状复杂的刀具、模具和耐磨件。
含钨硬质合金按其成分和性能特点分为钨钴类(WC-Co系)、钨钛钴类(WC-TiC-Co系)、钨钛钽(铌)类[WC-TiC-TaC(NbC)-Co系、WC–TaC(NbC)-Co系]。钨钴类硬质合金的主要化学成分是碳化钨(WC)及钴。牌号为“YG+数字”(YG为“硬钴”汉语拼音字首),数字表示钴平均质量分数。如YG6表示钴平均质量分数为6%,余量为碳化钨的钨钴类硬质合金。该类合金的抗弯强度高,能承受较大的冲击,磨削加工性较好,但热硬性较低(800~900℃),耐磨性较差,主要用于加工铸铁和非铁金属的刃具。
钨钛钴类硬质合金的主要化学成分是碳化钨、碳化钛(TiC)及钴。牌号为“YT+数字”(YT为“硬钛”汉语拼音字首),数字表示碳化钛平均质量分数。如YT15表示TiC为15%,其余为WC和Co的硬质合金。该类硬质合金的热硬性高(900~1100℃),耐磨性好,但抗弯强度较低,不能承受较大的冲击,磨削加工性较差,主要用于加工钢材。钨钛钽(铌)类硬质合金又称为通用硬质合金或万能硬质合金。它是由碳化钨、碳化钛、碳化钽(TaC)或碳化铌(NbC)和钴组成。牌号为“YW+顺序号”(YW表示“硬万”汉语拼音字首),如YW1表示万能硬质合金。该类硬质合金是在上述硬质合金中添加TaC或NbC,它的热硬性高(>1000℃),其它性能介于钨钴类与钨钛钴类之间,它既能加工钢材,又能加工非铁金属。(2)硬质合金的性能及应用
性能:硬质合金的硬度高,室温下达到86~93HRA,耐磨性好,切削速度比高速工具钢高4~7倍,刀具寿命高5~80倍,可切削50HRC左右的硬质材料;抗弯强度高,达6000MPa,但抗弯强度较低,约为高速工具钢的1/3~1/2,韧性差,约为淬火钢的30%~50%;耐蚀性和抗氧化性良好;线膨胀系数小,但导热性差。
应用:硬质合金主要用于制造高速切削或加工高硬度材料的切削刀具,如车刀、铣刀等;也用作模具材料(如冷拉模、冷冲模、冷挤模等)及量具和耐磨材料。根据GB2075—87规定,切削加工用硬质合金按切削排出形式和加工对象范围不同,分为P、M、K三个类别,同时又依据加工材质和加工条件不同,按用途进行分组,在类别后面加一组数字组成代号。如P01、P10、P20„„,每一类别中,数字越大,韧性越好,耐磨性越低。
4.2粉末高速钢
高速钢的合金元素含量高,采用熔铸工艺时会产生严重的偏析使力学性能降低。金属的损耗也大,高达钢锭重量的30%~50%。粉末高速钢可减少或消除偏析,获得均匀分布的细小碳化物,具有较大的抗弯强度和冲击强度;韧性提高50%,磨削性也大大提高;热处理时畸变量约为熔炼高速钢的十分之一,工具寿命提高1~2倍。
采用粉末冶金方法还可进一步提高合金元素的含量以生产某些特殊成分的钢。如成份为9W-6Mo-7Cr-8V-8Co-2.6C的A32高速钢,切削性能是熔炼高速钢的1~4倍。
常用高速钢牌号为W18Cr4V和W6Mo5Cr4V2,含有0.7%~0.9%C,及>10%的钨、铬、钼、钒等合金元素。其中碳保证高速钢具有高硬度和高耐磨性,钨和钼提高钢的热硬性,铬提高钢的淬透性,而钒则提高钢的耐磨性。
4.3铁和铁合金的粉末冶金
在粉末冶金生产中,铁粉的用量比其金属粉末大得多。铁粉的60%~70%用于制造粉末冶金零件。主要类型有铁基材料、铁镍合金、铁铜合金及铁合金和钢。粉末冶金铁基结构零件具有精度较高,表面粗糙值小,不需或只需少量切削加工,节省材料,生产率高,制品多孔,可浸润滑油,减摩、减振、消声等特点。广泛用于制造机械零件,如机床上的调整垫圈、调整环、端盖、滑块、底座、偏心轮,汽车中的油泵齿轮、活塞环,拖拉机上的传动齿轮、活塞环,以及接头、隔套、油泵转子、挡套、滚子等。
粉末冶金铁基结构材料的牌号用“粉”、“铁”、“构”三字的汉语拼音字首“FTG”,加化合碳含量的万分数、主加合金元素的符号及其含量的百分数、辅加合金元素的符号及其含量的百分数和抗拉强度组成。如FTG60-20,表示化合碳量0.4%~0.7%,抗拉强度200MPa的粉末冶金铁基结构材料;FTG60Cu3Mo-40,表示化合碳量0.4%~0.7%,合金元素含量Cu2%~4%、Mo0.5%~1.0%,抗拉强度400MPa的粉末冶金铁基结构材料。
【6】
5.粉末冶金产业发展前景
功能材料向多功能化、集成化、小型化和智能化方向发展; 结构材料向高性能化、复合化、功能化和低成本化方向发展; 薄膜和低维材料研帛发展迅速,生物医用材料异军突起; 新材料制品的精加工技术和近净形成形技术受到高度重视; 材料及其制品与生态环境的协调性倍受重视; 材料制备与评价表征新技术、新装备不断涌现; 材料在不同层次上的设计发展迅速。
【7】【8】【9】
6.结语
粉末冶金材料具有特殊性能,未来多样化发展中,粉末冶金在某些行业,如汽车工业,粉末冶金材料将占有举足轻重的地位,随着粉末品质的不断提高,粉末制造成本的不断下降,成形机设备的费用不再偏高,粉末冶金材料的应用会越来越广。
参考文献:
【1】刘咏,黄伯云.世界粉末冶金的发展现状,中国有色金属 202_年第1期.【2】黄伯云,易健宏.现代粉末冶金材料和技术发展现状
(一),上海金属 202_年第3期.【3】黄伯云,易健宏.现代粉末冶金材料和技术发展现状
(二),上海金属 202_年第4期.【4】王盘鑫.粉末冶金学,冶金工业出版社,202_.【5】黄伯云.粉末冶金标准手册,中南大学出版社,202_.【6】刘道春.汽车零部件的粉末材料技术及其发展,柴油机设计与制造202_年第1期.【7】李祖德,李松林,赵慕岳.20世纪中、后期的粉末冶金新技术和新材料(1)末冶金材料科学与工程,第11卷第5期.【8】刘文胜,马运柱.粉末冶金新技术与新装备矿冶工程,202_.【9】周洪强,陈志强.钛及钛合金的粉末冶金新技术材料导报:网络版,202_ 1