首页 > 精品范文库 > 12号文库
极限连续-高数竞赛超好
编辑:空谷幽兰 识别码:21-831750 12号文库 发布时间: 2023-12-10 18:42:23 来源:网络

第一篇:极限连续-高数竞赛超好

高数竞赛例题

第一讲 函数、极限、连续

例1.例2.例3.例4.例5.例6.例7.例8.例9.lim1nn(1n2nn).lim135(2n1)246(2n)n

limx0x35x,其中[]为取整函数

lim1cosxx2x0

lim(cosnn)n2

lim(xxaxa)2x1e,求常数a.lim(sinx2xcos1x)x

lim[(nnn32n21)en1n]

6limln(13x)(e2x3x01)sinx2 例10.例11.例12.lim1tanx1sinx2x0xln(1x)x

limln(12)ln(1xx3x)

limsinxxcosxsinx3x0

例13.已知f(x)在x0的某邻域内有连续导数,且lim(sin2xx0f(x)xx)2,求 f(0),f(0).例14.例15.例16.lim(nnn12nn222nnn22)

2nsinsinsinnnnlimn11n1nn2n

xlim[xx1(axb)]0,求常数a,b.2例17.设f(x)nlim

x2n1axbxx2n21为连续函数,求a,b.例18.设f(x)在(,)上连续,且f(f(x))x,证明至少,使得f().....................................................................................................................极 限

例1.例2.nlim(n1nn122nn22nnnn2)

limnk1knk122

先两边夹,再用定积分定义 例3.例4.例5.设limx0 例6.例7.1x2lim(n1)nnn1nsin1n

limee2xsinx2x0x[ln(1xx)ln(1xx)]

ln(1)f(x)tanx5,求limx2x021xf(x).12(3sinttcos)dt0tlimxx0(1cosx)ln(1t)dtx0

xlimln(2e2xx1)xxsinx1

例8.例9.limexx0100

xlim(xxxx)

1例10.xxxlima1a2anx,其中,ax0.n1,a2,an均为正数

例11.已知2nf(x)limxe(1x)nxene(1x)nx2n1,求0f(x)dx.例12.设10ab,求limanbnnn

例13.设f(x)在(,)内可导,且limf(x)ex,xlim的值.xclim[f(x)f(x1)],求cxxcx

例14.设f(x)在x0的某邻域内二阶可导,且f(0)0,x又已知)dtlim0f(tx0xsinx0,求,.例15.当x1时,lim(1x)(1x2)(1x4)n(1x2)n

例16.当x0时,求limxncosx2cosx4cos2n

例17.lim(11(11n22)(1132)n2)

例18.lim1nnnn(n1)(2n1)

limf(x)x0x0,连 续

例1.求f(x)lim

例2.设g(x)在x0的某邻域内连续,且lim1g(x2t)dt102x1f(x)2abcosx2xx0x0x01x1x2n的间断点,并判断其类型

ng(x)1xn0a,已知

在x0处连续,求a,b的值.例3.证方程ln实根.例4.f(x)在[a,b]上连续,且acdb,证:在(a,b)内至少存在xxe01cos2xdx在区间(0,)内有且仅有两个不同,使得pf(c)qf(d)(pq)f(),其中p,q为任意正常数.例5.设f(x)在(a,b)内连续,且x1,x2,,xn(a,b),试证:(a,b),使

例6.试证方程xasin且它不超过ba.例7.设f(x),g(x)在(,)上连续,且g(x)0,利用闭区间上连续函数的性质,证明存在一点[a,b],使abf()1n[f(x1)f(x2)f(xn)].xb,其中a0,b0,至少存在一个正根,并

f(x)g(x)dxf()g(x)dx

ab

第二篇:高数极限和连续

第二章 极限和连续 【字体:大 中 小】【打印】

2.1 数列极限

一、概念的引入(割圆术)

“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣” ——刘徽

正六边形的面积A正十二边形的面积A2

n-1

正6×2形的面积An

A1,A2,A3,„,An,„→„S

二、数列的定义

定义:按自然数1,2,3„编号依次排列的一列数x1,x2,„,xn,„(1)

称为无穷数列,简称数列。其中的每个数称为数列的项,xn称为通项(一般项)。数列(1)记为{ xn }。

例如

nn

2,4,8,„,2,„;{ 2}

注意:

(1)数列对应着数轴上一个点列,可看作一动点在数轴上依次取

(2)数列是整标函数xn=f(n)

三、数列的极限

1.定义 设{xn}是一数列,如果存在常数a,当n无限增大时,xn无限接近于常数a,则称数列{ xn }收敛,a是数列{ xn }的极限,或者称数列xn收敛于a,记为。

如果数列没有极限,就说数列是发散的。

例如

nn

2,4,8,„,2,„;{ 2},发散,发散

收敛于0

2.数列极限的性质(1)唯一性

定理 每个收敛的数列只有一个极限。(2)有界性

定义: 对数列xn,若存在正数M,使得一切自然数n, 恒有|xn|≤M成立, 则称数列xn有界,否则,称为无界。

例如,数列有界,数列无界

数轴上对应于有界数列的点xn都落在闭区间[-M,M]上。

定理 收敛的数列必定有界。

注意:有界性是数列收敛的必要条件。推论 无界数列必定发散。(3)保号性

收敛数列的保号性:假设数列{αn}收敛,其极限为α,1)若有正整数N,n>N时,αn>0(或<0),则α≥0(或α≤0)2)若α>0(或<0,则有正整数N,使得当n>N时,αn>0(或<0)

2.2 级数

1.级数的定义:

称为数项无穷级数(或简称数项级数),un为一般项。

2.级数的部分和

3.部分和数列

4.级数的收敛与发散

当n无限增大时,如果级数的部分和数列Sn有极限S,即则称无穷级数收敛,这时极限S叫做级数的和,并写成。

如果Sn没有极限,则称无穷级数

数项级数收敛

存在

发散。

例1.讨论等比级数(几何级数)

(a≠0)的收敛性。

【答疑编号11020101:针对该题提问】

解:如果q≠1时,当|q|<1时,当|q|>1时

如果|q|=1时

当|q|=1时,级数发散

收敛 发散

当q=-1时,级数变为α-α+α-α+„

不存在,级数发散

综上

例2.(56页1(3))判断下列级数的敛散性,并在收敛时求出其和:

【答疑编号11020102:针对该题提问】

解:

得级数收敛,其和为。

例3.判断级数的敛散性

【答疑编号11020103:针对该题提问】

例4.判断级数的敛散性,并在收敛时求出其和

【答疑编号11020104:针对该题提问】

例5.判别无穷级数

的收敛性。

【答疑编号11020105:针对该题提问】

∴级数收敛,和为。

2.3 函数极限

两种情形:

(1)x→∞情形:

(2)x→x0情形:

一、自变量趋于无穷大时函数的极限

定义:设M是任意一个正数,函数f(x)在上有定义,如果存在常数A,当|x|无限增大(即|x|→∞)时,f(x)无限接近于A,则称A为函数f(x)当x→∞时的极限,或简称为f(x)在无穷大处的极限,记为

或f(x)→A,当x→∞时。

定理:

例1.(60页例

5、例6)求下列函数的极限

(1)

【答疑编号11020201:针对该题提问】

(2)

【答疑编号11020202:针对该题提问】

解:对于函数

对于函数f(x)=arctanx,由反正切曲线y=arctanx的图形,易见

所以,极限

例2.不存在。

【答疑编号11020203:针对该题提问】

例3.【答疑编号11020204:针对该题提问】

例4.【答疑编号11020205:针对该题提问】

二、函数在有限点处的极限(自变量趋于有限值时函数的极限)

1.定义:给定函数y=f(x)在(x∈D)上有定义,假设点x0的某一去心邻域,如果存在常数A,使得当x→x0时,函数值f(x)无限接近于A,则称A为函数f(x)当x→x0时的极限,记为

或 f(x)→A,当x→x0时。

2.单侧极限

定义:设 f(x)在x0的一个左邻域中有定义,如果存在常数A,使得当相应的函数值(fx)无限接近于A,则称A为函数f(x)当 时的左极限,记为

定理:

时,或(fx0-0)。

例5.62页2:(5)(6)(7)

求函数在指定点的左右极限,判定该点极限是否存在。

(5)x=2

【答疑编号11020206:针对该题提问】

(6)x=0

【答疑编号11020207:针对该题提问】

(7),x=0

【答疑编号11020208:针对该题提问】

问题:函数y=f(x)在x→x0的过程中,对应函数值f(x)无限趋近于确定值A。

例6.求

【答疑编号11020209:针对该题提问】

注意:函数极限与f(x)在点x0是否有定义无关

三、函数极限的性质 1.唯一性

定理 若limf(x)存在,则极限唯一。2.有界性

定理(有极限函数的局部有界性)假设中有界,即有常数M>0,使得在x0的某个去心邻域

3.保号性

推论

存在,则f(x)在x0点的某个邻域

中,有,且A>0(或A<0)

若时

f(x)≥0(或f(x)≤0),则A≥0(或A≤0)

四、小结

函数极限的统一定义

2.4 极限的运算法则

一、极限运算法则

定理

(1)

(2)

,则

(3)

例7.【答疑编号11020210:针对该题提问】

推论1

如果lim f(x)存在,而c为常数,则

常数因子可以提到极限记号外面。

推论2

如果lim f(x)存在,而n是正整数,则

二、求极限方法举例

例8.求

【答疑编号11020211:针对该题提问】

(直接代入法)

例9.求。

【答疑编号11020212:针对该题提问】

解:x→1时,分子,分母的极限都是零。(型)

(消去零因子法或因式分解法)

例10.求

【答疑编号11020213:针对该题提问】

解:先变形再求极限。

例11.求

【答疑编号11020214:针对该题提问】

三、小结

1.极限的四则运算法则及其推论; 2.极限求法

a.多项式与分式函数代入法求极限; b.因式分解法消去零因子求极限; c.通分法

d.利用左右极限求分段函数极限。

2.5 无穷小和无穷大

一、无穷小

1.定义:极限为零的变量称为无穷小。

函数f(x)当x→x0(或x→∞)时为无穷小,记作

例如,∴函数sinx是当x→0时的无穷小。

,∴函数是当x→∞时的无穷小。

,∴数列是当n→∞时的无穷小。

注意:

(1)无穷小是变量,不能与很小的数混淆;(2)零是可以作为无穷小的唯一的数。2.无穷小与函数极限的关系:

其中α(x)是当x→x0时的无穷小。

定理

3.无穷小的运算性质:

(1)在同一过程中,有限个无穷小的代数和仍是无穷小。(2)有限个无穷小的乘积也是无穷小。(3)有界变量与无穷小的乘积是无穷小。

例如,当x→0时,二、无穷大

1.定义:绝对值无限增大的变量称为无穷大。

函数f(x)当x→x0(或x→∞)时为无穷大,记作。

2.特殊情形:正无穷大,负无穷大。

注意:

(1)无穷大是变量,不能与很大的数混淆;(2)切勿将 认为极限存在。

(3)无穷大是一种特殊的无界变量,但是无界变量未必是无穷大。

例如,三、无穷小与无穷大的关系

是无界变量不是无穷大。

1.定理 在同一过程中,无穷大的倒数为无穷小;恒不为零的无穷小的倒数为无穷大。

2.意义:关于无穷大的讨论,都可归结为关于无穷小的讨论。

例1.求。

【答疑编号11020301:针对该题提问】

解:

商的法则不能用

由无穷小与无穷大的关系,得

例2.求。

【答疑编号11020302:针对该题提问】

解:x→∞时,分子,分母的极限都是无穷大。(先用x3去除分子分母,分出无穷小,再求极限。

型)

(无穷小因子分出法)

例3.求

【答疑编号11020303:针对该题提问】

例4.求

【答疑编号11020304:针对该题提问】

小结:当,m和n为非负整数时有

无穷小分出法:以分子、分母中自变量的最高次幂除分子,分母,以分出无穷小,然后再求极限。

例5.【答疑编号11020305:针对该题提问】

例6.求

【答疑编号11020306:针对该题提问】

例7.求

【答疑编号11020307:针对该题提问】

例8(2007年10月)

【答疑编号11020308:针对该题提问】

例9(2007年10月)、下面A、B、C、D四个极限中,哪一个极限存在()

A.B.C.D.【答疑编号11020309:针对该题提问】

答案:D

例10(2007年4月)

()

A.0

B.1 C.-1

D.不存在

【答疑编号11020310:针对该题提问】 答案:B

例11(2007年7月)

【答疑编号11020311:针对该题提问】

计算

例12(2005年)计算

【答疑编号11020312:针对该题提问】

2.6 两个重要极限

2.6.1 关于

1、计算

【答疑编号11020401:针对该题提问】

解:

2、【答疑编号11020402:针对该题提问】

解:

例3、80页第1题(5)

【答疑编号11020403:针对该题提问】

解:

4、【答疑编号11020404:针对该题提问】

解:

5、【答疑编号11020405:针对该题提问】

解:

6、判断四个极限分别属于哪一种类型:

(1)

【答疑编号11020406:针对该题提问】

(2)

【答疑编号11020407:针对该题提问】

(3)

【答疑编号11020408:针对该题提问】

(4)

【答疑编号11020409:针对该题提问】

解:

解:

7、求

【答疑编号11020410:针对该题提问】

2.6.2 关于

1、求

【答疑编号11020501:针对该题提问】

解:

2、【答疑编号11020502:针对该题提问】

解:

3、【答疑编号11020503:针对该题提问】

解:

4、【答疑编号11020504:针对该题提问】

解:

方法一:

方法二:

5、【答疑编号11020505:针对该题提问】

解:

6、【答疑编号11020506:针对该题提问】

解:

7、【答疑编号11020507:针对该题提问】

解:

8、【答疑编号11020508:针对该题提问】 解: 方法一:

方法二:

例9、81页4题(8)

【答疑编号11020509:针对该题提问】

解:

小结:

第一类重要极限:

第二类重要极限:

2.5.4 无穷小的比较

例如,当x→0时,观察各极限

都是无穷小。

,x比3x要快得多; 2,sinx与x大致相同;

不存在,不可比。

极限不同,反映了趋向于零的“快慢”程度不同。

定义:

设α,β是同一过程中的两个无穷小,且α≠0.(1)如果,就说β是比α高阶的无穷小,记作β=o(α);

(2)如果,就说β与α是同阶的无穷小;

特殊地如果

等价无穷小:,则称β与α是等价的无穷小;记作α~β;

例:

【答疑编号11020601:针对该题提问】

例:

【答疑编号11020602:针对该题提问】

得:当x→0时,例:

(1)73页8题:

当x→∝时,a,b,c应满足什么条件可使下式成立?

(1)

(2)

等价无穷小代换

等价代换原理:在同一极限过程中的三个变量u,v,w,如果u,v是无穷小量,且等价,则有

,由

得:当x→0时,常用等价无穷小:

当x→0时,牢记常用的等价无穷小:

当x→0时,例:

【答疑编号11020603:针对该题提问】

例:

【答疑编号11020604:针对该题提问】

【答疑编号11020605:针对该题提问】

错解

当x→0时,解

当x→0时,例

(1)80页1题(7)

【答疑编号11020606:针对该题提问】

(2)80页1题(9)

【答疑编号11020607:针对该题提问】

(3)80页1题(10)

【答疑编号11020608:针对该题提问】

(4)80页2题:设

【答疑编号11020609:针对该题提问】,求a,b

例:94页3题(4):

【答疑编号11020610:针对该题提问】

例:94页4题(1):证明当时,sin(2cosx)与是同阶无穷小。

【答疑编号11020611:针对该题提问】

例:81页8题:设

【答疑编号11020612:针对该题提问】,求k。

小结

1.两个重要极限

2.无穷小的比较: 反映了同一过程中,两无穷小趋于零的速度快慢,但并不是所有的无穷小都可进行比较.高(低)阶无穷小;等价无穷小; 3.等价无穷小的替换:

求极限的又一种方法,注意适用条件.2.7 函数的连续性和连续函数

一、函数的连续性

1.函数的增量

设函数f(x)在

内有定义,称为自变量在点的增量。

2.连续的定义

定义1 设函数f(x)在的函数的增量f(x)在点

定义2 设函数f(x)在也趋向于零,即连续,称为

内有定义,如果当自变量的增量

或的连续点.趋向于零时,对应,那么就称函数

内有定义,如果函数

时的极限存在,且

第三篇:高数竞赛练习题答案(函数、极限、连续)

函数、极限、连续

1.f(x),g(x)C[a,b],在(a,b)内二阶可导且存在相等的最大值,又f(a)g(a),f(b)g(b),证明:(1)(a,b),使f()g()

(2)(a,b),使f()g()证明:设f(x),g(x)分别在xc,xd处取得最大值M,不妨设cd(此时acdb),作辅助函数F(x)f(x)g(x),往证(a,b),使F()0

令F(x)f(x)g(x),则F(x)在[a,b]上连续,在(a,b)二阶可导,且F(a)F(b)0,① 当cd,由于 F(c)f(c)g(c)Mg(c)0F(d)f(d)g(d)f(d)M0由“闭.连.”零点定理,[c,d](a,b),使f()g()② 当cd,由于F(c)f(c)g(c)f(c)g(d)MM0即(a,b),使f()g()

对F(x)分别在[a,],[,b]上用罗尔定理,1(a,),2(,b),使

在[1,2]上对F(x)在用罗尔定理,F(1)F(2)0,(1,2)(a,b),使F()0,(a,b),使f()g().2.设数列{xn}满足0x1,xn1sinxn,n1,2,

xn存在,并求该极限(1)证明limn

xn1x1n(2)计算lim()nxn

分析:(1)确定{xn}为单调减少有下界即可

1xn,用洛必达法则.(2)利用(1)确定的limn

解:易得0xn1(n2,3,),所以xn1sinxnxn,n(2,3,),即{xn}为

xn存在,并记为limxna,则a[0,1],单调减少有下界的数列,所以 lim nn

对等式xn1sinxnxn,两边令n取极限,得asina,a[0,1],所以

a0,即limxn0.n

lim((2)n



xn1sinxn)lim()

nxnxn

2xn

2xn

令txn

lim(t0

sint)et0t

tlim

ln()t

t

2由于

lim

t0

t

ln(sin)ttsint

ln[1(sin1)]1-1t2sintt洛cost11tt2

limlimlimlimlim t0t0t0t0t03t2t2t2t33t26

xn1xn1

所以lim()e.nxn

3.已知f(x)在[0,1]连续,在(0,1)可导,且f(0)0,f(1)1,证明:(1)(0,1),使f()1,(2)存在两个不同点,(0,1),使f()f()1

证:(1)令F(x)f(x)x1,则F(x)在[0,1]上连续,且

F(0)10,F(1)10,由“闭.连.”零点定理,(0,1),使F()0,即f()1

(2)f(x)在[0,],[,1]上都满足拉格朗日中值定理,所以

(0,),(,1),使

f()f(0)f()(0),f(1)f()f()(1),即

f()f()

f()

1

1f()1(1)

111

f()f()

1

1

1

4.设方程xnnx10,其中n为正整数,证明此方程存在唯一的正

实根xn,并证明当1时,级数xn收敛.n1

证:令f(x)xnnx1,则f(x)在(0,)上连续,且

f(0)10,f()()n0

nn

所以由连续函数的零点定理,所给方程在(0,)内有根,又由f(x)n(xn11)0,即f(x)在(0,)内单调递增,所以所给方程(0,)内只有唯一的根,在(,)上无根,即所给方程存在唯一的正实根xn.

由上述知,对n1,2,,有0xn,有0xn

1n

1n1n

1n

1n1,n

此外,由1知,级数

收敛,所以由正项级数比较审敛法,知

n1n

x收敛.nn1

5.求lim(cosx)

x0

1ln(1x)

x0ln(1x)

解:lim(cosx)

x0

1ln(1x)

=e

lim

lncosx,其中limln(1x

x0

lncosx)

lim

x0

ln[1(cosx1)]ln(1x)

lim

x0

x22x



(cosx)所以,limx0

ln(1x)

e

6.f(x)在x0的某邻域内具有一阶连续导数,且f(0)0,f(0)0,若

af(h)bf(2h)f(0)在h0时是比h高阶的无穷小,试确定a,b的值.解1:(利用导数定义)

0lim

af(h)bf(2h)f(0)af(h)af(0)af(0)bf(2h)bf(0)bf(0)f(0)

lim

h0h0hhaf(h)af(0)bf(2h)bf(0)[(ab)1]f(0)[(ab)1]f(0)limlimlim(ab)f(0)limh0h0h0h0hhhh

ab1

由f(0)0,f(0)0,得,即a2,b1

a2b0

解2:按解1,只要假定f(x)在x0处可导即可,但在题中“f(x)在x0的某邻域内具有一阶连续导数”的假定下,有以下解法:由lim

h0

h0

af(h)bf(2h)f(0)

0得 limaf(h)bf(2h)f(0)=0

h0h

即0limaf(h)bf(2h)f(0)(ab1)f(0),由f(0)0,得ab1(1)

af(h)bf(2h)f(0)洛

limaf(h)2bf(2h)(a2b)f(0)且f(0)0,又由0lim

h0h0h

所以 a2b0(2)

由(1)、(2)得a2,b1.2esinx

.7.求lim4x0x1e

解:

2eesinx2esinx

1 limlim44x0x0xx1ee12esinx2esinx

1 limlim44x0xx01ex1e

所以 原式 = 1

8.求lim

x0

143

xx2

.2

x

解1:(泰勒公式)因

xx2[1

1111

xx2o(x2)][1xx2o(x2)]22828(x0)

x2o(x2)~x2

所以

1x2

xx21limlimx0x0x2x24

解2:(洛必达法则)

xx2洛必达limlimx0x0x22x1xx1

limlim x0xx4x0x

12x1lim.4x0x(xx)4

第四篇:高数课件-函数极限和连续

一、函数极限和连续自测题

1,是非题

(1)无界变量不一定是无穷大量

()(2)若limf(x)a,则f(x)在x0处必有定义

()

xx012x(3)极限lim2sinxlimx0

()

xx33x2,选择题

(1)当x0时,无穷小量1x1x是x的()A.等价无穷小

B.同阶但不等价

C.高阶无穷小

D.低价无穷小

x11x0(2)设函数f(x),则x0是f(x)的()x0x0A.可去间断点 B.无穷间断点

C 连续点

D 跳跃间断点

exx0(3)设函数f(x),要使f(x)在x0处连续,则a

()axx0A.2

B 1

C 0

D 1

3n25n1

()(4)lim2n6n3n2A 151

B 

C 

D  2321xsinx0x(5)设f(x),则在x0处f(x)

()

1sinx1x0xA 有定义

B 有极限

C 连续

D左连续

3(6)x1是函数yx1的()x1A 可去间断点

B 无穷间断点

C 连续

D跳跃间断点

3.求下列极限

(1)limxxsinxsin(2x)x23

(2)lim

(3)lim

x0x12xln(12x)x1e2x1(4)lim

(5)limn[ln(1n)lnn]

(6)lim(sinn1sinn)

nnx0x2x3x2(sinx3)tanx2lim()(7)lim

(8)

(9)limx(x1x)x2x1x01cosx2xcosxcosaarctanxexex0(10)lim

(11)lim

(12)lim

xaxxx0xxxax0x232x21sin(x1))(13)lim

(14)lim(2

xx1x1x24,求满足下列条件的a,b的值

1x2xab

(2)lim(3xax2x1)(1)limxx26x2tanaxx0axb2

(4)已知f(x)x(3)lim且limf(x)存在

x0x1x2x2x0x122(5)已知f(x)xaxb1x1在(,)内连续

2x1sin2xe2ax1x0(6)函数f(x)在x0点连续 xax05.求下列函数的间断点并判断其类型

x1x11cosxx21(1)y2

(2)y

(3)f(x)

sinxx3x23xx11x0x(4)f(x)ex1

(5)y

tanxln(1x)1x026.已知x1时,xax5x1是同阶无穷小,求a

7.证明方程x4x20在区间(1,2)内至少有一个根 8.当x0时,eln(1x)1与x是同阶无穷小,求n 9.设函数f(x)a,(a0,a1),求limxxn41ln[f(1)f(2)f(n)]

nn2

第五篇:高数极限

1.代入法, 分母极限不为零时使用.先考察分母的极限,分母极限是不为零的常数时即用此法.【例1】lim[x-->√3](x^2-3)/(x^4+x^2+1)lim[x-->√3](x^2-3)/(x^4+x^2+1)=(3-3)/(9+3+1)=0 【例2】lim[x-->0](lg(1+x)+e^x)/arccosx lim[x-->0](lg(1+x)+e^x)/arccosx =(lg1+e^0)/arccos0 =(0+1)/1 =1 2.倒数法,分母极限为零,分子极限为不等于零的常数时使用.【例3】 lim[x-->1]x/(1-x)∵lim[x-->1](1-x)/x=0 ∴lim[x-->1] x/(1-x)= ∞ 以后凡遇分母极限为零,分子极限为不等于零的常数时,可直接将其极限写作∞.3.消去零因子(分解因式)法,分母极限为零,分子极限也为零,且可分解因式时使用.【例4】 lim[x-->1](x^2-2x+1)/(x^3-x)lim[x-->1](x^2-2x+1)/(x^3-x)=lim[x-->1](x-1)^2/[x(x^2-1)=lim[x-->1](x-1)/x =0 【例5】lim[x-->-2](x^3+3x^2+2x)/(x^2-x-6)lim[x-->-2](x^3+3x^2+2x)/(x^2-x-6)= lim[x-->-2]x(x+1)(x+2)/[(x+2)(x-3)] = lim[x-->-2]x(x+1)/(x-3)=-2/5 【例6】lim[x-->1](x^2-6x+8)/(x^2-5x+4)lim[x-->1](x^2-6x+8)/(x^2-5x+4)= lim[x-->1](x-2)(x-4)/[(x-1)(x-4)] = lim[x-->1](x-2)/[(x-1)=∞

【例7】lim[h-->0][(x+k)^3-x^3]/h lim[h-->0][(x+h)^3-x^3]/h = lim[h-->0][(x+h)–x][(x+h)^2+x(x+h)+h^2]/h = lim[h-->0] [(x+h)^2+x(x+h)+h^2] =2x^2 这实际上是为将来的求导数做准备.4.消去零因子(有理化)法,分母极限为零,分子极限也为零,不可分解,但可有理化时使用.可利用平方差、立方差、立方和进行有理化.【例8】lim[x-->0][√1+x^2]-1]/x lim[x-->0][√1+x^2]-1]/x = lim[x-->0][√1+x^2]-1] [√1+x^2]+1]/{x[√1+x^2]+1]} = lim[x-->0][ 1+x^2-1] /{x[√1+x^2]+1]} = lim[x-->0] x / [√1+x^2]+1] =0 【例9】lim[x-->-8][√(1-x)-3]/(2+x^(1/3))lim[x-->-8][√(1-x)-3]/(2+x^(1/3))=lim[x-->-8][√(1-x)-3] [√(1-x)+3] [4-2x^(1/3)+x^(2/3)] ÷{(2+x^(1/3))[4-2x^(1/3)+x^(2/3)] [√(1-x)+3]} =lim[x-->-8](-x-8)[4-2x^(1/3)+x^(2/3)]/{(x+8)[√(1-x)+3]} =lim[x-->-8] [4-2x^(1/3)+x^(2/3)]/[√(1-x)+3] =-2 5.零因子替换法.利用第一个重要极限:lim[x-->0]sinx/x=1,分母极限为零,分子极限也为零,不可分解,不可有理化,但出现或可化为sinx/x时使用.常配合利用三角函数公式.【例10】lim[x-->0]sinax/sinbx lim[x-->0]sinax/sinbx = lim[x-->0]sinax/(ax)*lim[x-->0]bx/sinbx*lim[x-->0]ax/(bx)=1*1*a/b=a/b 【例11】lim[x-->0]sinax/tanbx lim[x-->0]sinax/tanbx = lim[x-->0]sinax/ sinbx*lim[x-->0]cosbx =a/b 6.无穷转换法,分母、分子出现无穷大时使用,常常借用无穷大和无穷小的性质.【例12】lim[x-->∞]sinx/x ∵x-->∞ ∴1/x是无穷小量 ∵|sinx|∞]sinx/x=0 【例13】lim[x-->∞](x^2-1)/(2x^2-x-1)lim[x-->∞](x^2-1)/(2x^2-x-1)= lim[x-->∞](1-1/x^2)/(2-1/x-1/ x^2)=1/2 【例14】lim[n-->∞](1+2+……+n)/(2n^2-n-1)lim[n-->∞](1+2+……+n)/(2n^2-n-1)=lim[n-->∞][n(n+1)/2]/(2n^2-n-1)=lim[n-->∞][(1+1/n)/2]/(2-1/n-1/n^2)=1/4 【例15】lim[x-->∞](2x-3)^20(3x+2)^30/(5x+1)^50 lim[x-->∞](2x-3)^20(3x+2)^30/(5x+1)^50 = lim[x-->∞][(2x-3)/(5x+1)]^20[(3x+2)/(5x+1)]^30 = lim[x-->∞][(2-3/x)/(5+1/ x)]^20[(3+2/ x)/(5+1/ x)]^30 =(2/5)^20(3/5)^30=2^20*3^30/5^50

极限连续-高数竞赛超好
TOP