首页 > 精品范文库 > 12号文库
苏州市吴中区生态环境质量现状定量评估与分析
编辑:红尘浅笑 识别码:21-420711 12号文库 发布时间: 2023-04-20 03:53:28 来源:网络

第一篇:苏州市吴中区生态环境质量现状定量评估与分析

苏州市吴中区生态环境质量现状定量评估与分析

摘 要:生态环境是人类生存及社会经济持续发展的基础,经济的快速增长有效提高了人民生活水平,但同时对生态环境也造成了一定的影响。为了更好地了解经济发展和城市化对城市生态环境的影响程度,定量评估其影响水平,以苏州市吴中区为研究对象,选取生态承载力、土地利用变化、植被净初级生产力(NPP)和生态因子指数等4个指标对苏州市吴中区的生态环境质量进行定量评估和分析。结果表明:(1)苏州市吴中区人均生态承载力为0.273 4~0.104 4 hm2,表现出较为明显的生态赤字。在2005―2012年间,人均生态承载力、生态足迹和生态赤字分别下降62%,48%和46%,但从生态足迹和承载力来看,生态赤字现象仍较为严重。(2)2000―2013年间,苏州市吴中区植被NPP平均值以C计减少了0.12 g?m-2,固碳总量减少了0.8×109 g?a-1,表明吴中地区各类生态系统的固碳能力和生产能力呈现下降趋势。(3)2000―2013年间,苏州市吴中区共有406.41 km2土地覆被发生转化。其中,共有139.53 km2土地转化成人工表面,主要来源于农田、植被和水田,转化面积分别为76.16,30.01和24.25 km2。(4)虽然吴中区自然生态绿化面积在增加,但植被厚度、生物多样性、生态能力和碳汇量在减少,其生态环境质量呈变差趋势。因此,最终结果是吴中区因受到经济开发和城市化的影响较大及生态保护措施不利,近10年来其总体生态环境质量呈下降趋势,其发展与保护的矛盾仍很尖锐。

关键词:苏州市吴中区;城市生态环境质量;生态承载力分析;土地利用变化;生态因子指数分析;植被净初级生产力

中图分类号:X171.1 文献标识码:A DOI 编码:10.3969/j.issn.1006-6500.2015.06.019

Abstract: Eco-environment is the foundation of human and the development of society and economy.Rapid economic growth improves the people's living standard,but brings some negative effects on the environment.To better understand the impacts of economic development on the eco-environment of city and rural,in this study,the ecological carrying capacity,land use and change,vegetation net primary productivity(NPP)and ecological factor index were selected as indexes to evaluate and analyze of eco-environmental quality of Wuzhong District of Suzhou.The results showed that(1)the ecological carrying capacity of Wuzhong were 0.273 4~0.104 4 hm2,which appeared to be the ecological deficit obviously.In 2005―2012,the ecological carrying capacity,ecological footprint and ecological deficit decreased by 62%,48% and 46%,respectively.However,in the terms of the ecological footprint and carrying capacity,the ecological deficit was still serious.(2)In 2000―2013,the average vegetation NPP of Wuzhong decreased by 0.12 g?m-2(C),and the total carbon sequestration storage decreased by 0.8 × 109 g?a-1(C),which implies that the carbon sequestration capacity and productivity of ecosystems in Wuzhong have been declining.(3)In 2000―2013,406.41 km2 of land cover changed,139.53 km2 of lands changed into artificial land,which are mainly from farmland,vegetation and paddy lands with 76.16,30.01 and 24.25 km2,respectively.(4)Natural ecological green area was increasing,but the vegetation thickness,ecological capacity and the amount of carbon sequestration decreased,which showed a deterioration of the eco-environmental quality of Wuzhong.In conclusion,the eco-environmental quality and the relationship between protection and development of Wuzhong have been becoming worse in 2000―2013.Key words: Suzhou Wuzhong City; eco-environmental quality; ecological carrying capacity; land use and change; ecological factors index; vegetation NPP

随着城市化进程的加快和工业的发展,城市人口不断增长,规模不断扩大,随之带来的生态环境问题也逐渐突显,对社会稳定、经济发展和人民健康带来了极大影响。生态环境质量是指与人类有关的自然资源及人类赖以生存的环境的优劣程度,它包括自然资源和社会环境2个部分[1]。自然环境质量是指区域内的自然环境因素,包括大气、水、土壤、生物等环境质量,而社会环境质量则包括政治、经济和文化等方面的环境质量[2]。生态环境质量评价是一项系统性研究工作,涉及生态学、环境科学、资源科学、社会及人文等学科的许多领域,是资源开发利用、制定经济社会可持续发展规划和生态环境保护对策的重要依据[2]。目前,国内已有多个省市进行了生态环境质量评价,如新疆、贵州省、江苏省和广州市等[3-7],并从政府管理、产业结构和人民生活等诸多方面提出了建议和措施,倡导构建生态文明社会,加强各类生态保护工程建设,走可持续的经济、社会、生态发展道路。

苏州市吴中区是国家级的经济开发区,近10年来,其独特的自然地理优势促使经济迅猛发展。但进入21世纪以后,吴中区人口数量不断增加、耕地面积逐渐减少、能源消耗较大、利用效率低、污染排放增多,生态环境质量逐渐下降[8]。部分学者对苏州市近年来的经济发展与环境的关系进行研究,并对生态环境质量进行评价[8-12],沈钰峰对苏州市吴中区的产业结构和环境质量的关系进行了研究,结果表明吴江的第一和第二产业对环境影响较大,而第三产业的发展仍然存在较大的提升和优化空间[13]。郑?D则利用层次矢量分析法研究苏州市经济与环境承载力的关系,认为2000―2009年间,苏州市环境质量连续多年处于强载状态,但随着经济的进一步发展后,将有所改善[11]。马育军等借助DEA模型对苏州市的生态环境进行评价,结果表明苏州市10年来生态环境建设总体良好[14]。

本研究基于年鉴数据和遥感数据,通过分析人均生态承载力、植被净初级生产力(NPP)、土地利用变化和生态因子指数等4个指标,对苏州市吴中区的生态环境质量进行了定量评估,以期为吴中区的生态、社会和经济的科学、健康、可持续发展提供科学依据。材料和方法

1.1 研究区域概况

吴中区位于历史文化名城苏州南部(东经119°55'~120°54'、北纬30°56'~31°21'),北与苏州古城、苏州工业园区、苏州高新区接壤,南衔太湖,与无锡市、浙江省湖州市隔湖相望(图1)。全区陆地面积745 km2,太湖水域面积1 486 km2,占太湖水域的61.28%。下辖1个国家级太湖旅游度假区、1个国家级经济技术开发区、1个国家级农业园区、7个镇、8个街道和穹隆山风景管理区。2012年末,全区户籍人口60.5万人。当地属于北亚热带湿润季风气候,夏季温暖多雨,冬季寒冷干燥,日照充足,四季分明,年均温度为16.9 ℃,总降水量911 mm,总日照数为1 773.1 h,相对湿度为70%。

1.2 生态环境质量评估方法

1.2.1 生态承载力 生态承载力表示一个地区所能提供给人类的生物生产性土地面积的总和。计算时引入“产量因子”,表示不同国家或地区的各类生物生产性土地产量与世界平均产量的差异。本研究采用的产量因子参考江苏省数据:耕地为1.79,建筑用地为1.66,林地为0.91,草地为1.90,水域为1.00[15],计算公式如下[16]:

式中,ec为人均生态承载力(hm2?人-1);ai为人均i类生物生产性土地面积(hm2?人-1);Ai为各地区的第i类土地现状面积(hm2);yi为产量因子;N、γi含义同上。计算出的人均生态承载力建议扣除12%的生物多样性保护面积[17]。

1.2.2 植被净初级生产力(NPP)利用遥感资料和光能利用率CASA模型估算2000年和2013年苏州市吴中区植被净初级生产力[18]。

1.2.3 生态因子指数 生态因子计算主要是将植被指数(NDVI)、陆地表面温度(LST)和植被净初级生产力(NPP)3个指标通过归一化,将各项指标范围界定在-1~1之间。生态环境越好,生态因子指数越高,反之则值较小(水域除外),其计算公式如式(2)和(3)所示。

1.3 土地利用与遥感数据来源及加工

本文所用遥感数据是2000年和2013年landsat TM 影像数据,波段按 4、3、2 波段合成,最适合用于植被分类,几何纠正模型采用 polynmmial 模型。

本研究的其他数据来源于《吴中统计年鉴》、苏州市吴中区土地整治规划和土地利用总体规划及地面现场实际调查与观测。

全文数据处理使用Excel2007;全文图表绘制使用Arcgis 10.1和Origin8.0软件。结果与分析

2.1 生态承载力定量评估与分析

人均生态承载力和生态赤字的计算以2005、2010和2012年为研究对象,结果如表1所示。结果显示,苏州市吴中区人均生态承载力为0.273 4~0.104 4 hm2,其值远小于生态足迹,表现为明显的生态赤字。2005―2012年间,人均生态承载力、生态足迹和生态赤字均呈现下降趋势,降幅分别为62%,48%,46%。虽然生态足迹下降使生态赤字状况得到一定的缓和,但从生态足迹和承载力来看,二者的比值已由2005年的9倍增加为2012年的12倍,因此,吴中区的生态赤字现象仍较为严重。

在生态赤字组分中,能源用地、耕地和水域的赤字比重较大。由于吴中区能源的承载力为0,导致能源的严重生态赤字。近年来,苏州市企业的能源结构逐渐转型,煤、石油等不可再生资源利用逐渐降低,能源赤字状况逐步缓解。2005―2010年,耕地生态赤字从0.533 5增加至0.848 1 hm2?人-1,主要是由于吴中区耕地面积减少了35%,直接导致承载力的下降,而生态赤字骤然增加;到2010―2012年间,农业生产采用部分集约化,粮食单位产量增加,人均生态足迹降低,生态赤字有所缓解。

2.2 生态植被净初级生产力定量评估与分析

从表2和表3可见,吴中区2000年至2013年植被NPP平均值减少了0.12 g?m-2(C);农田NPP平均值减少了-5.29 g?m-2(C);水田NPP平均值增加了3.4 g?m-2(C);湿地NPP平均值增加了3.1 g?m-2(C);固碳总量减少了0.8 × 109 g?a-1(C),表明吴中地区各类生态系统的固碳能力呈现下降趋势,生态生产量、生物量和生产能力呈现下降态势。总之,研究结果表明,吴中地区经13年后,其生物生产量和生态系统固碳能力呈下降态势。

2.3 2000―2013年间土地利用变化定量评估与分析

研究结果表明,2000年至2013年间,苏州市吴中区共有406.41 km2土地覆被发生转化(表4)。转化面积大小依次为,农田转人工表面面积76.16 km2,转化强度18.74%;水田转为水体面积47.84 km2,转化强度11.77%;水体转湿地面积43.85 km2,转化强度10.79%;农田转植被面积37.70 km2,转化强度9.28%;人工表面转植被面积30.32 km2,转化强度7.46%;水田转人工表面面积24.25 km2,转化强度5.97%;水田转湿地面积16.47 km2,转化强度4.05%;水田转农田面积14.70 km2,转化强度3.62%;人工表面转农田面积9.21 km2,转化强度2.27%;其余面积转化均小于9 km2。总之,共有139.53 km2土地转化成人工表面,主要来源于农田、植被和水田。

2.4 2013年生态因子指数定量评价与分析

生态因子指数是生态环境质量综合评价的重要指标之一,其值越高,说明该生态环境质量越好,生物固碳和净化能力越强,生态服务功能也越强,生态价值也越高。利用综合生态因子指数计算出2013年吴中区生态环境质量结果(图

2、表5)。结果显示,吴中区自然生态绿化面积在增加,但植被厚度、生态能力和碳汇量在减少,平均每年按1.09%速度下降,其生态环境质量呈变差趋势。其生态环境质量越好的地方多分布在吴中的西部原始森林植被和东山西山岛,也是一类、二类保护区重要的生态重点保护单元,其中一类保护区的生态因子指数面积为5.97 km2,占总面积的1.09%,二类保护区的生态因子指数面积为8.91 km2,占总面积的1.63%,三类保护区的生态因子指数面积为18.80 km2,占总面积的3.43%。

从表6可见,苏州市吴中区2013年不同土地类型平均生态因子由大到小为:植被(0.189)> 农田(0.053)> 湿地(0.047)> 水田(0.023)> 城镇(0.009)。从不同土地利用类型的生态因子指数的均值分析可见,各种植被的生态利用价值和生态质量最高,其次为农田生态系统,再次为湿地和水田,最低的为城镇生态系统,因此,重点生态保护区应主要设在生态植被分布区、农田生态系统区、湿地生态系统和太湖水源区;其生态保护价值应是植被(0.189)> 农田(0.053)> 湿地(0.047)> 水田(0.023)> 城镇(0.009),所以,一、二类重点生态保护区应设置在吴中地区的山地与丘陵植被地带、农田、湿地与取水口重要水域等地带。讨 论

近年来,随着经济高速发展,吴中区城市化进程不断加快,人口数量不断增加,而人们生产方式和生活方式还处于落后状态,离生态化还有较大的距离。粗放经营,能源、资源原材料消耗大,生产效率低下,单位产值污染物产生量大。在城市化进程中,土地资源浪费现象普遍,土地使用效率低。大气污染造成酸雨出现,对生物生长造成一定危害;农田土壤污染对食品安全也构成一定威胁。在城市不断扩张的过程中,吴中区耕地面积减少,由于吴中区河流湖泊众多,农田往往与之镶嵌在一起,因此,农田生态系统中的生物多样性状况会对自然生态系统产生影响。由于受到全球气候变暖、极端气候影响和人们生产活动加快的影响,吴中区自然保护区内各种森林生态系统、湿地和湖泊生态系统都呈退化态势,尤其是濒危物种和有益碳汇物种大量减少,每年平均以5.3%的速度在下降,生物多样性减少明显。虽然近年来吴中区政府加大了生态环境保护的投入,但研究结果表明,吴中区自然生态承载力在减少,人们的生态足迹在加强、生态赤字在加大,自然生态系统与人文生态系统、经济生态系统的矛盾在加大,生态环境保护的建设速度赶不上人们对生态环境破坏的速度,社会发展与生态保护之间的关系矛盾加剧,尤其是表现在社会经济增长与人文生态保护及广大市民心态失衡和生活幸福感下降等方面。生态环境管理和生态文化建设还比较薄弱,经济建设单纯强调发展的观念并未得到根本改变,生态预留空间未得到足够重视,生态资源储备和生态环境安全尚未提上日程[19-21]。结 论

(1)苏州市吴中区人均生态承载力为0.273 4~0.104 4 hm2,表现为较明显的生态赤字。在2005―2012年间,人均生态承载力、生态足迹和生态赤字均逐渐降低,降低幅度分别为62%,48%和46%,生态足迹的大幅下降使得生态赤字状况得到一定的缓和。但是,单从生态足迹和承载力来看,生态赤字现象仍较为严重。

(2)2000―2013年间,苏州市吴中区植被NPP平均值减少了0.12 g?m-2(C),其中农田NPP平均值减少了-5.29 g?m-2(C),水田NPP平均值增加了3.4 g?m-2(C),湿地NPP平均值增加了3.1 g?m-2(C),固碳总量减少了0.8 × 109 g?a-1(C),表明吴中地区各类生态系统的固碳能力呈现下降趋势,生态生产量、生物量和生产能力呈现下降态势。

(3)2000―2013年间,苏州市吴中区共有406.41 km2土地覆被发生转化。其中,共有139.53 km2土地转化成人工表面,主要来源于农田、植被和水田,转化面积分别为76.16,30.01 km2和24.25 km2。

(4)吴中区自然生态绿化面积在增加,但植被厚度、生物多样性、生态能力和碳汇量在减少,平均每年按1.09%速度下降,其生态环境质量呈变差趋势,近10年该区发展与保护的矛盾仍很尖锐,有扩大的趋势。

参考文献:

[1] 李晓秀.北京山区生态环境质量评价体系初探[J].自然资源,1997(5): 31-35.[2] 徐燕,周华荣.初论我国生态环境质量评价研究进展[J].干旱区地理,2003,26(2): 166-172.[3] 马荣华,胡孟春,庞志书,等.海南岛生态环境质量分析评价[J].农村生态环境,2000,16(4): 11-14.[4] 周华荣,潘伯荣.新疆生态环境现状综合评价研究[J].干旱区地理,2001,24(1): 23-29.[5] 屠玉麟,何谋军.贵州省生态环境质量综合评价方法研究[J].贵州师范大学学报: 自然科学版,2001,19(3): 7-10.[6] 郑宗清.广州城市生态环境质量评价[J].陕西师范大学学报: 自然科学版,1995,23: 134-137.[7] 杨秀春,朱晓华.江苏省生态环境质量动态变化及其驱动力分析[J].吉首大学学报: 自然科学版,2004,25(2): 25-29.[8] 朱焱,杨金彪,朱莲芳.苏州城市化进程与城市气候变化关系研究[J].气象科学,2012,32(3): 317-324.[9] 周婧,王远,陈洁.基于能值分析的苏州市城市生态系统可持续发展评估[J].四川环境,2010,29(4): 72-77.[10] 沈益婷,李新,朱贤婷.苏南河网地区乡镇产业结构与水环境污染关系研究――以苏州市吴中区?f直镇为例[J].中国农村水利水电,2014(4): 21-24.[11] 郑?D.苏州市经济与环境承载力关系研究[D].苏州:苏州科技学院,2011.[12] 成国兴,王亚超.加强环境质量综合分析的现状与对策探讨[J].绿色科技,2013(6): 207-209.[13] 沈钰峰.苏州市吴江区产业结构升级与环境质量的关系研究[J].绿色科技,2014(3): 125-126.[14] 马育军,黄贤金,肖思思,等.基于DEA模型的区域生态环境建设绩效评价――以江苏省苏州市为例[J].长江流域资源与环境,2007,16(6): 769-774.[15] 梅艳,何蓓蓓,刘友兆,等.江苏省动态生态足迹的测度和分析[J].贵州农业科学,2008,36(5): 47-50.[16] 杨开忠,杨咏,陈洁.生态足迹分析理论与方法[J].地球科学进展,2000,15(6): 630-636.[17] 张志强,徐中民.生态足迹的概念及计算模型[J].生态经济,2000(10): 8-10.[18] 朴世龙,方精云,郭庆华.利用 CASA 模型估算我国植被净第一性生产力[J].植物生态学报,2001,25(5): 603-608.[19] 李建龙,刚成诚,李辉,等.城市生态红线划分的原理、方法与指标体系构建[J].天津农业科学,2015,21(2):57-67.[20] 李辉,李建龙,杨悦,等.苏州地区近10年城市生态安全度的系统定量分析与管控对策[J].天津农业科学,2015,21(2):68-75.[21] 梁珂珂,李建龙,王艳平,等.苏州市吴中区生态承载力分析与生态红利开发对策[J].天津农业科学,2015,21(2):76-83.

第二篇:1如何进行生态环境质量现状评价

1如何进行生态环境质量现状评价

生态环境质量是指生态环境的优劣程度, 它以生态学理论为基础, 在特定的时间和空间范围内, 从生态系统层次上, 反映生态环境对人类生存及社会经济持续发展的适宜程度, 是根据人类的具体要求对生态环境的性质及变化状态的结果进行评定。

生态环境质量评价类型主要包括:

1、生态安全评价;

2、生态风险评价;

3、生态系统健康评价;

4、生态系统稳定性评价;

5、生态系统服务功能评价;

6、生态环境承载力评价。区域生态环境的质量评价一般采用定性评价和定量评价2种方法。定性评价一般选取对生态环境影响较大的指标进行评价,根据该指标的大小或优劣程度评价生态环境的好坏;而定量评价则采取一定的公式或模型对指标系统进行计算,根据计算结果的大小对生态环境进行评价,通常有脆弱度计算法、距离计算法、层次分析法、综合模型法和生态足迹法等。2 污染物总量控制是以环境质量目标为基本依据,对区域内各污染源的污染物的排放总量

实施控制的管理制度。在实施总量控制时,污染物的排放总量应小于或等于允许排放总量。规划环境影响评价的步骤

规划环境影响评价一般步骤分为以下几个阶段:

首先是规划区域范围内的环境现状分析,包括环境现状调查、分析和历史演变,识别敏感的环境问题以及制约区域发展的主要因素。

其次是规划方案分析,对规划目标、指标、规划方案与相关的其他发展规划、环境保护规划的关系,确定规划中环境敏感问题。

第三是规划环境影响评价。在对环境现状和规划的方案分析后,从空间战略、产业用地布局、功能定位、区域协调、基础设施建设、环境风险、卫生防护距离等方面进行环境影响综合评价。

第四是提出规划方案调整及改善措施。在前述基础上评估不同规划方案对区域可持续发展的影响,确定需要进一步采取改进、调整和完善的领域,并对各环境可行的规划方案进行综合评述;尤其是对于一些环境敏感问题,需要给出适当的改善措施和建议及其阶段性目标和指标。

第五是规划方案修改、再评价,直到最终方案确定,对规划方案本身进行一个综合评价,并需要确定影响生态环境的敏感点进行重点分析,提出环境建设的综合性措施和敏感区的管理措施。

规划环评的核心是规划方案比较和优化,通过建立在各子系统、各种方法的综合,对方案的反馈、规划调整、再分析。规划方案的比较核心包括两方面内容:一是对规划目标的比较,将各个发展目标的分析形成一个比较完善的系统进行比较分析,采用数学模型进行方案比较。二是对用地方案的比较,主要包括各项用地之间,尤其是对工业用地、公共设施用地的环境影响,以及不同的布局方式所产生的交通对环境的影响。规划环境影响评价涉及经济、社会和环境各个方面,其结果也是复杂的。其结果可以建立一套指标体系进行描述分析。

第三篇:2014年苏州市生态环境质量状况报告资料

苏 州 市

环 境 质 量(2013)

苏州市环境监测中心2014年11月

报 告生

前言

2000年国务院颁发的《全国生态环境保护纲要》明确指出要通过生态环境保护,遏制生态环境破坏,减轻自然灾害的危害,促进自然资源的合理、科学利用,实现自然生态系统良性循环,维护国家生态环境安全,确保国民经济和社会的可持续发展。江苏省省委、省政府据此发布了《关于加强生态环境保护和建设的意见》,苏州市委、市政府制定了《苏州生态市建设规划纲要》、《苏州市生态文明建设规划》。

根据环保部《关于印发〈2013年全国环境监测工作要点〉的通知》和江苏省环保厅《关于2013年全省环境监测工作要点及实施方案的通知》的要求,为全面实施《苏州市生态文明建设规划》,率先把苏州打造成为国家生态文明建设示范市,苏州市大力推进生态文明建设进程,全力打造“生态苏州”,2013年全市生态环境保护和生态文明建设工作取得了显著的成绩。

本报告采用的生态遥感信息来源于美国陆地资源卫星Landsat-8遥感影像图片,其数据是经过苏州环境监测中心高精度解译的我市地表植被覆盖和土地利用情况资料,报告中采用的其他数据来源于《2014年苏州市统计年鉴》、《2013苏州市环境质量报告书》、《2013年苏州市国民经济和社会发展统计公报》、《2013年江苏省水资源公报》和《2013苏州市环境状况公报》。

2013年苏州市生态环境质量状况报告

目录

一、苏州市自然生态环境基础概况..........................................................1

二、苏州市小流域生态系统异常生态因子概况.......................................2

三、苏州市小流域生态系统主要社会经济概况.......................................2

四、苏州市生态环境建设概况..................................................................3

五、苏州市生态环境质量状况评价..........................................................4

六、结论....................................................................................................6

I

苏州市环境监测中心站

2013年苏州市生态环境质量状况报告

一、苏州市自然生态环境基础概况

苏州市位于长江三角洲的中部,江苏省的东南角,东邻上海,南连浙江省嘉兴、湖州两市,西傍太湖,与无锡相接,北枕长江。苏州市地理坐标范围在东经119度55分至121度20分,北纬30度47分至32度02分之间;东西跨经度1度25分,长约140公里左右,南北跨经度1度15分,宽约120公里。苏州市区地处太湖之滨,东距上海80余公里,西离南京200余公里。

全市地处以太湖为中心的浅碟形平原的底部,地势低平,一般高程为海拔3.5~5.0米。东南部地势低洼,局部低洼地的高程在海拔2米以下,分布在吴江、昆山一带。西南部多小山丘,境内主要的山脉有:吴中区的穹窿山、邓尉山、玄墓山、七子山;常熟的虞山;张家港的香山;昆山的马鞍山等,其中穹窿山主峰高351.7米,为全市最高点。全市总面积8488平方公里,其中市区面积1650平方公里,古城区22.63平方公里。

按照全国水资源的统一分区,苏州市主要属于长江流域的太湖区,市内河网纵横交叉,湖荡密布,是天然的水网地区。境内大小河道有2万多条,其中县级以上河道147条,总长1457千米。以太湖为代表的大小湖泊、湖荡300多个,500亩以上的湖泊87个。苏州市每年水资源总量约为100亿立方米,但本市人多地少,人均占有的地表水资源量较低,本地地面径流不能满足当地需水要求,必须靠上游来水补给,对外来水资源的依赖性较大。长江和太湖是境内河道的主要上游来水水源。全市河道除东南部分属黄浦江水系外,境内大部分河道均属太湖湖区水系。

苏州市环境监测中心站

2013年苏州市生态环境质量状况报告

二、苏州市小流域生态系统异常生态因子概况

苏州属北亚热带湿润气候。冬季干冷少雨,夏季温暖湿润,四季分明,降水充沛,无霜期长。季风变化明显,冬季以西北风及东北风为主,频率占一半以上;春季东南风盛行;夏季多半为东南风。通常,春季为3~5月,夏季为6~8月,秋季为9~11月,冬季为12月~次年2月,冬夏季较长,而春秋季较短。

苏州市地处长江下游,天气变化剧烈,灾害性天气既有持续时间较长的旱涝、连阴雨,也有时间稍短的强烈对流天气,如热带风暴(台风)、暴雨、寒潮,还有破坏性很大的剧烈天气现象,如冰雹、龙卷风、雷雨强风等。

三、苏州市小流域生态系统主要社会经济概况

苏州市下辖四个县级市:常熟市、张家港市、昆山市和太仓市;6个区:姑苏区、吴江区、吴中区、相城区、苏州高新区(虎丘区)以及工业园区。2013年,苏州市人口规模保持稳定,人口素质逐步提高,年末全市户籍总人口653.84万人,比上年增加6.03万人。

2013年,在市委、市政府正确领导下,全市上下深入贯彻落实党的十八大和十八届二中、三中全会精神,围绕建设“三区三城”总目标,抢抓建设苏南现代化示范区的发展机遇,紧扣科学发展主题和转变发展方式主线,努力克服和缓解国际经济深度调整、国外需求缓慢复苏,国内产能过剩、结构性矛盾突出所带来的经济缓行压力,牢牢把握“稳中求进、稳中提质”的工作导向,更加注重经济发展的质量和效益,更加注重创新驱动和转型升级,更加注重生态修复和环境保护,更加注重民

苏州市环境监测中心站

2013年苏州市生态环境质量状况报告

生福祉和社会建设。全市经济运行平稳,转型升级成效进一步显现。

全市实现地区生产总值13015.7亿元,比上年增长9.6%;人均地区生产总值(按常住人口计算)12.3万元,按年平均汇率计算近2万美元。全年实现地方公共财政预算收入1331.0亿元,比上年增长10.5%。其中各项税收收入1138.3亿元,增长11.2%。全年地方公共财政预算支出1212.7亿元,比上年增长8.9%。其中用于民生方面的支出672.0亿元,增

四、苏州市生态环境建设概况

2013年以来,全市环保工作紧紧围绕落实十八大精神,全面推进生态文明建设,严格落实环境管理措施,持续改善环境质量,大力提升环保作风效能,以优化发展为中心,以生态优先为导向,以服务民生为根本,以改革创新为突破,攻坚克难,争先创优,在探索生态文明建设和环保新道路上取得了显著成效,全市环境质量总体保持稳定。

全年环保投入494亿元,比上年增长11%,占地区生产总值的3.8%。全面完成江苏省下达的主要污染物减排任务,全市环境质量综合指数92.4,集中式饮用水源地水质达标率为100%,全市空气质量优良天数265天,优良率72.6%。全市农村新增林地绿地面积44.07平方千米,陆地森林覆盖率达到28.7%。市区新增绿地面积5.05平方千米,市区建成区人均公园绿地面积14.96平方米,市区建成区绿化覆盖率42.5%。全市划定生态保护红线面积3205.5平方千米,占市域土地面积的37.8%。

2013年,苏州市大力推进生态文明建设,将全市生态市建设领导小组调整为全市生态文明建设工作领导小组,修编完成《苏州市生态文明

苏州市环境监测中心站

2013年苏州市生态环境质量状况报告

建设规划(2010-2020年)》,并启动了阳澄湖生态优化行动等生态文明建设“十大工程”,划定苏州市生态红线,完成所有建制镇生态文明建设规划的编制论证,出台了《苏州市生态文明建设示范街道指标(试行)》。通过调整能源结构、产业结构,建设工业废气治理工程等措施来系统实施大气污染防治计划,制定实施《苏州市机动车排气污染防治工作方案》,推行“绿色工程”,努力提高了城市烟尘防控水平。

五、苏州市生态环境质量状况评价

为更好的开展生态市、生态县建设工作,按照《生态环境质量评价技术规范》(HJ/T 192-2006),苏州市环境监测中心利用江苏省环境监测中心提供的美国陆地资源卫星Landsat-8遥感影像图片资料,经过近三个月的高精度解译,得出了苏州市辖区内地表植被覆盖和土地利用情况等数据,会同基础生态概况,对全市生态环境质量状况进行总体评价。

根据2013年苏州市生态景观遥感解译结果(图1),全市林地面积596.7平方千米,占全市面积的6.9%;草地面积163.6平方千米,占全市面积的1.9%;耕地面积1769.6平方千米,占全市面积的20.5%;水域面积3434.9平方千米,占全市面积的39.8%;建设用地面积2674.9平方千米,占全市面积的31.0%。

苏州市环境监测中心站

2013年苏州市生态环境质量状况报告

图1 2013年苏州市土地利用分类图

苏州市环境监测中心站

2013年苏州市生态环境质量状况报告

六、结论

2013年苏州市总体生态环境质量属良好级别,植被覆盖度较高,生物多样性较好,生态系统稳定。但同时也存在着不少生态环境问题,主要表现在人口密度高,外来人口增加;城市化加快,工交建设占用土地越来越多,耕地面积减少,人均土地占有量低;城市植被物种多样性降低;城市环境容量压力加大,单位面积承载的生态压力沉重;水体中的富营养化问题突出。

因此,应加快生态文明建设,协调好自然资源的保护与开发之间的关系,推动经济社会与生态环境保护协调健康发展;大力推进生态环境保护法律法规的建立与落实,将生态环境保护纳入法治轨道,严格执法,严厉打击破坏生态环境的违法行为;加大环保投入,推进环境治理;加强生态环境保护的宣传教育工作,不断提高全民的生态环境保护意识。

苏州市环境监测中心站

第四篇:流域洪水风险分析与定量评估

流域洪水风险分析与定量评估 引言

我国的洪涝灾害从出现频率、影响范围到造成的损失都是世界最为严重的国家之一。据统计,在过去的2000多年中,中国发生的有史料可查的重大洪水灾害就达1600余次。新中国成立以来,经过40多年的治理,全国江河流域的防洪形势有了重大改观。但是,由于洪水的影响因素众多和人类对自然界认知的局限性,目前尚无法从确定性的角度预知未来相当长时期内洪水发生的确切时间和真实过程,加之经济条件的限制和出于环境方面的考虑,洪水灾害目前还难以彻底防范或根本消除。近年来,随着人口的持续增长和经济的迅猛发展,我国洪涝损失具有逐年增大的趋势。在新形势下,建立洪水风险的概念,使人们经常认识到洪水发生的可能性和洪灾的后果,将有助于机构和个人更好地防范洪水灾害。

洪水风险是指未来可能引起灾害性后果洪水发生的概率或频率,洪水风险图则是对洪水风险及后果定量化和图形化的体现。一般,洪水风险图应该是三位一体的组合:

(1)流域洪水发生的频率;

(2)流域类洪水的淹水区域分布及有关说明;

(3)洪水灾害可能造成的各类损失。

洪水风险图可以使人们更直观地了解和认识到灾难性洪水发生后可能的水文后果和灾害损失概况,及时做好防御洪水的准备,以防患于未然。防洪决策人员可以对于流域重大的洪涝灾害发生的原因和可能后果做到胸中有数,在灾情即将发生或已经发生时,能够做到临危不乱,迅速制定合理的调度方案和采取正确抢险救灾措施,将洪灾损失减少到最小程度。2 分析流域洪水淹没状况的方法

2.1 实际洪水法

实际洪水法的基本假定是流域自然地理特征保持基本不变条件下,洪水具有重现性。因此流域历史上已经发生过的大洪水实际淹没实况,可以作为现在和未来同类洪水重现时的淹没状态。分析历史洪水淹没实况主要有以下几种途径:

(1)对于近期发生的洪水,利用流域实测水文资料和灾情资料可以较为可靠地分析洪水特性及相应的淹没范围、淹没深度和淹没时间。

(2)对于缺乏资料或年代较为久远的洪水,可以通过调查考证的途径[1]分析洪水发生时的淹没情况。调查考证的内容包括对沿洪水路径洪痕调查,查阅有关洪涝灾情的历史文献记载,走访洪泛区居民等。

(3)洪水径流是塑造地貌的重要外力,洪流的侵蚀、搬运和堆积作用形成的洪水地貌包括废河道、天然冲积堤、冲积扇(洪积平原)、河漫滩(冲积平原)、沼泽地、三角洲等[2]。通过对洪水地貌分析,可以大致上分析出洪水径流的强度、范围和水深,作为分析淹没实况的依据。

(4)对于河流早已改道远古时代发生的大洪水,可以通过水文地质地貌分析并结合水力学方法估计古洪水的水位和流量,近似推算古洪水重现时的淹没情况。

实际洪水分析途径主要适合于天然流域,一般不能估计流域城市化、防洪工程和防洪措施的效应。

2.2 水文学和水力学方法

水文学和水力学方法是根据流域现状或规划条件下土地利用特征和工程条件,采用水文学和水力学方法分析推求流域洪水泛滥后的淹没状况。目前国内外流行的水文学和水力学方法和模型众多,采用何种方法和模型应该针对流域水文地理特征、工程调度方式、资料条件以及计算精度来选择应用。

(1)由设计暴雨推求设计洪峰或设计洪水过程线可以采用水文学方法,如推理方法、径流系数折算法、先损后损法、下渗曲线法、降雨径流相关图法、蓄满产流模型、超渗产流模型[5]等。

(2)由设计洪峰推求河道洪水位,可采用水面曲线法、回水曲线法、经验公式等。位于河道洪水位以下的区域可作为可能的洪水淹没区域作进一步分析。

(3)由设计洪水过程线推求水位过程线,常用的水文学方法包括单位线法、等流时线法、抵偿河长法、马斯京根法、调蓄演算法[3]等。

(4)对于河网汇流或坡面漫流计算采用水力学方法比较合适,如一维非恒定流和二维非恒定流方法[4],以及它们的简化形式等。采用水力学方法可以根据分析要求推求河道或流域水深、流量、蓄水量的时空分布。

水文学和水力学方法计算结果频率概念明确,可以分析和模拟土地利用、工程建设、调度方式、边界条件变化情况下的洪水状态,在洪水风险分析中应用较为广泛。3 洪灾损失统计评估

3.1流域社会和经济特征统计

对流域的社会和经济数据应分门别类进行统计或估算。各种资料来源应尽可能,可以采用当年或上本地区社会和经济统计年鉴。在有条件情况下,应该直接去当地收集最新和更详细的资料,以满足洪灾损失估算的要求。需统计的基本资料包括:

(1)城镇和村乡人口、土地利用情况、耕地面积;

(2)各工矿企业固定资产和工业产值;

(3)农、林、牧、副、渔业产值及固定资产;

(4)单位和居民固定资产;

(5)服务和社会性行业产值和固定资产;

(6)公路、铁路、通信、供水、供气等各类生命线的分布;

(7)参加洪水保险的企业、居民数和保险金额。

3.2洪灾损失评估

一般,洪灾损失评估内容包括这样几个方面:

(1)灾害影响的范围和强度。范围用面积或区域表示;灾害强度定性为若干级,如特大、重大、大、中、小等;

(2)造成的经济损失。按工业损失、农业损失、商业损失、居民损失、其它行业损失等分类统计,也可以分地区统计;

(3)生命线受害统计。所谓生命线系指交通系统、供电系统、供水系统、供气系统、邮电系统等,一般可按系统中断时间计;

(4)人员伤亡数目;

(5)环境污染及疾病传播情况;

(6)社会影响。

经济损失评估是灾情评估的主要内容,但人员伤亡、水源污染、疾病流行、社会不安定、生命线受损影响等是无法用货币表示的无形损失,在评估过程中须单列考虑。

洪水灾害所造成的经济损失包括直接损失和间接损失。直接损失主要是由于洪水直接淹没所造成的集体及个人财产损失;间接损失指由于洪水期交通、电力中断,厂房、设备受损等造成的产品成本增加及停产、误工损失,以及合同无法按期完成的违约损失等,还包括防洪抢险、灾民撤离、疾病防治、灾后恢复等费用。由于对间接损失的详细分析和精确估计是很困难的,一般是根据典型实例的调查结果或经验估计得出间接损失占直接损失的百分数来作为间接洪灾损失估算的依据。

对于不同灾区,由于地形地貌、经济状况、季节、淹没程度、抢救措施的差别,洪灾损失是不同的。但对于确定地区,洪灾损失的影响因素主要是淹没程度。如果资料充足,能够分区分类建立洪灾损失与淹没水深、淹没历时之间的相关系,则灾情损失评估结果更为方便和可靠。洪水风险图绘制

针对某一风险的洪水,根据分析和计算洪水淹没的范围、深度及相应的经济损失,按一定的规格描绘和标明在流域地形图上,便得出洪水风险图。

洪水风险图采用大比例尺地形素图勾绘而成,比例尺大小可根据流域面积、洪水频率、淹没范围、资料条件以及精度要求而定。在勾绘洪水淹没范围的边界时,要考虑洪水的可能路径,结合地形情况,由比较熟悉当地地形且有经验的技术人员绘制,最好在实地查勘后进行。对可能淹没区域,应设置彩色编码区,其颜色及深浅可以表示淹没深度的变化。风险图上应标注重要部门和单位,如政府机关、大型厂矿企业、学校、医院、金融机构、居民区、村镇,以及重要设施,水利工程,交通枢纽,通讯线路等。另外,图上应明确标明紧急情况下人员转移、疏散的路线及地点。图的下方有专门说明框,简要说明洪水风险图的基本特性,包括暴雨洪水频率、淹没区域、淹没水深、淹没历时、流域社会经济主要特征值、淹没区经济损失评估结果等。另外还需说明风险图上各种标记、代号的含义。

洪水风险图绘制完成后,应出具一份编制说明,内容主要包括:

(1)流域水文、气象和地理特征,排水系统和水利工程概况,历史上典型洪涝灾害特点及后果;

(2)流域社会经济特征统计;

(3)分区域阐述风险图上洪水灾害的特点和性质,灾害后果和经济损失;

(4)洪水风险图的制作依据、方法和存在问题;

(5)洪水风险发生时的应急措施;

(6)洪水风险图的应用范畴;

(7)其它说明事项。

结语

流域洪水风险图可以定量和直观地描绘遭受洪水淹没风险的区域和洪灾造成的损失,属流域非工程防洪措施之一。通过洪水风险图提高了全民防洪意识,为各级政府指挥抗洪提供了决策依据,具有现实的社会效益和经济效益。

本文简要论述和分析了适合于流域洪水风险图编制的一些方法,侧重讨论了推求洪水淹没状态的若干途径以及洪灾损失统计评估的内容。虽然其中的一些理论和方法还不够成熟和完善,但出发点是希望有助于流域洪水风险图编制工作的深入开展。今后将在洪水风险分析领域作进一步的研究工作。水库防洪调度风险分析研究进展与发展趋势

 简介:水库防洪调度风险分析是极其复杂的多目标风险评价问题。在前人研究工作的基础上,阐述了水库防洪调度风险分析的含义,从水库调度风险分析的特点、范围、对象和规模上对其在国内研究进展进行分析,进而对水库防洪调度风险分析发展趋势进行展望。

关键字:水库,调度,防洪,风险分析 

由于洪水设计计算、洪水预报、水库调度等诸方面存在众多不确定性因素,在汛限水位抬高后,有可能导致水库防洪运用过程中出现风险。为了实现兴利效益与防洪目标的最佳结合,需对不同汛限水位相应的防洪风险进行分析,为防汛限制水位的正确选择提供科学依据。

一、水库防洪调度风险分析的含义

1.风险的含义

风险包括两方面的含义:一是指风险意味着出现了损失,或者是未实现预期的目标值。二是指这种损失出现与否是一种不确定性现象,它可用概率表示出现的可能程度,而不能对出现与否做出确定性判断。

2.水库防洪调度风险的含义

有关水库防洪调度风险的定义较多,概括起来,泛指在特定时空环境条件下,水库防洪调度运用过程中所发生的非期望事件。

3.水库防洪调度风险分析的含义

水库防洪调度风险分析是指对水库防洪调度中存在的各种风险进行识别、估计、评价,并在此基础上优化组合各种风险管理技术,作出风险决策。

二、水库调度风险分析在国内的研究现状

20世纪80年代初,水库运用风险问题在我国已经引起重视,经过20多年的研究,取得了一些成果。根据水库防洪调度风险分析的特点、范围、对象和规模的不同,可分以下几个类型。

1.水库来水预报风险分析

宋榜科等以柴河水库为例,详细地介绍了水库雨情自动测报系统的风险分析方法,首次将“重现期法”“安全系数法”引进到水库雨情自动测报系统的风险分析中。徐玉英等将改进的一次二阶矩法应用于水库洪水预报子系统的风险分析中,对水库洪水预报子系统的风险做了定义和描述,并对风险率进行了定量计算。王本德等将标准风险评估方法应用到水库洪水标准的风险分析中,并以柴河水库为例说明水库洪水标准的风险分析方法是可行的。

2.水库调度风险分析

田峰巍等结合黄河干流水库调度,对实施运用中的径流用水预报值、误差修正、风险决策等几个关键问题进行了研究。冯平等根据风险决策理论,通过概率组合方法估算了水库的实际防洪能力,然后与水库的设计防洪标准进行比较,判断水库提高汛限水位的可能性,并通过风险效益的分析定量给出合理的汛限水位。黄强等针对水库调度风险问题,着重探讨了定量风险分析方法中的概率与数理统计分析法、模拟分析法、马尔柯夫过程分析法和模糊数学分析法,引入了不同的风险决策方法。傅湘等以三峡水库为研究对象,采用系统分析方法建立了水库汛期限制水位的风险分析模型,帮助决策者作出符合科学原则的风险决策。

3.水库防洪泄洪能力风险分析

徐祖信等提出了开敞式溢洪道水力设计中风险的计算模式,将JC法用于泄洪风险。郑管平等综合考虑了水文和水工方面的不确定因素对溢流坝泄洪能力的影响。姜树海用JC方法进行了泄水构件免空化概率极限设计的计算和分析。金明系统研究了水力不确定性在防洪泄洪系统风险分析中的作用。储祥元以FOSM法进行参数估计,以MC法结合拟优选择的办法求得泄流能力的最佳概率模型。姜树海推导了调洪演算Ito方程,求解了与泄洪风险率紧密相关的库水位过程的概率密度分布。朱元牲等就水库安全设计与垮坝风险问题进行了研究,认为设计标准应因地而异和因时而异。杨白银等研究了单一和梯级水库两种泄洪风险分析模式,将JC法引入水库泄洪风险分析计算中。王长新等对泄洪消能风险计算的JC法和MC法进行了对比。姜树海建立了漫坝失事的随机模糊风险分析模型。熊明提出了大坝防洪安全风险计算的原则、方法及适用条件等。

4.水库多目标风险分析

王本德等建立了水库防洪实时风险调度模型,该模型考虑了水库下游防洪效益与水库风险两个目标。1991年,国内专家选用某水利工程防洪、发电、航运、建设投资和移民费用等作为该水利枢纽经济风险分析的基本风险变量,采用三角形分布求得基本风险变量的概率分布,然后用蒙特卡洛法推求该工程总体经济效益的概率分布。1995年,针对期望值方法的不足,将分区多目标风险分析方法应用到防洪系统的最优规模决策之中,充分考虑了防洪安全、经济发展和洪灾风险之间的关系,以利于正确优选防洪体系和相应的规模。1998年结合水电工程的实际,建立了经济评价多目标风险分析模型,提出利用风险概念,结合改进后的ELECTRE-2方法,同时利用随机优选法结合线性分配法来求解上述模型,然后再用集结技术进行方案的最后排序,以利于好中取优。

三、存在的不足及发展趋势 经过20多年的努力,水库防洪调度风险分析研究取得了许多可喜的成果,但由于水库调度系统结构复杂,涉及面广,影响因素众多,无论在理论、方法上,还是在应用上都尚未达到完善的地步。

1.对多目标、多因素重视和研究不够

目前水库防洪调度风险分析只考虑单目标或单因素,造成水库防洪调度风险分析的结果缺少客观实用性。因此,今后在水库防洪调度风险分析中,应综合考虑多目标、多风险因素下对水库防洪调度的影响,使风险分析的结果更好的指导水库的实际运用。

2.未充分考虑主观人为因素

在水库防洪调度风险分析主要风险因素的识别中,只重视客观因素,未充分考虑主观的人为因素,造成分析结果不合理,不能合理有效地利用水资源。在众多风险因素中,主观人为因素是不可忽视的。因此,今后应充分研究主观人为因素在风险分析中的概率分布,使主观估计的量化更贴近实际,从而使风险分析更加全面、合理。

3.新的风险分析理论和方法应用不多

水库防洪调度的风险分析方法一般分为定性分析法和定量分析法。定性分析法主要用于风险可测度很小的风险主体,常用的方法有调查法、矩阵分析法和德尔菲法。这类方法主要是借助于有关专家的知识、经验和判断来对风险加以估计和分析。但在水库调度中有些不确定性因素难以分析、计算,如调度决策和实施的不确定性等。定量风险分析方法是借助数学工具研究风险主体中的数量特征关系和变化,确定其风险率(或风险度)的方法。定量风险分析方法有许多,但归纳起来可分为概率论与数理统计方法、随机模拟方法、马尔柯夫过程方法、模糊数学方法等。这些方法应用于水库调度系统时受到一定的限制。随着科学技术的进步,各学科相互渗透,应把别的学科的科学成果引用过来,如人工神经网络——蒙特卡罗法、结构分析法、耦合理论等,这些方法对于随机现象、互相关联、非线性等风险分析问题充分显示了优越性。在水库防洪调度风险分析中应用这些新的理论和方法,不仅能促进这些方法本身的实际应用,同时也是对风险分析理论和实践的有益探索。

第五篇:流域洪水风险分析与定量评估(本站推荐)

摘要:流域洪水风险图可以定量和直观地描绘遭受洪水淹没风险的区域和洪灾造成的损失,为各级政府指挥抗洪提供决策依据。本文简要论述和 分析 了适合于流域洪水风险图编制的一些 方法,侧重讨论了推求洪水淹没状态的若干途径以及洪灾损失统计评估的 内容。关键词:流域;洪水风险图 关键词:流域洪水风险图

1引言

我国的洪涝灾害从出现频率、影响 范围到造成的损失都是世界最为严重的国家之一。据统计,在过去的2000多年中,中国 发生的有史料可查的重大洪水灾害就达1600余次。新中国成立以来,经过40多年的治理,全国江河流域的防洪形势有了重大改观。但是,由于洪水的影响因素众多和人类对 自然 界认知的局限性,目前 尚无法从确定性的角度预知未来相当长时期内洪水发生的确切时间和真实过程,加之 经济 条件的限制和出于环境方面的考虑,洪水灾害目前还难以彻底防范或根本消除。近年来,随着人口的持续增长和经济的迅猛 发展,我国洪涝损失具有逐年增大的趋势。在新形势下,建立洪水风险的概念,使人们经常认识到洪水发生的可能性和洪灾的后果,将有助于机构和个人更好地防范洪水灾害。

洪水风险是指未来可能引起灾害性后果洪水发生的概率或频率,洪水风险图则是对洪水风险及后果定量化和图形化的体现。一般,洪水风险图应该是三位一体的组合:

(1)流域洪水发生的频率;(2)流域类洪水的淹水区域分布及有关说明;

(3)洪水灾害可能造成的各类损失。

洪水风险图可以使人们更直观地了解和认识到灾难性洪水发生后可能的水文后果和灾害损失概况,及时做好防御洪水的准备,以防患于未然。防洪决策人员可以对于流域重大的洪涝灾害发生的原因和可能后果做到胸中有数,在灾情即将发生或已经发生时,能够做到临危不乱,迅速制定合理的调度方案和采取正确抢险救灾措施,将洪灾损失减少到最小程度。

2分析流域洪水淹没状况的方法

2.1实际洪水法

实际洪水法的基本假定是流域自然地理特征保持基本不变条件下,洪水具有重现性。因此流域 历史 上已经发生过的大洪水实际淹没实况,可以作为现在和未来同类洪水重现时的淹没状态。分析历史洪水淹没实况主要有以下几种途径:

(1)对于近期发生的洪水,利用流域实测水文资料和灾情资料可以较为可靠地分析洪水特性及相应的淹没范围、淹没深度和淹没时间。

(2)对于缺乏资料或年代较为久远的洪水,可以通过调查考证的途径[1]分析洪水发生时的淹没情况。调查考证的内容包括对沿洪水路径洪痕调查,查阅有关洪涝灾情的历史 文献 记载,走访洪泛区居民等。

(3)洪水径流是塑造地貌的重要外力,洪流的侵蚀、搬运和堆积作用形成的洪水地貌包括废河道、天然冲积堤、冲积扇(洪积平原)、河漫滩(冲积平原)、沼泽地、三角洲等[2]。通过对洪水地貌分析,可以大致上分析出洪水径流的强度、范围和水深,作为分析淹没实况的依据。

(4)对于河流早已改道远古 时代 发生的大洪水,可以通过水文地质地貌分析并结合水力学方法估计古洪水的水位和流量,近似推算古洪水重现时的淹没情况。

实际洪水分析途径主要适合于天然流域,一般不能估计流域城市化、防洪工程和防洪措施的效应。

2.2水文学和水力学方法

水文学和水力学方法是根据流域现状或规划条件下土地利用特征和工程条件,采用水文学和水力学方法分析推求流域洪水泛滥后的淹没状况。目前国内外流行的水文学和水力学方法和模型众多,采用何种方法和模型应该针对流域水文地理特征、工程调度方式、资料条件以及 计算 精度来选择 应用。

(1)由设计暴雨推求设计洪峰或设计洪水过程线可以采用水文学方法,如推理方法、径流系数折算法、先损后损法、下渗曲线法、降雨径流相关图法、蓄满产流模型、超渗产流模型[5]等。

(2)由设计洪峰推求河道洪水位,可采用水面曲线法、回水曲线法、经验公式等。位于河道洪水位以下的区域可作为可能的洪水淹没区域作进一步分析。

(3)由设计洪水过程线推求水位过程线,常用的水文学方法包括单位线法、等流时线法、抵偿河长法、马斯京根法、调蓄演算法[3]等。

(4)对于河网汇流或坡面漫流计算采用水力学方法比较合适,如一维非恒定流和二维非恒定流方法[4],以及它们的简化形式等。采用水力学方法可以根据分析要求推求河道或流域水深、流量、蓄水量的时空分布。

水文学和水力学方法计算结果频率概念明确,可以分析和模拟土地利用、工程建设、调度方式、边界条件变化情况下的洪水状态,在洪水风险分析中应用较为广泛。

苏州市吴中区生态环境质量现状定量评估与分析
TOP