首页 > 精品范文库 > 12号文库
高等数学 极限与中值定理 应用
编辑:明月清风 识别码:21-792174 12号文库 发布时间: 2023-11-11 13:19:15 来源:网络

第一篇:高等数学 极限与中值定理 应用

(一)1.xsinlimxlimxsin2xx1 22xx1(洛必达法则)1x2

=lim2x22xx1

2

2.xx limxlimsinxcosx1

1

3.x0sinxlimcosxx0limtanxsinxx3

sinx3limx sinx(1cosx)x0xcosx3

x3lim23x0x12

4.limxsinx3x0lim16x1cosx3x2 x0

(二)1.若

limsinxeaxx0(cosxb)5,求常数a,b

lim(cosxb)xea sinx(cosxb)limxx0ea x0sinx由等价无穷小可得a=1

=lim(cosxb)xsinxexx05

b4

2.若x0,(x)kx,(x)21xarcsinxcosx

是等价无穷小,求常数K lim1xarcsinxkx2cosxx01

lim1xarcsinxcosxkx(1xarcsinx1xarcsinxcosx2kx2x02cosx)

limx0

x2arcsinxlimx0sinx1x4kx1x)cosx'lim31x2(x01x4k2

4k3k41

3.证明当X>02

时,(x1)lnx(x1)222

f(x)(x1)lnx(x1)则f(x)2xlnxx2xlnxx'''

1x2(x1)1x2

1x2f(x)2(lnx1)1

2lnxln1x21x211

x210'再倒推可得:f(x)0

22f(x)0f(x0),所以(x1)lnx(x1)

(三)1.设f(x)在[0,a]上连续,在(0,a)内可导,且

f(a)0,证明:(0,a),使得f()f()0。

'求原函数F(x)xf(x)

F(0)F(a)0满足罗尔定律,所以F(x)0

'即 f()f()0'

2.设f(x)在[0,1]上连续,在(0,1)上可导。且

f(0)0,f(1)1,证明

(1)c(0,1).推出f(c)1c(2),(0,1)有f()f()=1()''

(1)F(x)f(c)c1

F(0)1,F(1)1

由零点定理得c(0,1)有F(c)=0

所以c(0,1).推出f(c)1c(2)设(o,c),(c,1)得

f()f()''f(c)f(0)c0f(1)f(c)1c1ccc1c'

'所以 ,(0,1)有f()f()=1()

第二篇:高等数学中值定理总结

咪咪原创,转载请注明,谢谢!

中值定理一向是经济类数学考试的重点(当然理工类也常会考到),咪咪结合老陈的书和一些自己的想法做了以下这个总结,希望能对各位研友有所帮助。

1、所证式仅与ξ相关 ①观察法与凑方法

例 1 设f(x)在[0,1]上二阶可导,f(0)f(1)f(0)02f()试证至少存在一点(a,b)使得f()1分析:把要证的式子中的  换成 x,整理得f(x)xf(x)2f(x)0(1)由这个式可知要构造的函数中必含有f(x),从xf(x)找突破口 因为[xf(x)]xf(x)f(x),那么把(1)式变一下: f(x)f(x)[xf(x)f(x)]0f(x)f(x)[xf(x)]0 这时要构造的函数就看出来了F(x)(1x)f(x)f(x)②原函数法

例 2 设f(x)在[a,b]上连续,在(a,b)内可导,f(a)f(b)0,又g(x)在[a,b]上连续 求证:(a,b)使得f()g()f()分析:这时不论观察还是凑都不容易找出要构造的函数,于是换一种方法 现在把与f 有关的放一边,与g 有关的放另一边,同样把  换成 x 两边积分f(x)g(x)dx g(x)lnf(x)g(x)dxlnCf(x)Cef(x)

f(x)eg(x)dxC 现在设C0,于是要构造的函数就很明显了 F(x)f(x)eg(x)dx③一阶线性齐次方程解法的变形法

对于所证式为fpf0型,(其中p为常数或x 的函数)可引进函数u(x)e,则可构造新函数F(x)fepdxpdx例:设f(x)在[a,b]有连续的导数,又存在c(a,b),使得f(c)0f()f(a)baf()f(a)分析:把所证式整理一下可得:f()0ba1 [f()f(a)][f()f(a)]0,这样就变成了fpf0型ba 求证:存在(a,b),使得f()-dx- 引进函数u(x)eba=eba(令C=0),于是就可以设F(x)eba[f(x)f(a)] 注:此题在证明时会用到f(c)

2、所证式中出现两端点 ①凑拉格朗日 1xxf(b)f(a)0f(b)f(a)这个结论ba

咪咪原创,转载请注明,谢谢!

例 3 设f(x)在[a,b]上连续,在(a,b)内可导 证明至少存在一点(a,b)使得bf(b)af(a)f()f()ba

分析:很容易就找到要证的式子的特点,那么可以试一下,不妨设 F(x)xf(x),用拉格朗日定理验证一下 F()f()f()②柯西定理

bf(b)af(a)ba例 4 设0x1x2,f(x)在[x1,x2]可导,证明在(x1,x2)至少存在一点c,使得 1ex1ex2e1e2f(c)f(c)f(x1)f(x2)e1f(x2)e2f(x1)ex1x2xxxx分析:先整理一下要证的式子e 这题就没上面那道那么容易看出来了xxf(c)f(c)

x1x2 发现e1f(x2)e2f(x1)是交叉的,变换一下,分子分母同除一下ef(x2)f(x1)ex2eex11x2e③k值法 1x1于是这个式子一下变得没有悬念了 用柯西定理设好两个函数就很容易证明了仍是上题分析:对于数四,如果对柯西定理掌握的不是很好上面那题该怎么办呢? 在老陈的书里讲了一个方法叫做k 值法 第一步是要把含变量与常量的式子分写在等号两边 以此题为例已经是规范的形式了,现在就看常量的这个式子 设

e1f(x2)e2f(x1)ex1x2xxe 很容易看出这是一个对称式,也是说互换x1x2还是一样的 记得回带k,用罗尔定理证明即可。k 整理得ex1[f(x1)k]ex2[f(x2)k] 那么进入第二步,设F(x)ex[f(x)k],验证可知F(x1)F(x2)④泰勒公式法

老陈常说的一句话,管它是什么,先泰勒展开再说。当定理感觉都起不上作用时,泰勒法往往是可行的,而且对于有些题目,泰勒法反而会更简单。

3、所证试同时出现ξ和η ①两次中值定理

咪咪原创,转载请注明,谢谢!

例 5 f(x)在[a,b]上连续,在(a,b)内可导,f(a)f(b)1 试证存在,(0,1)使得e[f()f()]1分析:首先把与分开,那么就有e[f()f()]e 一下子看不出来什么,那么可以先从左边的式子下手试一下 很容易看出e[f()f()][ef()],设F(x)exf(x)ebf(b)eaf(a)利用拉格朗日定理可得F()再整理一下baebeaebea e[f()f()]只要找到与e的关系就行了baba

这个更容易看出来了,令G(x)ex则再用拉格朗日定理就得到ebea G()ee[f()f()]ba②柯西定理(与之前所举例类似)

有时遇到ξ和η同时出现的时候还需要多方考虑,可能会用到柯西定理与拉氏定理的结合使用,在老陈书的习题里就出现过类似的题。

第三篇:高等数学中值定理总结

咪咪原创,转载请注明,谢谢!

中值定理一向是经济类数学考试的重点(当然理工类也常会考到),咪咪结合老陈的书和一些自己的想法做了以下这个总结,希望能对各位研友有所帮助。

1、所证式仅与ξ相关

①观察法与凑方法

例 1设f(x)在[0,1]上二阶可导,f(0)f(1)f(0)0

2f()试证至少存在一点(a,b)使得f()1

分析:把要证的式子中的  换成 x,整理得f(x)xf(x)2f(x)0(1)

由这个式可知要构造的函数中必含有f(x),从xf(x)找突破口

因为[xf(x)]xf(x)f(x),那么把(1)式变一下:

f(x)f(x)[xf(x)f(x)]0f(x)f(x)[xf(x)]0

这时要构造的函数就看出来了F(x)(1x)f(x)f(x)

②原函数法

例 2设f(x)在[a,b]上连续,在(a,b)内可导,f(a)f(b)0,又g(x)在[a,b]上连续

求证:(a,b)使得f()g()f()

分析:这时不论观察还是凑都不容易找出要构造的函数,于是换一种方法

现在把与f 有关的放一边,与g 有关的放另一边,同样把  换成 x

两边积分f(x)g(x)dxg(x)lnf(x)g(x)dxlnCf(x)Ce

f(x)

f(x)eg(x)dxC 现在设C0,于是要构造的函数就很明显了

F(x)f(x)eg(x)dx

③一阶线性齐次方程解法的变形法

对于所证式为fpf0型,(其中p为常数或x 的函数)

可引进函数u(x)e,则可构造新函数F(x)fepdxpdx

例:设f(x)在[a,b]有连续的导数,又存在c(a,b),使得f(c)0

f()f(a)

ba

f()f(a)分析:把所证式整理一下可得:f()0ba

1[f()f(a)][f()f(a)]0,这样就变成了fpf0型ba求证:存在(a,b),使得f()

-dx-引进函数u(x)eba=eba(令C=0),于是就可以设F(x)eba[f(x)f(a)]

注:此题在证明时会用到f(c)

2、所证式中出现两端点

①凑拉格朗日 1xxf(b)f(a)0f(b)f(a)这个结论ba

例 3设f(x)在[a,b]上连续,在(a,b)内可导

证明至少存在一点(a,b)使得bf(b)af(a)f()f()ba

分析:很容易就找到要证的式子的特点,那么可以试一下,不妨设

F(x)xf(x),用拉格朗日定理验证一下

F()f()f()

②柯西定理 bf(b)af(a)ba

例 4设0x1x2,f(x)在[x1,x2]可导,证明在(x1,x2)至少存在一点c,使得

ex1ex2e1e2f(c)f(c)(x1)f(x2)

e1f(x2)e2f(x1)

ex1x2xxxx分析:先整理一下要证的式子e

这题就没上面那道那么容易看出来了

xxf(c)f(c)x1x2发现e1f(x2)e2f(x1)是交叉的,变换一下,分子分母同除一下e

f(x2)f(x1)

ex2e

ex11x2e

③k值法 1x1于是这个式子一下变得没有悬念了用柯西定理设好两个函数就很容易证明了

仍是上题

分析:对于数四,如果对柯西定理掌握的不是很好上面那题该怎么办呢?

在老陈的书里讲了一个方法叫做k 值法

第一步是要把含变量与常量的式子分写在等号两边

以此题为例已经是规范的形式了,现在就看常量的这个式子

设 e1f(x2)e2f(x1)

ex1x2xxe

很容易看出这是一个对称式,也是说互换x1x2还是一样的记得回带k,用罗尔定理证明即可。k 整理得ex1[f(x1)k]ex2[f(x2)k]那么进入第二步,设F(x)ex[f(x)k],验证可知F(x1)F(x2)

④泰勒公式法

老陈常说的一句话,管它是什么,先泰勒展开再说。当定理感觉都起不上作用时,泰勒法往往是可行的,而且对于有些题目,泰勒法反而会更简单。

3、所证试同时出现ξ和η

①两次中值定理

例 5f(x)在[a,b]上连续,在(a,b)内可导,f(a)f(b)1

试证存在,(0,1)使得e[f()f()]1

分析:首先把与分开,那么就有e[f()f()]e

一下子看不出来什么,那么可以先从左边的式子下手试一下

很容易看出e[f()f()][ef()],设F(x)exf(x)

ebf(b)eaf(a)利用拉格朗日定理可得F()再整理一下ba

ebeaebea

e[f()f()]只要找到与e的关系就行了baba

这个更容易看出来了,令G(x)ex则再用拉格朗日定理就得到

ebea

G()ee[f()f()]ba

②柯西定理(与之前所举例类似)

有时遇到ξ和η同时出现的时候还需要多方考虑,可能会用到柯西定理与拉氏定理的结合使用,在老陈书的习题里就出现过类似的题。

第四篇:2018考研高等数学基本定理:函数与极限部分

凯程考研辅导班,中国最权威的考研辅导机构

2018考研高等数学基本定理:函数与极

限部分

在暑期完成

凯程考研辅导班,中国最权威的考研辅导机构

数列{xn}、{yn}、{zn}满足下列条件:yn≤xn≤zn且limyn=a,limzn=a,那么limxn=a,对于函数该准则也成立。

单调有界数列必有极限。

6、函数的连续性设函数y=f(x)在点x0的某一邻域内有定义,如果函数f(x)当x→x0时的极限存在,且等于它在点x0处的函数值f(x0),即lim(x→x0)f(x)=f(x0),那么就称函数f(x)在点x0处连续。

不连续情形:

1、在点x=x0没有定义;

2、虽在x=x0有定义但lim(x→x0)f(x)不存在;

3、虽在x=x0有定义且lim(x→x0)f(x)存在,但lim(x→x0)f(x)≠f(x0)时则称函数在x0处不连续或间断。

如果x0是函数f(x)的间断点,但左极限及右极限都存在,则称x0为函数f(x)的

第五篇:高等数学考研大总结之五 微分中值定理

第五章微分中值定理

一,罗尔(Rolle)中值定理费马(Fermat)引理:设fx在点x0取得极值,且f/x0存在则f/x0=0。解析:几何意义:曲线在极值点处的切线是平行于x轴的。

2罗尔(Rolle)中值定理:函数fx在闭区间a,b上连续,在开区间a,b内可导(每一点都具有导数)并且在闭区间a,b的端点函数值相等,即:fafb,那么在开区间a,b内至少有一点使得f/0。

解析:⑴该定理是奠定一系列中值定理的基础。

⑵此定理反映了由区间端点函数值的情况来表现区间内导函数值的变化情况,给出了点的具体位置和计算方法(与Lagrange中值定理的区别)。

⑶几何意义:若连接曲线两端点的弦是水平的,则曲线上至少有一点的切线是水平的。⑷两个推论:①推论1:如果函数fx在区间a,b内的导数恒等于零,那么函数fx在区间a,b内是一个常数。②推论2:如果函数fx在区间a,b内处处有

。f/xg/x,则在此区间内fxgxC(常数)

二,拉格朗日(Lagrange)中值定理

设函数fx在闭区间a,b上连续且在开区间a,b内可导(每一点都具有导数)那么在开区间a,b内至少有一点ab使等式fbfaf

该定理的其它几种表示形式:⑴f//ba成立。fbfa ba

AB解析:反映其几何意义:如果连接曲线yfx的弧上除端点外处处具有不垂直于x轴的切线,那么这弧上至少有一点,使曲线在处的切线平行于弦AB。

⑵令aba,01则fbfaf/ababa,01。解析:由于的特定取值范围,所以在证明不等式时较常用,若令ax0,bx0h那么有:fx0hfx0f/x0hh,01。

⑶有限增量公式:如果用x表示ba则函数增量yfbfa,这时该定理变成yf/x。

解析:⑴从理论上与微分的区别:该公式准确的表明了函数增量与自变量增量(不要求其趋第1页

于零或比较小而仅要求其为有限增量)的关系,而微分只能近似的表示这一关系,并且要求

x比较小,而且当x0时dy表示y的误差才趋于零。但在实际应用中仍常用微分去

近似表示函数值的改变量。⑵类比与上式,则还可表示为yf三,柯西(Cauchy)中值定理

设两个函数fx和gx在闭区间a,b上连续且在开区间a,b内可导(每一点都具有导数)且g/x在a,b内每一点均不为零,则在a,b内至少存在一点使得

/

xxx,01。

fbfaf/,ab成立。gbgag/解析:⑴要求分子与分母中的是同一个值。⑵

Lagrange

理,此

fx0hfx0f/x0h

,01。

gx0hgx0g/x0h四,Rolle,Lagrange,Cauchy中值定理间的关系

xxfafb

CauchygLagrangeRolle

五,泰勒(Taylor)中值定理定义:若fx在a,b上有直到n阶连续的导数,在开区间a,b上n1阶导数存在,则

意的x,x0a,b

有:

fxfx0

f

/

x0

1!

xx0

f

//

x0

2!

xx0

fnx0xx0nRnx其中

n!

fn1称为余项(与误差估计有关)。其中当x0xx0n1(介于x与x0之间)Rnx

n1!

取零时的泰勒(Taylor)公式称为麦克劳林(Maclaurin)公式。

解析:使复杂函数成为简单函数的有效方法。2 各种形式的泰勒(Taylor)公式

⑴带有皮亚诺(Peano)余项的泰勒

(Taylor)公式:

f/x0f//x0fnx02nn

Taylor:fxfxxxxxxxxx,xx000000

1!2!n!///n

Maclaurin:fxf0f0xf0x2f0xnxn,x01!2!n!





⑵带有Lagrange余项的泰勒(Taylor)公式:

f/x0f//x0fnx0fn12nn1

Taylor:fxfxxxxxxxxx00000

n11!2!n!

///nn1

xxn1,01Maclaurin:fxf0f0xf0x2f0xnf

n11!2!n!

Cauchy

项的泰

(Taylor)

nfkx0

xx0kfxn1

xnm,xxm!fk!k0Taylor:0m

gkx0n!gn1k

xx0gx 

k!k0

nxx0xnn1fkx0k

xx0fCauchy:令gxx,m0则fxk!n!k0

⑷带有积分余项的泰勒(Taylor)公式:

n

fkx01xn1kn

Taylor:fxxxftxtdt0x0

k!n!k0

kn1n1f0kxnn1Maclaurin:fxxfxt1tdt0k!n!k0常见函数的麦克劳林(Maclaurin)展式

⑴带有皮亚诺(Peano)余项的麦克劳林(Maclaurin)展式:

n

x3x5x2n1x2k1n1k12n

sinxx1x1x2n

2n12k13!5!!k1



2n2kn

x2x4nxkx2n

cosx11x1x2n

2n2k2!4!!k0



kn

xx2xnk1xn

e1x1xn

1!2!n!k!k0x





nkn

x2x3n1xk1xn

ln1xx1x1xn

23nkk1



1x

n

1212n1nnkk

1xxxx1Cxxn2!n!k1

⑵带有Langrange余项的麦克劳林(Maclaurin)展式:

sinx1

k1n

n

k1

x2k1ncosx

1x2n1,012k12n1!

x2kn1cosx

cosx11x2n2,01

2k2n2!k0

k

xkex

exn1,01

!k0k!n1x

n

ln1x1`

k1

n

k1

xkxn1n

1,x1,01n1kn11x

1x

kk

1Cx

k1

n

1n1xn1xn1,x1,01

n1!Taylor公式的应用

⑴求极限。⑵近似计算,误差估计。⑶与幂级数的关系。⑷不等式证明。六,罗比塔(L”Hospital)法则解决问题的情况:

00

。

解析:不是以上两种型的转化为以上型。例如:

“0”型,“”型,“00”型,“0”型,“1”型。需注意的问题:⑴只有未定式才能应用罗比塔(L”Hospital)法则,不是未定式,则不能用罗比塔(L”Hospital)法则,且分子与分母分别求导。

⑵只有

法则。

00

未定式才能直接应用罗比塔(L”Hospital)

00

未定

⑶求其他类型未定式的值时,就首先将其转化为

式,然后才能应用罗比塔(L”Hospital)法则。

⑷可以对未定式反复应用罗比塔(L”Hospital)法则,直到求出确定的极限值为止。⑸用对数方法求极限时还要将结果还原为指数形式。

⑹有些未定式若用罗比塔(L”Hospital)法则求不出它的值时,就改用其它方法计算。

高等数学 极限与中值定理 应用
TOP