第一篇:基因工程论文
浅谈基因工程的应用
及发展前景
姓名:**** 课堂编号:*** 学号:******** 专业年级:******** 指导老师:*** 摘要:20世纪70年代以来基因工程技术在世界范围内迅速兴起,为揭开生命世界的奥秘打开了一条通道,它被人们寄予着缓解饥饿与贫困的期待,也凝聚这人们改善生活质量,提高生活水平的美好憧憬,这就是基因工程赖以存在与发展的意义所在。
关键词:基因工程 农业 医学 环保 前景
Abstract:70 years since the 20th century,genetic engineering technology in the world is rising rapidly,to uncover the mysteries of life and the world opens up a channel,it is the people sent to the expectations of hunger and poverty relief,but also unite the people improve their quality of life,improve living standards good vision,and this is genetic engineering which the meaning of existence and development.基因工程,又称DNA 重组技术,是指在基因水平上,以人工的方法取得目的基因,在体外重组于载体上,形成重组DNA分子,然后将重组DNA 分子转入受体细胞进行复制、转录和翻译,从而产生人们所需要的目的基因的产物。基因工程技术打破了天然物种屏障,人们可以按照主观愿望,将来自不同生物体的DNA 片段组合到一起,并获得新的表达产物。
基因工程技术的不断发展使其在农业、医学、环保等方面取得了广泛的应用,带来了巨大的科学价值和经济效益。基因工程通过基因重组实现产品的改良,例如获得杀虫或抗病活性,产生更多的代谢产物,或产生新型代谢产物等。通过基因工程技术产生的基因工程体一般可以产生经济或社会效益,或具有明显的产生经济或社会效益的潜力。以下通过基因工程在农业、医学和环保三个方面来说明基因工程的应用及发展前景。基因工程用于农业方面
农业是目前基因工程技术引用最广泛的领域之一,农作物生物技术的目的是提高作物产量,改善品质,增强作物抗逆性、抗病虫害的能力。基因工程在这些领域已取得了令人瞩目的成就。由于植物病毒分子生物学的发展,植物抗病基因工程也也已全面展开。例如:中国科学院把抗病毒基因转到了水稻的细胞里,由此培育出的植株可以抵抗水稻常见的一些病害,并能稳定遗传抗虫。同时,植物基因工程技术的兴起为创造植物雄性不育系提供了新的策略和可能[1]。人们采用特异性启动子与RNA酶基因构建嵌合基因这一策略来实现创造雄性不育系。事实证明,这在烟草、油菜、小麦、水稻和一些果树雨中中取得了成功。
另一方面,转基因技术的实现也为农业创造高质量、高产量的新品种。转基因技术能培养出多种快速生长的转基因鱼、转基因羊、产奶量高的转基因牛等[2]。随着生活水平的提高,人们越来越关注农业产品的口味、口感、营养成分、欣赏价值等品质性状。实践证明,利用基因工程可以很好地改善植物的品质,在人们的不断努力下,越来越多的基因工程农业产品进入了市场,利用基因工程改良作物品质也取得了不少进展,如美国Florida Gainesville大学的科学家将外源高分子量面筋蛋白基因导入普通小麦中,获得了含量更多的高分子量面筋蛋白质的小麦,这样的小麦面筋蛋白具有良好的延伸性和弹性[3]。基因工程用于医学方面
目前,以基因工程药物为主导的基因工程应用产业已成为全球发展最快的产业之一,发展前景非常广阔。基因工程药物主要包括细胞因子、抗体、疫苗、激素和寡核甘酸药物等。它们对预防人类的肿瘤、心血管疾病、遗传病、糖尿病、包括艾滋病在内的各种传染病、类风湿疾病等有重要作用。在很多领域特别是疑难病症上,基因工程工程药物起到了传统化学药物难以达到的作用。我国科学家应用安福隆治疗慢性乙型病毒性肝炎患者45 例,第1个月每天肌肉注射1 次安福隆500 万u,后改为隔天肌肉注射1次,疗程为6个月;与给予甘利欣、维生素C等保肝药物治疗的对照组47例进行了比较。结果治疗组肝功能复常率、HBVDNA 阴转率、HBeAg 阴转率、HBeAb 阳转率均明显高于对照组并有显著统计学意义。该临床研究证明安福隆治疗慢性乙型病毒性肝炎疗效确切[4]。
同时了,基因工程的发展使得基因诊断得到广泛的应用。一些遗传病和癌症的发病与基因的突变有关,在基因水平可以做出正确的诊断。常用的方法有DNA分子杂交,检测基因的缺失、重排、基因拷贝数扩增等。在多聚酶链式反应技术发明后,使基因诊断方法趋于简便。可以不必做DNA分子杂交,而直接从扩增的DNA分子做酶切分析。有的不需做酶切而从扩增片段的长度就可作为找诊断指标。用PCR法扩增片段做RFLP分析,又成俄日扩增片段长度多态性——AmpFLP [5]。
基因工程用于环保方面
工业发展以及其它人为因素造成的环境污染已远远超出了自然界微生物的净化能力,已成为人们十分关注的问题。基因工程技术可提高微生物净化环境的能力。美国利用DNA重组技术把降解芳烃、萜烃、多环芳烃、脂肪烃的4种菌体基因链接,转移到某一菌体中构建出可同时降解4种有机物的超级细菌,用之清除石油污染,在数小时内可将水上浮油中的2 /3烃类降解完,而天然菌株需1年之久。90年代后期问世的DNA改组技术可以创新基因,并赋予表达产物以新的功能,创造出全新的微生物,如可将降解某一污染物的不同细菌的基因通过PCR技术全部克隆出来,再利用基因重组技术在体外加工重组,最后导入合适的载体,就有可能产生一种或几种具有非凡降解能力的超级菌株,从而大大地提高降解效率。
生物柴油作为一种新型可再生能源,其生产原料主要为含油植物,如大豆、油菜、棕榈和蓖麻等。此外,将含油微藻作为生物柴油原料,也在逐渐成为一个新的研究领域。用微藻生产生物柴油具有更多优势,科学家利用小球藻生产的生物柴油,不仅具有传统化石柴油相当的密度、粘度和热值,而且具有更低的冷滤点和良好的发动机低温启动性能[6]。
目前国外已有许多公司开始利用基因工程研究生物柴油及其他生物燃料,圣地亚哥蓝宝石能源生物科技公司称,他们有望在2011年前销售由藻类生产出的“汽油”;科罗拉多州的Solix 生物燃料公司的第一个试点工厂,计划于今年夏天正式投产营运[7]。鉴于基因工程所开发的生物燃料是能源发展的大势所趋,致力于开发并大量生产生物燃料的公司,最后获得的不仅仅是可观的利润,他们还将创造历史。基因工程的发展前景
由于基因工程运用DNA分子重组技术,能够按照人们预先的设计创造出许多新的遗传结合体,具有新奇遗传性状的新型产物,增强了人们改造动植物的主观能动性、预见性。而且在人类疾病的诊断、治疗等方面具有革命性的推动作用,对人口素质、环境保护等作出具大贡献。所以,各国政府及一些大公司都十分重视基因工程技术的研究与开发应用,抢夺这一高科技制高点。其应用前景十分广阔。我国基因工程技术尚落后于发达国家,更应当加速发展,切不可坐失良机。
但是,任何科学技术都是一把双刃剑,在给人类带来利益的同时,也会给人类带来一定的灾难。比如基因药物,它不仅能根治遗传性疾病、恶性肿瘤、心脑血管疾病等,甚至人的智力、体魄、性格、外表等亦可随意加以改造;还有,克隆技术如果不加限制,任其自由发展,最终有可能导致人类的毁灭。基因工程这一生物技术最大的特征就在于它与人类的生命健康和生活质量息息相关,而且这种相关性要强于其他任何科学技术。在解决这些伦理问题之前,我们必须要先确立解决这些伦理问题的基本思路。只有把基本思路规划好,才能有针对性的解决问题,避免走弯路。解决基因工程伦理问题的基本思路可以概括为四个基本原则,即不伤害原则、有利原则、尊重原则以及公正原则[8]。
还有,尽管目前的转基因动植物还未发现对人类有什么危害,但不等于说转基因动植物就是十分安全的,毕竟这些东西还是新生事物,需要实践慢慢地检验。转基因生物和常规繁殖生长的品种一样,是在原有品种的基础上对其部分性状进行修饰或增加新性状,或消除原来的不利性状,但常规育种是通过自然选择,而且是近缘杂交,适者生存下来,不适者被淘汰掉。而转基因生物远远超出了近缘的范围,人们对可能出现的新组合、新性状会不会影响人类健康和环境,还缺乏知识和经验,按目前的科学水平还不能完全精确地预测。所以,我们要在抓住机遇,大力发展基因工程技术的同时,需要严格管理,充分重视转基因生物的安全性。
基因工程技术还在发展阶段,它的许多用途和功能仍有待我们去发掘,趋利避害是我们发展基因工程技术的基本原则,让基因工程技术成为社会发展与人们生活水平提高的福音。
参考文献:
[1]孙明 《基因工程》 高等教育出版社 2005 [2]孟瑞芝 浅谈基因工程在农业生产中的应用 2009 [3]陈慧 基因工程技术在食品营养品质、风味改良中的应用 牧与饲料科学 2010 31(4)27-28 [4]贾志杰 我国基因工程药物研究与应用新进展 长春中医药大学学报 2010 26(2)290-291 [5]翟中和 《生命科学和生物技术》 山东教育出版社 1996 [6]郑明刚 基因工程在生物柴油原料中的应用研究 农业基础科学 2010 22-26 [7]方陵生 源自基因工程的新一代生物燃料 世界科学 2009 8-10 [8]赵宏韬 浅析基因工程伦理中的有利原则 东方企业文化 2010 202 [9]闫新甫 《转基因植物》 2002 [10]韦凯 植物基因工程的应用及其发展 魅力中国 2009 45
第二篇:基因工程论文(范文模版)
浅析基因工程技术的应用现状
动物医学专业
任课教师
指导教师姓名
摘要: 基因工程作为一门理论性与实践性较强的学科,其方法与技术已经渗透到现代生命科学的各个分支领域,成为生命科学的一门核心技术。基因工程包含许多独特的实验方法和技术,不仅内容丰富,涉及面广,实用性也强。基因工程是通过DNA 重组技术, 获得具有特殊生物遗传性状和功能的遗传工具生物体, 基因工程技术广泛应用于农业、医学、食品工业等。本文就基因工程的应用现状综合阐述。关键词 : 基因工程;应用现状
0.前言
基因工程技术是一项极为复杂的高新生物技术, 它利用现代遗传学与分子生物学的理论和方法, 按照人类所需, 用DNA 重组技术对生物基因组的结构和组成进行人为修饰或改造, 从而改变生物的结构和功能, 使之有效表达出人类所需要的蛋白质或人类有益的生物性状[1]。基因工程从诞生至今, 仅有30 年的历史, 然而, 无论是在基础理论研究领域, 还是在生产实际应用方面, 都已取得了惊人的成绩。首先,基因工程给生命科学自身的研究带来了深刻的变化。目前科学家已完成了多种细胞器的基因组全序列测定工作。其次, 基因工程具有广泛的应用价值, 能为工农业生产、医药卫生、环境保护开辟新途径。
1.基因工程
1.1 概念
基因工程(又称DNA 重组技术、基因重组技术), 是20 世纪70 年代初兴起的技术科学, 是用人工的方法将目的基因与载体进行DNA重组, 将DNA 重组体送入受体细胞, 使它在受体细胞内复制、转录、翻译, 获得目的基因的表达产物。这种跨越天然物种屏障, 把来自任何生物的基因置于毫无亲缘关系的新的寄主生物细胞之中的能力, 是基因工程技术区别于其他技术的根本特征。1.2 基因工程研究内容
(1)从复杂的生物有机体基因组中, 经过酶切消化或PCR 扩增等步骤, 分离出
带有目的基因的DNA 片段。
(2)在体外, 将带有目的基因的外源DNA 片段连接到能够自我复制并具有选择记号的载体分子上, 形成重组DNA分子。
(3)重组DNA 分子转移到适当的受体细胞, 并与之一起增殖。
(4)从大量的细胞繁殖群体中, 筛选出获得了重组DNA 分子的受体细胞克隆。(5)从这些筛选出来受体细胞克隆, 提取出已经得到扩增的目的基因, 供进一步分析研究使用。
(6)将目的基因克隆到表达载体上, 导入寄主细胞, 使之在新的遗传背景下实现功能表达, 产生出人类所需要的物质。
2.基因工程的广泛应用
2.1 在农业上的应用
2.1.1 抗除草剂的植物基因工程
资料表明, 每年杂草造成的经济损失占农作物总产值的10%-20%左右尽管除草剂的使用, 对大规模机械化耕作, 减少劳力开支和提高量有极为重要的作用, 但一般除草剂的选择性较差, 即除了杀草以外, 还会将作物杀死。现在利用生物技术, 将能抵抗除草剂的基因转移到植物中, 获得抗除草剂的植物, 如美国的孟山都公司将除草剂草甘磷的靶酶(EPSPS)的cDNA 克隆转入油菜[2] , 目前, 已获得的抗除草剂作物有大豆、棉花、玉米、水稻和甜菜等20 多种。2.1.2 抗虫的植物基因工程
生物防治害虫的工作已经开展多年, 主要是利用苏云金杆菌中的毒蛋白(结晶蛋白)对害虫有毒害作用, 使用这些杆菌来控制害虫。现在, 人们可以通过克隆这些毒蛋白的基因(Bt 基因)并把这些基因转移到植物细胞中, 从而获得能抗虫的转基因植物。目前, Bt 基因已被转入烟草、番茄、马铃薯、水稻、玉米及棉花等多种植物中。1996 年转Bt 基因棉花在美国种植66 万hm2 经中国农科院棉花所引进在华北试种两年, 在多点表现突出, 在完全不喷杀虫剂的情况下, 单产仍然高于喷撒2-3 次杀虫剂的中国推广棉花[3] , 显示出了控制棉铃虫的极好前景。2.1.3 动物转基因育种
动物基因工程研究主要集中在改良家畜、家禽的经济性状和通过转基因动物进行药物或蛋白质的生产等方面, 目前已取得了显著的成就, 先后培育出转基因猪、羊、牛和鱼等, 另一种转基因猪是带有人体基因的猪, 这种转基因猪客望能解决人体移植动物器官的遗体排斥问题。随着动物基因工程技术的逐渐成熟和转人体血红蛋白的基因猪、转人体血清蛋白的基因山羊等的问世, 不仅能生产出大量人类所需的血红蛋白、白蛋白等药物而且为动物育种开辟了一条全新的途径。
2.2 在医学上的应用 2.2.1 基因工程药物
利用基因工程技术开发新型治疗药物是当前最活跃和发展最快的领域。自1982 年世界第一个基因工程药物---重组胰岛素投放市场以来, 基因工程药物就成为制药行业的一支奇兵, 每年平均有3-4 个新药或疫苗问世, 开发成功的约50 个药品, 诸如人胰岛素、忍尿激酶、人生长激素、干扰素、激活剂、乙肝疫苗等广泛应用于治疗癌症、肝炎、发育不良、糖尿病和一些遗传病上, 在很多领域特别是疑难病症上, 起
到了传统化学药物难以达到的作用[4, 5, 6]。为治愈癌症正在研制的用单克隆抗体制成的“生物导弹”, 就是按照人类的设计, 把“生物导弹”发射出去, 精确的命中癌细胞, 并炸死癌细胞, 而不伤害健康的细胞, 比如专门用于肿瘤的“肿瘤基因导弹”等。可见, 生物工程药物将成为21世纪药业的支柱。而脱氧核糖核酸或者基因疫苗的问世, 变革了机体的免疫方式。如今, 人们翘首关注困扰人类的艾滋病病毒疫苗的早日问世。
尽管目前诱变育种技术仍是改良微生物工业生产菌种的主要手段,但是基因工程技术在改良工业生产菌种方面已有成功的报道。最常见的是将控制药物合成关键步骤的酶基因克隆,通过适当的载体转移到原生产菌中,以使控制限速步骤的酶水平,从而提高产量。Malmberg等[7]构建了一种带有编码赖氨酸ε-氨基转移酶基因(lysine-ε-aminotranster-ase,LAT)这种控制Streptomyces clavuligerus生物合成头霉素C的限速步骤的关键酶的基因(lat)的高拷贝质粒,并转入这种头霉素产生菌,使LAT提高活力提高了4倍,在2 L发酵罐中产生头霉素的能力是原来的2倍,重组菌胞外LAT产物α-氨基己二酸的积累量也比原受体
菌高。伊维菌素(ivermectins)是一个市场很大的抗虫
抗生素,其前体阿弗米丁(avermectins)的产生菌种的发酵液中有8个以上的组分,其中只有B1a组分才是制备伊维菌素的原料。Ikeda等[8]经过近十年的努力,已将阿弗米丁的生物合成基因簇全部搞清,并经过诱变与DNA重组,获得了仅产阿弗米丁B2a单一组分和B1a、B2a组份的重组工程菌,这不仅大大提高了阿弗米丁有效组分的发酵效价,且给提取、精制、半合成等后处理工序带来了很大的便利。可以预见,随着对各种工业生产的微生物药物生物合成途径的深入了解以及基因重组技术的不断进展,应用基因工程方法定向构建高产菌株的成功实例将越来越多。在抗生素发酵过程中供氧往往是一个限制因素,充足的氧气供给是药物工业发酵稳定和提高产量,降低成本的关键。传统的解决方法如增加通气量等对设备要求高,能量消耗大。20世70年代末在专性好氧菌透明颤(Vitreoscilla)中发现了血红蛋白(VHb),它能促进氧气扩散到细胞末端氧化酶上。于是人们想到了将其基因Vgb克隆到其它微生物中,以促进微生物在低氧条件下生长。
1988年Khosla等[9]从Vitreoscilla中分离出Vgb基因并将之转入大肠杆菌(E·coli),提高了大肠杆菌在溶氧量低于5%时对氧的利用率。目前已用克隆表达VHb的方法提高了放线紫红素、头孢霉素C、红霉素等产生菌及青霉素酰化酶基因工程菌的产量[10]。血红蛋白基因工程的研究和应用,必将对抗生素工业和其它重组药物发酵工业的节能等带来美好的前景。作为半合成头孢菌素类抗生素重要原料的7-氨基头孢烷酸(7-ACA),目前国内外仍以化学裂解头孢菌素C的工艺路线为主。国内外已报道可用经由GL-7-ACA的二步法(化学/酶法或二步酶法)来生产7-ACA,与化学裂解法相比不仅收率提高,且能大大减少环境污染,简化生产工艺。但二步法中关键的GL-7-ACA酰化酶在假单胞菌中表达量低而且分离纯化困难,限制了这种方法的应用。通过将GL-7-ACA酰化酶基因转入大肠杆菌中表达恰好可以解决这一问题[11]。最近又报道可将编码2个酶的基因直接转入头孢菌素C的生产菌种中,使其在发酵时直接产生7-ACA。调节基因在药物的生物合成中也起着重要作用,增加调节基因的基因量能够大幅提高药物产量。Hopwood等将放线紫红素生物合成的一个调节基因actⅡ导入原产生菌,尽管基因的拷贝数仅增加了2倍,放线紫红素的产量却增加了30~40倍。某些抗生素生产菌的产量不高,是由于其自
身对该抗生素的抗性不高。因此,利用高拷贝质粒的基因量效应,增加菌种对自身产生的抗生素的抗性,可能增加抗生素的产量。例如,将氨基糖苷-6-乙酰转移酶基因导入卡那霉素和新霉素产生菌,由于提高了对氨糖类抗生素的抗性,产量提高了2~6倍 2.2.2 基因治疗
基因治疗是指由于某种基因缺陷引起的遗传病通过转基因技术而得到纠正。临床实践已经表明: 基因治病已经变革了整个医学的预防和治疗领域。比如白痴病, 用健康的基因更换或者矫正患者的有缺损的基因, 就有可能根治这种疾病。现在已知的人类遗传病约有4000种, 包括单基因缺陷和多基因的综合症。运用基因工程技术或基因打靶的手段, 将病毒的基因杀灭, 插入矫正基因, 得以治疗、校正和预防遗传疾病的目的。目前, 基因治疗已扩大到肿瘤、心血管系统疾病、神经系统疾病等的治疗[12]。人类也已成功实现了肾、心、肝、胰、肺等器官的移植, 也有双器官和多器官的联合移植。
基因治疗有两种途径: 一是体细胞的基因治疗, 一是生殖细胞的基因治疗。由于生殖细胞的基因治疗操作技术异常复杂, 又涉及伦理缓行之理充足, 故尚无人涉足[13]。基因工程是20 世纪生命科学中最伟大的成绩, 开辟了生命科学的新纪元。经过几十年的发展, 基因工程技术已成为一个巨大的朝阳产业, 它可以超越动物、植物、微生物之间的界限, 创造出新的生物类型。基因工程不仅在医学上应用广泛, 而且也广泛应用在工业、农业、冶金、环保、资源、能源、畜牧渔业等领域, 为人类的丰衣足食和健康长寿提供了持续的实用价值很高的产品, 发展前景极为广阔。
参考文献:
[1] 陈渝军, 林晶.基因工程技术在医药卫生领域的应用及发展.药品评价,2005, 2(2): 144-145.[2] 童克中.基因及其表达.北京: 科学出版社, 2001.[3] 李尉民, 乐宁, 夏红民.转基因生物及其产品的风险与管理.生物技术通报.2000(4)41-44.[4] 朱宝泉.基因工程技术在医学工业中的应用及进展[ J].中国医药工业志.1997.28(2): 56-58.[5] 方鹏.基因工程应用简述[ J].辽宁师专学报.2004.6(2): 29-30.[6] 周黎, 柯传奎.基因工程药物研究现状与对策[ J].生命科学仪器2004.1: 22.[7] Malmberg LH, Hu WS, Sherman DH·Journal of Bacteriology,1993, 175(11): 6916~6924· [8] Haruo Ikeda, SatoshiOmura·Journal ofAntibiotics, 1995, 48(7):549~562· [9] Chaitan Khosla, JamesEB·Nature, 1988, 331: 633~635·
[10] 郭宏秋,杨胜利·微生物学通报, 1996, 23(4): 227~230· [11] 周煜,刘涤,胡之璧·药物生物技术, 2000, 7(4): 251~253·
[12] 路正兵, 夏颖.基因工程在疾病防治及药物研制上的应用[ J].安徽预防医学杂志.2000.6(5): 398-400.[13] 王俊杰21 世纪基因工程在肿瘤防治中的应用[ J] 2000.6(6):62-67.分子生物学
—谈基因工程技术如何应用于植物
摘要:通过基因工程改良品种在未来的农业生产中日益显示出巨大潜力。尽管科学家们对转基因植物的争论仍在继续,但可以肯定的是,转基因植物作为一项新兴的生物技术的产物,在解决日益膨胀的地球人吃饭问题和在解决长期困惑人类发展的资源短缺、环境恶化、经济衰退三大难题中起着越来越重要的作用。本文综述了基因工程技术在植物中的应用,就转基因植物的技术、发展、安全性和发展前景作了探讨。
关键词:基因工程技术;转基因植物;安全性;发展前景
所谓转基因植物是指利用基因工程技术,在离体条件下对不同生物的DNA进行加工,并按照人们的意愿和适当的载体重新组合,再将重组DNA转入生物体或细胞内,并使其在生物体内或细胞内表达的植物。自1983年首次获得转基因植物以来,转基因技术发展十分迅速,成功的转基因植物已达60多种,在世界上批准进入田间试验的转基因植物已超过500例。
1植物的转基因技术
由于植物的体细胞具有全能性,即单个的细胞经过合适培养后可以生成完整的植株。将分离能够编码所需产物的DNA片段克隆到适当的载体DNA中形成重组DNA,利用细菌繁殖扩增重组DNA并将重组DNA中的目的基因导入所需的培育的植物细胞中,筛选出所需要的细胞,通过细胞的全能性将转基因植株大规
模种植。
其中外源基因导入植物细胞的方法可分为DNA直接转化和以载体为媒介的基因转化。基因的直接转移是通过物理化学法将外源基因转入受体植物细胞的技术。常用的方法有化学刺激法、脂质体法、显微注射法和基因枪法等。其原理是利用物理化学方法暂时改变膜通透性,使DNA进入细胞,并最终整合到植物基因组中。
以载体为媒介的基因转化即使通过农杆菌或植物病毒介导感染受体植物将外源基因转入植物细胞的技术。目前,载体法主要包括土壤农杆菌Ti质粒、Ri质粒及植物DNA病毒等介导的遗传转化法。
2转基因植物的筛选与检测
通过转基因的方法将目的基因转入目的植物的细胞后,转化细胞与非转化细胞相比都只占少数,两者存在竞争,而转化细胞的竞争力通常比非转化细胞弱,因此必须对转化细胞进行筛选和检测。
在构建重组DNA时,人们已经引入了标记基因以对转化子选择和鉴定。报告基因由于其表达产物易于检测,已广泛用于转基因植物中。根据报告基因编码特点,大致分为两类:抗性基因和编码催化人工底物产生颜色变化的酶基因或发光基因。根据检测的不同阶段区分,有DNA检测法、RNA检测法及蛋白质检测法。DNA检测法只能检测到外源基因是否已经整合到植物基因组中,而RNA检测法得到的结果可判定外源基因是否转录,蛋白质检测法则可检测出外源基因是否翻译。
3改进转基因的技术
随着植物转基因技术的创立和发展,许多具有重要经济价值的农作物获得了转基因植株,植物转基因技术成为植物育种的一个重要手段,但仍有许多问题阻碍了转基因技术在生产上的广泛的应用。将外源DNA导入植物细胞后,只有外源DNA在宿主细胞及其子代细胞中稳定整合和有效的表达,才能培育出具有新的遗传性状的转基因植物。大量研究表明外源基因在转基因植物中有的能正常表达,有的表达量很低,甚至不表达,而且在不同的植株个体之间也存在着明显差异。所以提高转基因的表达,减少转基因的失活是转基因技术的一个重要内容。提高外源基因表达水平的措施有: 3.1农杆菌介导的遗传转化方法由于其产生的拷贝数相对较少,可以在一定程度上避免这个问题。
3.2使用信号肽,每种植物蛋白质的作用空间位置都是不同的,蛋白质分子的定向运输需要特殊多肽信号的引导作用。3.3选择强启动子和诱导型启动子
3.4使用强终止子 常用的终止子时CaMV35S终止子和根瘤土壤杆菌T-DNA的胭脂氨基酸合成酶基因的nos终止子。
3.5消除甲基化的影响 在载体上加上去甲基化功能的序列以防止甲基化。3.6使用植物偏爱的密码子 3.7使用MAR序列 3.8使用增强子
3.9对外源基因进行修饰和改造 3.10以叶绿体作为转化受体 3.11使用一些病毒编码蛋白
3.12在有性生殖后代中筛选单拷贝植株
4基因工程在农作物上的应用
4.1抗虫转基因作物
最早获得的转Bt(苏云金杆菌)毒素基因植物是烟草和番茄,随后Bt毒素基因相继被转化到许多其他农作物中,如棉花、水稻、玉米等,获得了一大批具良好抗虫性的转基因植物品种。4.2抗病毒作物
植物病毒感染时一个严重的问题,它可导致农作物生长缓慢、产量降低和质量减退。转基因植物的成功使作物抗病毒成为可能并加速了作物抗病育种的研究进程。自1986年Powel-Abel首次将烟草花叶病毒(TMV)外壳蛋白(Cp)基因导入烟草,培育出抗TMV植株以来,已经将许多 病毒成功的构建了多种抗病毒植株,近几年的研究结果表明病毒外壳蛋白在系统杂交保护中起着重要的作用,插入一段已克隆的CP基因可以延缓病毒的发展和阻止病毒在转基因植株中进一步传播。
4.3抗细菌和真菌作物
细菌和真菌病在全部植物病害中造成的损失最大,很多科学家都在尝试从植物的生物体内寻找抗病原菌的蛋白及其基因,并将其用于植物基因工程。自1980年,瑞典科学家首次从美国惜古比天蚕种成功分离了3种诱导型的杀菌肽进行了深入的研究。它们对很多种植物病原菌有较强的杀伤作用。现在的实验结果表明,杀菌肽作用于细胞的细胞膜,破坏膜的完整性,造成离子通道,最终导致细胞内含物泄露。目前,杀菌肽基因工程已经在烟草、马铃薯等植物上有了初步报道。
4.4抗除草剂转基因作物
人类自有农业起就一直跟杂草作斗争,它是农业生产中的大敌,但由于它具有较强的生态适应性和抗逆性,所以给杂草的防治带来了困难。在大量使用化学除草剂的同时往往会对作物造成一定的伤害。为此人们在研究抗除草剂基因,将该基因转入植物,在喷施除草剂杀死杂草时,不伤害作物。20世纪80年代中期,抗除草剂基因被转入了作物体内,从而获得了抗除草剂的转基因大豆、棉花、玉米、油菜、小麦等。
4.5抗非生物胁迫作物
干旱时困扰农业生产的重要因素之一,它给农业生产带来巨大的损失,这种损失甚至是毁灭性的。CMO基因是合成乙酰-甜菜碱第一步反应关键酶的基因,具有很强的抗旱性。Rathinasabathi等奖烟草中的CMO基因导入水稻中,获得抗旱性较强的转基因水稻。可以相信在未来培育出的耐旱的新作物品种应该是转入多种共同作用的外源基因。
5转基因植物的安全性
..5.1转基因植物的优缺点 关于转基因植物及其安全性问题,是近年来的热 门话题,但目前国际上没有统一说法,争论不一。其主要优点:①增加食物供应,解决粮食短缺;②减少农药使用,避免环境污染;③降低生产成本,降低食物售价;④增加食物营养,提高附加价值;⑤增加食物种类,提升食物品质;⑥提高生产效率,带动相关产业发展。其主要缺点:①可能对蝴蝶等昆虫造成伤害; ②可能影响周边植物的生长;③可能使昆虫或病菌在演化中增加抵抗力或产生新的物种,因此有可能会伤害作物。..5.2转基因食品的安全性和可接受性
随着转基因技术的发展,转基因食品的安全性越来越受到人们的关注。转基因食品与传统食品相比,区别在于:首先它含有利用转基因技术导人的外源基因;其次可能存在外源基因在受体内的表达产物。由于这两种成分的不确定性以及由
此引起的次级效应,对人类健康可能有潜在的危害。目前人t fx转基因食品生物的担忧基本上可以归纳为3类:(1)转基因食品里加入的新基因无意中对消费者造成的健康危害;(2)转基因作物中的新基因对食物链其他环节无意中造成的不良后果;(3)人为强化转基因作物的生存竞争性,对自然界生物多样性的影响。其中人们最为担心的是转基因食品对人体健康是否安全,转基因食品与常规食品比较有无不安全的成分。这就需要对其主要营养成分、微量营养成分、抗营养因子的变化、有无毒性物质、有无过敏性蛋白以及转入基因的稳定性和插入突变进行检测。另外是人们对..“基因逃逸”的担心。所谓..“基因逃逸”,就是指微生物之间可以通过转导、转化、接合进行基因转移。人们主要是担心转基因作物及基因食品的有害基因是否会逃逸到人体或环境中,加快抗药性问题。如野生植物种通过受粉可能会完成抗除草剂的基因改良,会变成..“超级杂草”,由此形成的具有非自然抗逆性的植物对那些以其为生的动物们来说,可能会导致生物链的断裂。
6转基因植物的发展前景
转基因植物在人类发展史上,是人类对自然的认识和改造的结果,必将对人类的生存带来重大影响。随着人们对遗传本质认识的深化和生物技术水平的不断提高,大量的转基因植物不断涌现。通过转基因技术来改良作物的品质是一个不可阻挡的趋势,因为现在有许多问题是无法通过常规育种来解决的,特别是耐旱、耐贫瘠等作物品种的培育。例如非洲的沙漠地区,如果按照现在的育种手段,它的粮食产量根本不可能满足基本生活保证,人们现在 寄希望于通过转基因技术生产一些比较耐旱、耐贫瘠的作物,以解决因为土地可耕面积的减少而给人类带来的压力。另外,转基因技术可以改良作物的营养成分,现在非常知名的一个例子就是瑞士联邦技术研究所成功开发的金色大米,它是通过将胡萝卜素合成途径的关键基因转到水稻中去,生产出的大米是金黄色的,这种水稻含有VA的合成原料,在解决吃饭问题的同时有助于治疗因缺乏VA而导致的眼睛失明等疾病,这对于发展中国家非常重要。因此转基因技术具有广阔的发展前景。但是,在大力发展转基因食品的同时,应建立完善的转基因产品评价和监控体系。1 993年,世界经济合作与开发组织发表了..“现代生物技术食品的安全评价——概念和原则”,提出了..“质量等同性概念”,其含义是..“当某个由转基因技术生产的新食品的各项主要特征(分子学特征、遗传形状、主要营养成分等)与现有食品大致相同,则认为该新食品的安全性也与现有食品大体等同。”我国政府也于1 993年、1 996年和2 001年分别颁布了有关条例和规定,要求对转基因食品的试验、生产、应用等实行生产许可证和经营许可证制度,同时对违规试验、生产、应用、进出口转基因食品的机构和人员,规定了严厉的处罚措施。但如何维护消费者的知情权,对转基因食品实行标志制,如何加强对进口转基因食品的检验监管,保证我国的食品卫生安全等尚需进一步完善,加强研究。
综上所述,基因工程技术作为一项新兴的生物技术,其发展趋势不可阻挡。但科学技术是把双刃剑的理论同样适合转基因植物。为此,我们应该适当借鉴国外经验,建立一套既符合中国国情,又与国际接轨,且科学合理的基因安全评价和监控体系,为日后我国转基因植物走向世界奠定基础。
参考文献:
(1)李立家
肖庚富
基因工程
科学出版社 2010.8
(2)李书国,陈辉,庄玉亭.基因工程在食品工业中的应用.粮油与油脂,2001.2(3)夏焕章
熊宗贵 生物技术制药
高等教育出版社 2010.3(4)谈家桢.基因工程.北京:农业出版社,1979...基因工程抗体研究进展及其临床应用
摘要:基因工程抗体是继多克隆抗体和单克隆抗体之后的第三代抗体,近年来随着生物工程技术的发展,许多基因工程抗体陆续问世,本文详细介绍了基因工程抗体的研究进展,概述了基因工程抗体在临床方面的明显优势和应用潜力。关键词:基因工程抗体;研究进展;临床引用
Advances in Genetic Engineering Research and Clinical
Application of Antibody
Student majoring in Professional Veterinary Medicine Name DongChuanJun
Tutor Name MinLingJiang
Abstract:Genetic engineering antibody is the third generation antibody after polyclonal antibody and monoclonal antibody.In recent years,with the development of bio-engineering techniques,many genetically engineered antibodies have been presented to the public,and this article elaborates on research progress of the genetic engineering antibody,and its obvious advantages and potentials in clinical application.Key words: Genetically engineered antibodies;Research;Clinical application.转基因技术迅速发展,其应用和发展的领域日益夸大。但转基因技术的弊端日益凸现,引起众多关注的目光。就转基因技术本身而言,社会各界对它的态度各有异同。不同的国家不同的民族和不同的个体对转基因技术的态度大相径庭。如何看待转基因技术?如何去应用和发展转基因技术?这些都是我们亟待解决的问题。基因工程抗体介绍
1.1 基因工程简介
基因工程抗体是借助DNA重组和蛋白质工程技术,在基因水平对免疫球蛋白分子进行切割、拼接、修饰和重新组装的一种新型抗体。所制备的抗体去除或减少了可引起副作用的无关结构,但保留天然抗体的特异性和主要生物学活性,并可赋予抗体分子以新的生物学活性的总称【1】。
由于目前制备的抗体均为鼠源性临床应用时,对人是异种抗原,重复注射可使人产生抗鼠抗体,从而减弱或失去疗效,并增加了超敏反应的发生,因此,在 80 年代早期,人们开始利用基因工程制备抗体,以降低鼠源抗体的免疫原性及其功能[2]。目前多采用人抗体的部分氨基酸序列代替某些鼠源性抗体的序列,经修饰制备基因工程抗体,称为第三代抗体[3]。1.2 基因工程抗体种类
基因工程抗体主要包括嵌合抗体、人源化抗体、完全人源抗体、单链抗体、双特异性抗体等。
1.2.1 嵌合抗体
嵌合抗体(chimeric atibody)是最早制备成功的基因工程抗体。它是由鼠源性抗体的V区基因与人抗体的C区基因拼接为嵌合基因,然后插入载体,转染骨髓瘤组织表达的抗体分子【4】。因其减少了鼠源成分,从而降低了鼠源性抗体引起的不良反应,并有助于提高疗效。
1.2.2 人源性抗体
是将人抗体的CDR代之以鼠源性单克隆抗体的CDR,由此形成的抗体,鼠源性只占极少,称为人源化抗体。
1.2.3 完全人源化抗体
采用基因敲除术将小鼠Ig基因敲除,代之以人Ig基因,然后用Ag免疫小鼠,再经杂交瘤技术即可产生大量完全人源化抗体。
1.2.4 单链抗体
是将Ig的H链和L链的V区基因相连,转染大肠杆菌表达的抗体分子,又称单链FV(single chain fragment of variable region,sFv)。SFv穿透力强,易于进入局部组织发挥作用。
1.2.5 双特异性抗体
将识别效应细胞的抗体和识别靶细胞的抗体联结在一起,制成双功能性抗体,称为双特异性抗体。如由识别肿瘤抗原的抗体和识别细胞毒性免疫效应细胞(CTL细胞、NK细胞、LAK细胞)表面分子的抗体(CD3抗体或CD16抗体)制成的双特异性抗体,有利于免疫效应细胞发挥抗肿瘤作用。基因工程抗体的研究进展
2.1抗体工程的发展
最近,美FD强调:目前在临床试验中基因工程抗体约占生物制剂的30%。重组抗体的体积越来越小,或被重新构建成多价分子,或与其它分子相融合,如放射性核素、毒素、酶、脂质体和病毒的药剂设计成为可能。
【5】
。重组技术的出现使筛选、人源化、抗体的生产得到革新,并取代杂交瘤技术,从而使以抗体为基础
图1:抗体的发展
2.2目前基因工程抗体制备的主要方法 2.2.1人鼠嵌合抗体
主要是利用基因重组技术,把鼠抗体的重轻链可变区部分与人抗体重轻链恒定区的进行重组,减少鼠源结构,增加人源结构,而保持抗体与原抗原的特异性结合【6】。
1.首先把小鼠编码Ig重轻链的基因剔除。2.制备表达人的Ig重轻链的转基因小鼠。
3.上二种小鼠回交,获得只表达人Ig重轻链的基因的小鼠。当用抗原免疫后,小鼠可产生完全人源抗体。2.2.2 噬菌体抗体库技术
1.人的Ig重轻链可变区基因片段展示在噬菌体表面,组成抗体库。2.过噬菌体把抗体的表型和基因型相偶联,易进行分子克隆和基因操作。3.抗体库的来源影响筛选结果(免疫和正常人)。4.高通量筛选与抗原结合的抗体,但亲和力低。2.2.3 用人的骨髓瘤细胞直接制备全人抗体
由于骨髓瘤细胞稳定性高和融合率高,所以要建立好的人骨髓瘤细胞。2.2.4 B细胞永生化技术
用EB病毒将人淋巴细胞永生化可产生分泌抗体的B细胞克隆【7】。这一技术较为成熟,但是存在抗体分泌不稳定的缺点,限制了其应用。或直接分离分泌抗体的B细胞,用PCR获得重轻连,构建全人抗体。2.3抗体药物发展现状
1.FDA已批准上市的抗体药物。
2.SFDA(中国)已批准上市及临床研究的的抗体药物。2.4工程抗体的未来发展与展望 2.4.1单克隆抗体的市场需求
图2:单抗体市场的预测与分析 3.基因工程抗体药物的应用
随着生物工程技术的发展,许多基因工程抗体 陆续问世,并在医学领域的许多方面都具应用潜力,如病毒感染、肿瘤、自身免疫性疾病、同种异体移植物注射、哮喘、中风和青光眼治疗,尤其在诊断和治疗肿瘤性疾病及抗感染方面优势明显。
3.1基因工程抗体药物的临床应用
3.1.1 在肿瘤性疾病诊疗方面的应用
放射性标记抗体在肿瘤影像和治疗中很重要,并可有效进行药代动力学评估.以标记抗体注入人体内显示肿瘤部位抗原与抗体结合的放射浓集称放射免疫显像,由于基因工程抗体如单链抗体、Fab片段等分子量小、能很快清除、组织穿透力强,所以更适于放射免疫显像【8】。
恶性肿瘤的导向治疗,是通过重组技术将抗肿瘤相关抗原的抗体与多种分子
融合,这些分子在抗体结合靶分子后可提供重要辅助功能.这些分子包括:放射性核素、细胞毒药物、毒素、小肽、蛋白、酶和用于基因治疗的病毒.对肿瘤治疗来说,设计的双特异性抗体可有效针对低水平的肿瘤相关抗原,并将细胞毒物质输送到肿瘤细胞.此外,抗体还可与携带药物的脂质体、各种PEG偶联,从而增强体内运输和药代动力学。作为免疫脂质体,转铁蛋白受体抗体可使药物通过血脑屏障到达大脑.抗体酶复合物作为前体药物也被用于基础肿瘤治疗。3.1.2基因工程抗体的抗感染作用
预防和治疗感染性疾病常用的药物是疫苗和抗生素,但对于一些尚无有效预防及治疗手段的感染性疾病如 SARS、AIDS等,抗体治疗可做为首选方案。如在治疗AIDS方面,利用抗体工程技术已成 功地制备出HIV病毒整合菌的单链抗体ScAb2219,对HIV病毒感染的早期和晚期具有有效的抑制作用,并可望成为S基因治疗的有效手段。呼吸道合胞病毒(RSV)易引起婴儿呼吸道疾病,如细支气管炎和肺炎,并可引起严重的并发症,目前已有人源化单克隆抗体Palivizumab经美国FDA批准上市,临床实验证明无毒、副反应,并可显著降低婴儿的住院率。我国率先建立了针对SARS的基因工程抗体库,这对于 SARS的预防、诊断和治疗都将起到重要作用和深远影响。对于中和其它病原分子,FDA已批准 Fab单体分子作为抗蛇毒药物;scFv片段和寡克隆复合物作为抗细菌毒素药物。3.1.3 细胞内抗体
随着细胞信号转导和抗体工程技术的发展,诞生了细胞内抗体技术。这项技术是指在细胞内表达并被定位于亚细胞区室如胞核、胞浆或某些细胞器,与特定的靶分子作用从而发挥生物学功能的一类新的工程抗体。最典型的是 scFv,被称为内抗体。胞内抗体技术主要应用在抑制病毒复制特别是 HIV-1复制、肿瘤基因治疗方面,现已逐渐拓展到中枢神经系统疾病、移植排斥和自身免疫性疾病等领域。体外培养来源于无关供体的角质形成细胞同种移植物用于严重的烧伤病人的治疗,往往会引起排斥反应,而MHCI类分子是引起移植排斥的重要抗原。Mhashikar等用编码抗 MHC I单链抗体的腺病毒转染角质形成细胞,结果显示明显降低了MHCI的表达,细胞内抗体介导的表型敲除是否有利于同种移植物的存活还需要进一步研究。
3.1.4 用于未来诊断的生物传感器和微矩阵技术
生物传感器和微阵列技术在不久以后将有可能成为主要的体外诊断技术.对于大量诊断试剂盒,抗体有高敏感性和高特异性.从最初的玻璃界面到现在的多种蛋白亲和界面,用于诊断的抗体微矩阵界面不断发展.随着体外机械人的出现,这一技术将进一步发展,并用于微生物污染、寄生虫和生物病原体的检测。
3.2基因工程抗体药物的应用领域
1.肿瘤导向治疗;
2.哮喘、银屑病、类风湿性关节炎、红斑狼疮、急性心梗、脓毒症、多发性硬化症及其他自身免疫性疾病; 3.心脑血管疾病; 4.感染性疾病; 5.“生物导弹”
4.基因工程技术的发展方向
针对基因工程抗体药物的应用,明确基因工程技术的发展方向,从而让基因工程抗体对我们更有利[9]。
1.开发针对神经系统、肿瘤、心血管系统、艾滋病及免疫缺陷等重大疾病的多肽、蛋白质和核酸等新生物技术产品;
2.选择一批市场前景好的生物技术产品及疫苗、诊断用单克隆抗体,开发重点是乙肝基因疫苗与单克隆抗体诊断试剂等;
3.开发靶向药物主要是开发抗肿瘤药物。目前治疗肿瘤药物确实存在一个所谓“敌我不分”的问题。在杀死癌细胞的同时,也杀死正常细胞。导向治疗就是针对这个问题提出来。所谓导向治疗就是利用抗体寻找靶标,如导弹的导航器,把药物准确引入病灶,而不伤及其他组织和细胞;
4.人源化的单克隆抗体的研究开发。抗体可以对抗各种病原体,亦可作为导向器,但目前的单克隆抗体,多为鼠源抗体,其本身也被异种生物体视为抗原,当被注入人体后会诱导产生抗体或激发免疫反应。目前国外已研究噬菌体抗体技术,嵌合抗体技术,基因工程抗体技术以解决人源化抗体问题;
5.血液替代品的研究与开发仍然占重要地位。血液制品是采用大批混合的人体血浆制成的,由于人血难免被各种病原体所污染,如艾滋病病毒及乙肝病毒等,通过输血而使接受输血的人感染艾滋病或乙型肝炎的案例时有发生,因此利用基因工程开发血液替代品引人注目。
基因工程抗体的进展已使抗体制备技术进入了一个全新时代,尤其药物抗体库的进展,解决了人源抗体的研制,促进了各种性能优良抗体以及具有多种功能的抗体融合蛋白的开发,可以预见基因工程抗体的研制正在进入一个新的高峰。但是抗体的亲和力减弱,与完整抗体结构相比,功能明显就会降低。人们对可能出现的新组合、新性状会不会影响人类健康和环境,还缺乏知识和经验,按目前的科学水平还不能完全精确的预测。所以我们要在抓住机遇,大力发展基因工程技术的同时,需要严格管理,充分重视转基因抗体的安全性
【10】。
致谢:非常感谢闵令江老师在我大学的学习阶段教给自己基因工程这门学科。我从中学到了很多知识,认识了关于基因工程方面的一些问题,使自己从一无所知到现在基本认识了这门学科,在此我向老师表示我诚挚的谢意,感谢老师的诚
挚教导。
【参考文献】
[1]楼士林,杨盛昌,龙敏南,等。基因工程[M]。北京:科学出版社,2002。
[2]李庆军,董艳桐,施冰。植物抗虫基因的研究进展[J]。林业科技,2002,27(2):22 26。[3]Avivi I,Robinson S,Goldstone A.C1 inical use of rituximab in haematologica1 ma1ignancies[J].Br.J.Cancer 2003,89:1389-1394.
[4]Cai X.,et a1.Proc.Nat1[J].Acad.Sci.,USA 1995,92:6537-6541.
[5]Schi1lberg S.,Fischer R.,Emans N。Molecular farming of recombinant ant [6ibodies in plants[J].Cel 1 Mo1.Life Sci.2003,60:433-445. ]Bouquin T.,Thomsen M.,Nie1sen L.K.,et a 1.Human ant i— rhesus D IgG1 ant ibody produced in transgenic plants[J].Transgenic Res.2002,11:115-122.
[7]Wi seman G.A.,Leigh B.,ErwinW.D.,et a1. Radiation dosimetry results for Zevalin radioimmunotherapy of ritux。imab。refractory non—Hodgkin lymphoma.Cancer 2002,94:1 349—1 357. [8]沈孝宇。转基因之争[M]。北京:化学工业出版社,2008。
[9] 李彪;鼠-人嵌合抗体的研制及应用[J];国外医学。放射医学核医学分册;1996年04期。[10] 黄华梁;基因工程抗体的研究[J];中国肿瘤生物治疗杂志。
基因工程在现代社会中的应用与前景
在基因水平上,采用与工程设计十分类似的方法,按照人类的需要进行设计,然后按设计方案创建出具有某种新的性状的生物新品系,并能使之稳定地遗传给后代,这就是基因工程。
基因工程一般包括四个步骤:一是取得符合人们要求的DNA片段,即“目的基因”。被称为“分子剪刀”的“限制性转切酶”可以在DNA分子上找到特定的“切点”,然后将认准的双链交错切断。自70年代以来,人们已找到400多种形形色色的“分子剪刀”。二是将目的基因与质粒或病毒DNA连接成重组 DNA。在用同一种“分子剪刀”剪切的两种DNA碎片中加上“分子针线”——“DNA连接酶”,就可以把两种DNA片段重新连接起来。三是把重组DNA引入某种细胞。把“拼接”好的DNA分子运送到受体细胞中去,必须寻找一种分子小、能自
由进出细胞,而且在装载了外来的DNA片段后仍能照样复制的运载体。理想的运载体是质粒,因为质粒能自由进出细菌细胞。四是把目的基因能表达的受体细胞挑选出来。目的基因的导入过程是肉眼看不到的。因此,要知道导入是否成功,事先应找到特定的标志。例如我们用一种经过改造的抗四环素质粒PSC100作载体,将一种基因移入自身无抗性的大肠杆菌时,如果基因移入后大肠杆菌不能被四环素杀死,就说明转入获得成功了。
科学家曾预言,21世纪是基因工程的世纪。基因工程对人类来说,作用是不可估量的,意义是深远的。
随着人类对基因研究的不断深入,发现许多疾病是由于基因结构与功能发生改变所引起的。科学家将不仅能发现有缺陷的基因,而且还能掌握如何进行对基因诊断、修复、治疗和预防,这是生物技术发展的前沿。这项成果将给人类的健康和生活带来不可估量的利益。
所谓基因治疗是指用基因工程的技术方法,将正常的基因转如病患者的细胞中,以代病变基因,从而表达所缺乏的产物,或者通过关闭或降低异常表达的基因等途径,达到治疗某些遗传病的目的。目前,已发现的遗传病有6500多种,其中由单基因缺陷引起的就有约3000多种。因此,遗传病是基因治疗的主要对象。
基因治疗的最新进展是即将用基因枪技术于基因治疗。其方法是将特定的DNA用改进的基因枪技术导入小鼠的肌肉、肝脏、脾、肠道和皮肤获得成功的表达。这一成功预示着人们未来可能利用基因枪传送药物到人体内的特定部位,以取代传统的接种疫苗,并用基因枪技术来治疗遗传病。
目前,科学家们正在研究的是胎儿基因疗法。如果现在的实验疗效得到进一步确证的话,就有可能将胎儿基因疗法扩大到其它遗传病,以防止出生患遗传病症的新生儿,从而从根本上提高后代的健康水平。
加快农作物新品种的培育
科学家们在利用基因工程技术改良农作物方面已取得重大进展,一场新的绿色革命近在眼前。这场新的绿色革命的一个显著特点就是生物技术、农业、食品和医药行业将融合到一起。
基因技术的突破使科学家们得以用传统育种专家难以想象的方式改良农作物。例如,基因技术可以使农作物自己释放出杀虫剂,可以使农作物种植在旱地或盐碱地上,或者生产出营养更丰富的食品。科学家们还在开发可以生产出能够防病的疫苗和食品的农作物。
基因技术也使开发农作物新品种的时间大为缩短。利用传统的育种方法,需要七、八年时间才能培育出一个新的植物品种,基因工程技术使研究人员可以将任何一种基因注入到一种植物中,从而培育出一种全新的农作物品种,时间则缩短一半。
基因工程自20世纪70年代兴起之后,经过二十多年的发展历程,取得了惊人的成绩,基因治疗
特别是近十年来,基因工程的发展更是突飞猛进。基因转移、基因扩增等技术的应用不仅使生命科学的研究发生了前所未有的变化,而且在实际应用领域——医药卫生、农牧业、食品工业、环境保护等方面也展示出美好的应用前景。
基因工程与医药卫生
目前,基因工程在医药卫生领域的应用非常广泛,主要包括以下方面: 1.基因工程药品的生产:
许多药品的生产是从生物组织中提取的。受材料来源限制产量有限,其价格往往十分昂贵。
微生物生长迅速,容易控制,适于大规模工业化生产。若将生物合成相应药物成分的基因导入微生物细胞内,让它们产生相应的药物,不但能解决产量问题,还能大大降低生产成本。⑴基因工程胰岛素
胰岛素是治疗糖尿病的特效药,长期以来只能依靠从猪、牛等动物的胰腺中提取,100Kg胰腺只能提取4-5g的胰岛素,其产量之低和价格之高可想而知。
将合成的胰岛素基因导入大肠杆菌,每2000L培养液就能产生100g胰岛素!大规模工业化生产不但解决了这种比黄金还贵的药品产量问题,还使其价格降低了30%-50%!⑵基因工程干扰素
干扰素治疗病毒感染简直是“万能灵药”!过去从人血中提取,300L血才提取1mg!其“珍贵”程度自不用多说。
基因工程人干扰素α-2b(安达芬)是我国第一个全国产化基因工程人干扰素α-2b,具有抗病毒,抑制肿瘤细胞增生,调节人体免疫功能的作用,广泛用于病毒性疾病治疗和多种肿瘤的治疗,是当前国际公认的病毒性疾病治疗的首选药物和肿瘤生物治疗的主要药物。⑶其它基因工程药物
人造血液、白细胞介素、乙肝疫苗等通过基因工程实现工业化生产,均为解除人类的病苦,提高人类的健康水平发挥了重大的作用。基因工程药品是制药工业上的重大突破。
目前用基因诊断方法已经能够检测出肠道病毒、单纯疱疹病毒等许多种病毒。
基因工程与农牧业、食品工业
基因工程在农牧业生产上的应用主要是培育高产、优质或具有特殊用途的动植物新品种。基因工程在农业方面的应用主要表现在两个方面。首先,是通过基因工程技术获得高产、稳产和具有优良品质的农作物。例如,用基因工程的方法可以改善粮食作物的蛋白质含量。其次,是用基因工程的方法培育出具有各种抗逆性的作物新品种。自然界中细菌的种类是非常多的,在细菌身上几乎可以找到植物所需要的各种抗性,如抗虫、抗病毒、抗除草剂、抗盐碱、抗干旱、抗高温等。如果将这些抗性基因转移到作物体内,将从根本上改变作物的特性。
基因工程在畜牧养殖业上的应用也具有广阔的前景,科学家将某些特定基因与病毒DNA构成重组DNA,然后通过感染或显微注射技术①将重组DNA转移到动物受精卵中。由这种受精 卵发育成的动物可以获得人们所需要的各种优良品质,如具有抗病能力、高产仔率、高产奶率和高质量的皮毛等。
在工业上,由于用微生物进行发酵生产要比在大田中进行农牧业生产具有许多优越性,因而它已成为农牧业发展的一个远景方向。而要实现这一目标,基因工程将是最有效的手段。例如,有人设想并正在试验将抗生素生产菌放线菌或霉菌的有关遗传基因转移至发酵时间更短、更易于培养的细菌细胞中;将动物或人产胰岛素的遗传基因转移至酵母或细菌的细胞中;将家蚕产丝蛋白的基因引入细菌细胞中;把人或动物产抗体、干扰素、激素或白细胞介素(interleukin)等的基因转移至细菌细胞中;把不同病毒的表面抗原基因转移到细菌细胞中以生产各种疫苗;用基因工程手段提高各种氨基酸发酵菌的产量;构建分解纤维素或木质素以生产重
要
代
谢
产
物的工
程
菌;
基因工程还可以为人类开辟新的食物来源。
基因工程与环境保护
基因工程的方法可以用于环境监测基因工程还可以用于被污染环境的净化。造成环境污染的农药,并试图通过基因工程的方法回收和利用工业废物。凡此种种,都是一些可望取得成功和发展前景十分光明的研究课题。
例如,目前用100000克胰脏只能提取3~4g胰岛素,而用“工程菌”进行发酵生产,则只要用几升发酵液就可取得同样数量的产品。1978年,美国有两个实验室合作,使E.coli产生大白鼠胰岛素的研究已获成功。接着,又报道了通过基因工程使E.coli合成人胰岛素实验成功的消息。他们在实验室中曾将人胰岛素A、B两链的人工合成基因分别组合到E.coli的不同质粒上,然后再转移至菌体内。这种重组质粒可在E.coli细胞内进行正常的复制和表达,从而使带有A、B链基因的“工程菌”菌株分别产生人胰岛素的A、B链,然后再用人为 的方法,在体外通过二硫键使这两条链连接成有活性的人胰岛素。另外,在1977年,国外已利用基因工程技术,使E.coli生产出一种名为生长激素释放因子“SRIH”的动物激素(一种十四肽,能抑制其他激素的释放和治疗糖尿病等),它原来要从羊的脑下垂体中提取,宰50万头羊也只能提取5mg的产品,而现在只要用10L发酵液就可获得同样的产量。近年来,应用遗传工程获得这类产品的例子正与日俱增,尤其是多肽类物质,如脑啡肽(大脑中的镇痛物质)、卵清蛋白(即“OV”,389肽)、干扰素(用于治疗病毒性感染)、胸腺素α-1(有免疫援助因子的作用,可治疗癌症)、乙型肝炎疫苗和口蹄疫病毒疫苗等。我国学者也急起直追,在脑啡肽、α-干扰素、γ-干扰素、人生长激素、乙型肝炎疫苗、含乙肝表面抗原基因的牛痘病毒株以及青霉素酰化酶等的基因工程研究中,取得了一系列令人鼓舞的成果。
(2)基因工程在农业上的应用基因工程在农业上应用的领域也十分广阔。有人估计,到本世纪末,每年上市的植物基因工程产品的价值,相当于医药产品的十倍。几个主要的应用领域包括:①将固氮菌的固氮基因转移到生长在重要作物的根际微生物或致瘤微生物中去,或是干脆将它引入到这类作物的细胞中,以获得能独立固氮的新型作物品种。根据估算,利用前一方法,其研究经费仅及通过常规方法发展氮肥工业以达到同样效果的二百分之一至二千分之一;而后一途径则更省事,其成本还不到上述的二千分之一;②将木质素分解酶的基因或纤维素分解酶的基因重组到酵母菌内,使酵母菌能充分利用稻草、木屑等地球上贮量极大并可永续利用的廉价原料来直接生产酒精,并可望为人类开辟一个取之不尽的新能源和化工原料来源;③改良和培育农作物和家畜、家禽新品种,包括提高光合作用效率以及各种抗性基因工程(植物的抗盐、抗旱、抗病基因以及鱼的抗冻蛋白基因)等。
基因工程的前景
从70年代起逐步建立起来的基因工程技术,使基因或一些具有特殊功能的DNA片段的分离变得十分容易。这些基因或特殊DNA片段的一级结构(即它们的核苷酸序列)的测定也是十分容易的,由基因的核苷酸序列去推测蛋白质的氨基酸残基的序列也变得轻易而举。利用计算机技术可以很容易的对推测出来的蛋白质进行高级结构的分析,可以对来自不同生物种类的基因序列进行同源性分析。所有这些方法或技术的广泛使用,不仅大大地推动了分子生物学的迅猛发展,而且也大大推动了生命科学各个分支领域的迅速发展。因此,基因工程技术的第一个重要应用领域就是大大的推动了科学理论研究的发展。
由于基因工程是从遗传物质基础上对原有的生物(常常称之为受体生物)进行改造,经过改造的生物就会按照研究者的意愿获得某种(些)新的基因,从而使该生物获得某些新的
遗传性状。这种性状可以用人的肉眼直接观察到,也可能是通过某些反应或仪器间接观察到。这种受体生物可能是微生物,植物或动物,因而它会涉及到许多生产行业。
基因工程技术几乎涉及到人类的生存所必需的各个行业。比如将一个具有杀虫效果的基因转移到棉花、水稻等农作物种中,这些转基因作物就有了抗虫能力,因此基因工程被应用到农业领域;要是把抗虫基因转移到杨树、松树等树木中,基因工程就被应用到林业领域;要是把生物激素基因转移到支物中去,这就与渔业和畜牧业有关了;如果利用微生物或动物细胞来生产多肽药物,那么基因工程就可以应用到医学领域。总之一句话,基因工程应用范围将是十分广泛的
第三篇:基因工程论文
学号:13054107
基因工程结课论文
靶向MRP1基因pRNAT-H1.1/shuttle-RFP重组质粒表达载体构建
院(系)名
称: 理学院 专业
名
称: 生物科学 学
生
姓名: 姜己玉 所
在班
级: 13-1
目录
摘要............................................................................................................................................2 第一章 绪论..............................................................3 1..1RNAi的研究进展....................................................3 1.1.1RNAi的分子作用机制...........................................3 1.1.2 RNAi 的特点..................................................3 1.1.3 siRNA简介.........................................................3 1.1.4 s iRNA 的设计原则..........................................3 1.2 用于 RNA i 的载体....................................................4 1.2.1 载体的选择..................................................4 1.2.2 质粒人工构建的目的.................................................4 1.3 MRP1 的研究进展......................................................4 第二章 实验材料与方法.....................................................5 2.1 实验材料.............................................................5 2.1.1 宿主菌.............................................................5 2.1.3 载体通用引物................................................5 2.1.5 主要仪器..........................................................5 2.2 试验方法.........................................................5 2.2.1 shRNA 的设计与退火..................................................5 2.2.2 合成干涉片段的退火..........................................6 2.2.3 重组载体的构建..............................................6 2.2.4 菌落PCR初步筛选阳性重组子..................................7 2.2.5 测序鉴定重组载体...............................................7 第三章 结果与分析.........................................................8 3.1 质粒经HindⅢ和BamHI双酶切后胶回收结果...........................8 3.1.1 质粒经HindⅢ和BamHI双酶切后结果.............................8 3.1.2 目的片段的回收................................................8 3.2 重组质粒的菌落PCR...................................................8 3.3 重组质粒大量提取......................................................8 3.4 重组质粒测序结果.................................................8 参考文献..................................................................9
摘 要
癌症严重威胁着人类的健康,其发病率呈上升趋势。化疗作为其常规临床治疗手段,在癌症治疗中具有手术和放射治疗不能替代的作用。肿瘤细胞的多药耐药性(multidrug resistance, MDR)是导致肿瘤细胞化疗失败的主要原因。肿瘤细胞产生多药耐药的原因较为复杂,多药耐药相关蛋白1(Multidrug Resistance-associated Protein 1,MRP1)的过度表达是导致其产生多药耐药的主要原因之一。RNA干扰(RNA interference,RNAi)是近年来发现的能快速、高效、特异的沉默目的基因表达的技术,如能通过RNAi技术沉默MDR1基因,逆转肿瘤细胞的多药耐药性将为改善癌症病人的化疗效果奠定基础。
目的:本课题选用pRNAT-H1.1/shuttle-RFP表达穿梭载体。构建针对mrp1 mRNA的RNA干扰表达载体。
方法:将预先根据MRP1基因序列设计合成的编码siRNA的cDNA序列与pRNAT-H1.1/shuttle-RFP质粒载体连接,构建靶向mrp1 siRNA重组质粒。将重组质粒转化E.coli DH5α后大量提取重组质粒,经菌落 PCR和 DNA测序分析检测重组载体构建结果。
结果:成功构建靶向MRP1基因pRNAT-H1.1/shuttle-RFP重组质粒表达载体。为下一步抑制mrp1基因在肿瘤细胞中的表达奠定基础。
关键词:RNA干扰;MRP1;pRNAT-H1.1/shuttle-RFP质粒;穿梭载体
第1章 绪 论
1.1 RNAi的研究进展
RNA干扰(RNA interference , RNAi)是由双链RNA分子介导的序列特异性转录后基因沉默过程,为一种双链RNA分子在mRNA 水平上关闭相关基因表达的过程,是一项新兴的基因阻断技术。RNAi有望成为分析人类基因组功能的有力工具,在肿瘤病因、免疫机制及治疗等方面的研究上有广阔的发展前景。
1.1.1 RNAi的分子作用机制
RNAi的作用机制在众多学者的努力研究下日渐明朗。不同生物体内的RNA干扰作用机制也各有不同,但是主要可以分为两种类型:特异效应作用机制与非特异效应作用机制。特异性效应一般发生在短双链RNA(21~23nt)上,非特异性效应发生于长双链RNA(30nt以上)。
1.1.2 RNAi的特点
RNAi具有高效性,也就是说与细胞内的mRNA的量相比,注入细胞内的siRNA的量要少得多。但由于循环放大机制的存在,仍可以有效地阻断目的基因的表达;同时,RNAi也具有高特异性,小干扰RNA由dsRNA降解得到的,除在序列识别中不起主要作用的正义链3′端的两个碱基以外,其余碱基均为必需。
1.1.3 siRNA简介
RNA干扰作用是通过siRNA(small interfering RNA,siRNA)这类小RNA分子作为较稳定的中间介质实现的。通过对植物的研究证明,双链RNA复合体降解为35nt左右的小RNA分子后通过序列互补与mRNA结合,进而降解mRNA。
1.1.4 siRNA的设计原则
RNAi 作用的成功与否,关键在于siRNA序列的结构,不同结构的siRNA序列沉默基因的效率差别很大,2001年,Elbashir S M等[应用化学合成法合成了siRNA,并发现可以诱导哺乳动物发生RNAi,他们进而据此提出了siRNA 设计方法:1)从起始密码下游50~100nt开始搜索siRNA以避免出现于5′或3′端的UTRs 的蛋白结合位点,;
2)搜索5′AA(N19)UU序列,如果没有相应序列,可以选择5′AA(N21)或5′NA(N21);3)G/C含量在32%~79%之间[16]; 4)要确定siRNA对靶基因的特异性,可以利用Blast软件在基因组中进行比对,;5)设置在基因组中无对应序列的siRNA的对照siRNA。但是,Elbashir S M等的设计方法siRNA 筛选效率仍然很低,要更好的掌握RNAi。
1.2 用于RNAi的载体
基因工程中,携带目的基因进入宿主细胞进行扩增和表达的工具,称为载体。是指能够运载外源DNA片段进入受体细胞,具有自我复制能力,使外源DNA片段在受体细胞中得到扩增和表达,不被受体细胞的酶系统所破坏的一类DNA分子。载体具有以下的功能:(1)运送外源基因高效转入受体细胞;(2)为外源基因提供复制能力或整合能力;(3)为外源基因的扩增或表达提供必要的条件。
1.2.1载体的选择
质粒是为一种1-200kb不等的双链、闭环的DNA分子。是染色体外稳定遗传,并能以超螺旋状态存在于宿主细胞中的因子。RNA干扰实验通常选用质粒作为载体。质粒载体是为适应实验室操作在天然质粒的基础上人工构建的。但是,天然质粒的缺点是分子量大,拷贝数低,所以为使分子量尽可能减少,必须去掉大部分的非必需序列,以便于基因工程操作。
1.2.2 质粒人工构建的目的
天然存在的野生型质粒由于分子量大、拷贝数低、单一酶切位点少、遗传标记不理想等缺陷,因而不适合用作基因工程的载体,必须对之进行改造构建
1.3 MRP1的研究进展
MRP1的底物 直接通过细胞毒性分析和底物刺激的ATP酶测量进行识别MRP1的底物的,底物是由大量的多样化的疏水复合物,有机阴离子结合物以及阴离子非结合性底物所组成。典型的结合型底物包括:谷胱甘肽,葡糖醛酸和硫酸盐结合物,MRP1的组织分布 MRP1在体内的表达可以说是无所不在。
第2章 实验材料与方法
2.1 实验材料
2.1.1 宿主菌
E.coli DH5α:为感受态宿主菌由北京鼎国生物技术有限责任公司提供。
2.1.2 质粒载体
pRNAT-H1.1/shuttle-RFP质粒。pRNAT-H1.1/shuttle-RFP质粒特性如下:pRNAT-H1.1/shuttle 是一种腺病毒siRNA穿梭质粒,shRNA的表达由人的转录启动子H1 Promoter启动,H1启动子属于PolⅢ启动子,该启动子总在其下游的固定距离开始转录合成RNA,转录过程遇到4~5个连续的U即终止,非常精确;同时CMV Promoter为真核生物启动子,可在该质粒中高效启动红色荧光蛋白的表达;MCS为多克隆位点。
2.1.3 载体通用引物
正向引物(M13):5′-GTTTTCCCAGTCACGAC-3′ 反向引物(Rev):5′-GAGTTAGCTCACTCATTAGGC-3′
2.1.4 主要试剂、具酶及仪器
质粒快速提取试剂盒,Sanprep柱式DNA胶回收试剂盒,10×PCR buffer,dNTP,Marker(1kb,100bp),Goldview DNA染料,EDTA Bio Basic Inc 溶菌酶,LiCl Amresco RNase Sigma bacto-typtone Bio Basic Inc bacto-yeast extract Bio Basic Inc PEG8000,HindⅢ NEB,BamHI NEB,T4DNA连接酶 NEB,Taq酶,微量振荡器(MM-2型),微量振荡器(MM-2型),恒温空气摇床,电子天平,紫外分析仪(ZF型),低温离心机(SK18),低温离心机(SK18),PCR仪(9600型),ABI 恒温磁力搅拌器(2003-16),恒温水浴锅,自动双重纯水仪
2.2 实验方法
2.2.1 shRNA的设计与退火
根据siRNA设计原则[34],根据MRP1靶序列,设计合成四对互补反向重复脱氧核糖核酸序列,中间间隔9nt茎环序列(TTCAAGAGA),5′端带有BamHⅠ酶切位点,3′端带有HindⅢ酶切位点,用BLAST进行同源性分析,确定与其他基因无同源性。shRNA的 5
DNA模板由上海生工合成,单链干涉片段退火后形成双链。根据2个靶序列设计的2对DNA干涉片段mrp1-1,mrp1-2。
2.2.2 合成干涉片段的退火
合成片段的退火体系:各管混匀后90℃保温3分钟,37℃保温1h,再取5μL退火溶液加45μL 灭菌双蒸水混匀,使干涉片段终浓度为8ng/μL。
2.2.3 重组载体的构建
(1)将含有pRNAT-H1.1/shuttle-RFP质粒的大肠杆菌接种入盛有200mL LB培养基(含2μg/mL氨苄青霉素)的500mL三角瓶中,置37℃振荡培养过夜(置摇床中160r/min)。(2)实验前预先配制溶液Ⅱ,溶菌酶。预冷溶菌酶、溶液Ⅰ和溶液Ⅲ。取出菌悬液,观察菌体生长状况,将菌悬液分装于两个250ml离心桶中,调平。预冷离心机至4℃,4℃下8000r/min离心5min,弃上清,得菌体。(3)加预冷的溶液Ⅰ50ml于每离心桶,混匀,洗涤沉淀。8000r/min离心5min,弃上清,得沉淀。此步骤的目的为出去培养基,以获得更纯的细菌沉淀物。(4)用17ml溶液Ⅰ吹散重悬细菌沉淀物,加3ml新配制的溶菌酶溶液,温和混匀,室温放置10min,裂解大肠杆菌。(5)加40ml新配制的溶液Ⅱ,以使菌体破碎,释放质粒DNA等内容物。缓慢颠倒数次,防止破坏基因组DNA,室温放置3min。(6)加30ml预冷的溶液Ⅲ,缓慢颠倒数次,防止SDS破坏基因组DNA,冰浴放置15min。4℃下以10000r/min离心10min,然后将上清液全部倒入新离心桶中。(7)将上清液在4℃下以10000r/min离心10min,然后将上清液经8层纱布过滤至新离心桶中。(8)加0.6倍体积(约54ml)的异丙醇,充分混匀,室温放置15min,以沉淀核酸。8000r/min离心15min,小心倒掉上清,敞开瓶口倒置于纸巾上,使残余上清液流尽,晾干。(9)加15ml水再加15ml LiCl(预冷)混匀,静置沉淀15min,4℃下10000r/min离心15min,以出去蛋白质和RNA。(10)倒上清于新的离心桶中,加30ml异丙醇,剧烈震荡,静置沉淀15min,在4℃下以10000r/min离心15min。再次沉淀核酸。(11)弃上清,得到沉淀的核酸。敞开瓶口倒置于纸巾上使残余上清液流尽。(12)用70%乙醇洗涤沉淀,4℃下以10000r/min离心5min,弃去乙醇,离心桶敞口倒置于纸巾上,使乙醇挥发殆尽。此步骤可以沉淀DNA。(13)加2ml无菌水溶解沉淀,将液体吸到10ml离心管中,再吸2ml ddH2O冲洗瓶壁,随后将洗液加到同一10ml离心管中,随后加100µl RNaseA,37℃,水浴30min。以使RNA彻底分解。(14)加等体积含13%(w/v)聚乙二醇(PEG 8000)的1.6mol/L NaCl,充分混合,用微量离心机于4℃以12000转/分,离心15分钟,以回收质粒DNA。(15)沉淀用3ml70%乙醇重悬清洗,以除去PEG,12000r/min离心8min。(16)重复上步操作,将离心管倒扣于纸巾上10min,加1ml H2O溶解,用等体积酚/氯仿/异戊醇再抽提一次蛋白质,室温下8000r/miin离心10min。(17)小心吸上清与另一离心管中,加2倍体积的预冷无水乙醇,再加0.1体积的NaAC(3mol,pH5.2),冰上沉淀20min,4℃下10000r/min离心15min,使DNA沉淀出来。(18)去上清加入3ml 70%乙醇重悬清洗,10000r/min 离心15min,晾干,用500µl无菌水溶解沉淀。
2.2.4菌落PCR初步筛选阳性重组子
灭菌牙签挑取LB筛选平板上圆滑单菌落,先在预先分隔并标记的另一LB平皿上划板,然后点入制备好的PCR反应混合液,开始扩增。PCR反应条件为:94℃预变性2分钟;94℃ 变性30s,55℃ 退火30s,72℃ 延伸45s,共35个循环;72℃ 延伸1分钟,4℃保存,1.2%琼脂糖凝胶电泳检测PCR产物。划板的平皿于37℃培养12-16h。
2.2.5 测序鉴定重组载体
将小提鉴定结果正确的质粒送交上海生工生物工程技术服务有限司,以载体反向引物为测序引物。将经鉴定后未发生突变的H1.1-
1、H1.1-2靶向MRP1基因siRNA重组质粒的宿主菌摇瓶扩大培养后,进行质粒大量提取,方法如2.1.2.3.1所述。
第3章 结果与分析
3.1 质粒经HindⅢ和BamHI双酶切后胶回收结果
3.1.1 质粒经HindⅢ和BamHI双酶切后结果
pRNAT-H1.1/shuttle-RFP质粒经HindⅢ和BamHI双酶切,结果显示单酶切产物大小约为6200bp,双酶切产物略小于单酶切产物,与预期结果相符。
3.1.2 目的片段的回收
目的片段回收 ,结果显示回收产物大小约为6Kb,与预期结果相符。
3.2 重组载体的菌落PCR 重组载体菌落 PCR电泳,结果显示PCR扩增产物,电泳分析发现阳性产物可以扩增出560bp大小的条带,假阳性产物不能扩增出560bp大小的条带,与预期结果相符,可以初步筛选出阳性产物。
3.3 重组质粒大量提取
重组质粒大量提取后的电泳,结果显示pRNAT-H1.1/shuttle-RFP 重组质粒大小约为6.2kb,与预期结果相符。
重组质粒大提并稀释50倍以后在紫外分光光度仪Genespec上测其OD值。
3.4 重组质粒测序结果
pRNAT-H1.1/shuttle-RFP重组质粒测序鉴定,结果显示重组质粒的碱基序列与预期结果一致,未发生碱基突变,说明pRNAT-H1.1/shuttle-RFP重组质粒构建成功。
参考文献
[1] 张淑华.小干扰RNA靶向VEGF基因在体内外抑制乳腺癌细胞增殖的研究[D].青岛:青岛大学硕士,2007.[2] Sharp PA.RNA interference-2001.Genes Dev.2001, 15: 485-490.[3] 康洁, 刘福林.RNAi的抗病毒作用及其机制[J].现代免疫学, 2004, 24(5): 439-441.[4] 林少微,王雪华,郑高哲等.RNAi的研究进展 [J].中国医药导报, 2007, 4(29)_3.[5] 黄艳敏,贾欣秒.RNA干扰技术的研究进展 [J].河北化工, 2009, 32(1):213-216.[6] 邓庆.E2F8及肿瘤-睾丸(CT)基因在肝癌中作用的研究[D].上海交通大学硕士.2009.[7] 赖长城.人类Pin1在食管癌组织中的表达[D].福建:厦门大学硕士.2008.[8] 魏群,分子生物学实验指导(第二版)[Q]2007,11:3.[9] 陈爱葵,李梅红.RNAi的研究及应用 [J].广东教育学院学报, 2008, 28(3):5.[10] 王光海.MRP1与肺癌耐药.临床肺科杂志[J].2005,5,(3):367.
第四篇:基因工程论文
淮阴工学院生物课程论文 引言(或绪论)
第 1 页
共 7 页
基因工程也称遗传工程,它主要是指通过DNA重组技术,对生物特定的基因进行复制(克隆)、改造(修饰、重组)或人工合成新的基因,以达到改造生物性状乃至创造新的物种的目的。基因工程就是在基因水平(分子水平)上对生命体的操作。基因技术将可能给人类在疾病防治、健康保健直至延年益寿方面带来的革命性变化勾起了人们对未来美好生活的无限憧憬。
1.1 基因工程应用于植物方面
农业领域是目前转基因技术应用最为广泛的领域之一。农作物生物技术的目的是提高作物产量改善品质,增强作物抗逆性、抗病虫害的能力。基因工程在这些领域已取得了令人瞩目的成就。由植物病毒分子生物学的发展,植物抗病基因工程也也已全面展开。自从发现烟草花叶病毒(TMV)的外壳蛋白基因导入烟草中,在转基因植株上明显延迟发病时间或减轻病害的症状,通过导入植物病毒外壳蛋白来提高植物抗病毒的能力,已用多种植物病毒进行了试验。在利用基因工程手段增强植物对细菌和真菌病的抗性方面,也已取得很大进展。植物对逆境的抗性一直是植物生物学家关心的问题。由于植物生理学家、遗传学家和分子生物学家协同作战,耐涝、耐盐碱、耐旱和耐冷的转基因作物新品种(系)也已获得成功。植物的抗寒性对其生长发育尤为重要。科学家发现极地的鱼体内有一些特殊蛋白可以抑制冰晶的增长,从而免受低温的冻害并正常地生活在寒冷的极地中。将这种抗冻蛋白基因从鱼基因组中分离出来,导入植物体可获得转基因植物,目前这种基因已被转入番茄和黄瓜中。随着生活水平的提高,人们越来越关注口味、口感、营养成分、欣赏价值等品质性状。实践证明,利用基因工程可以有效地改善植物的品质,而且越来越多的基因工程植物进入了商品生产领域,近几年利用基因工程改良作物品质也取得了不少进展,如美国国际植物研究所的科学家们从大豆中获取蛋白质合成基因,成功地导入到马铃薯中,培育出高蛋白马铃薯品种,其蛋白质含量近大豆,大大提高了营养价值,得到了农场主及消费者的普遍欢迎。在花色、花香、花姿等性状的改良上也作了大量的研究。
1.2 基因工程应用于医药方面
目前,以基因工程药物为主导的基因工程应用产业已成为全球发展最快的产业之一,发展前景非常广阔。基因工程药物主要包括细胞因子、抗体、疫苗、激素和寡核 淮阴工学院生物课程论文
第 2 页
共 7 页
甘酸药物等。它们对预防人类的肿瘤、心血管疾病、遗传病、糖尿病、包括艾滋病在内的各种传染病、类风湿疾病等有重要作用。在很多领域特别是疑难病症上,基因工程工程药物起到了传统化学药物难以达到的作用。我最为熟悉的干扰素(IFN)就是一类利用基因工程技术研制成的多功能细胞因子,在临床上已用于治疗白血病、乙肝、丙肝、多发性硬化症和类风湿关节炎等多种疾病。目前,应用基因工程研制的艾病疫苗已完成中试,并进入临床验证阶段;专门用于治疗肿瘤的“肿瘤基因导弹”也将在不久完成研制,它可有目的地寻找并杀死肿瘤,将使癌症的治愈成为可能。由中国、美国、德国三国科学家及中外六家研究机构参与研制的专门用于治疗乙肝、慢迁肝、慢活肝、丙肝、肝硬化的体细胞基因生物注射剂,最终解决了从剪切、分离到吞食肝细胞内肝炎病毒,修复、促进肝细胞再生的全过程。经4年临床试验已在全国面向肝炎患者。此项基因学研究成果在国际治肝领域中,是继干扰素等药物之后的一项具有革命性转变的重大医学成果。
1.3 基因工程应用于环保方面
工业发展以及其它人为因素造成的环境污染已远远超出了自然界微生物的净化能力,已成为人们十分关注的问题。基因工程技术可提高微生物净化环境的能力。美国利用DNA重组技术把降解芳烃、萜烃、多环芳烃、脂肪烃的4种菌体基因链接,转移到某一菌体中构建出可同时降解4种有机物的“超级细菌”,用之清除石油污染,在数小时内可将水上浮油中的2 /3烃类降解完,而天然菌株需1年之久。也有人把Bt蛋白基因、球形芽孢杆菌、且表达成功。它能钉死蚊虫与害虫,而对人畜无害,不污染环境。现已开发出的基因工程菌有净化农药的DDT的细菌、降解水中的染料、环境中有机氯苯类和氯酚类、多氯联苯的工程菌、降解土壤中的TNT炸药的工程菌及用于吸附无机有毒化合物(铅、汞、镉等)的基因工程菌及植物等。90年代后期问世的DNA改组技术可以创新基因,并赋予表达产物以新的功能,创造出全新的微生物,如可将降解某一污染物的不同细菌的基因通过PCR技术全部克隆出来,再利用基因重组技术在体外加工重组,最后导入合适的载体,就有可能产生一种或几种具有非凡降解能力的超级菌株,从而大大地提高降解效率。基因工程存在的争议
目前普遍的看法是,人类在基因技术如何影响人类社会传统伦理道德方面的研究远远落后于对基因技术本身的研究。塞莱拉基因公司老板文特尔就曾郑重指出,人类 淮阴工学院生物课程论文
第 3 页
共 7 页
基因图谱虽然由人类各国共享,但决不能滥用。我认为所有的科学创造、发明都应该以改善人类生活为目的,基因工程方面的研究也如此。我们应鼓励基因科学的深入发展,国家也应该加大投入。但是克隆人以及一些武器发展方面的问题,就要靠社会的约束和管理,要靠人类自己的抉择,毕竟科学都是有正反两面性的。就基因工程技术本身而言,也存在着不少争议,不得不让人重视。
2.1 对遗传工程的生物能否给予专利保护
就像过去欧洲圈占无生命的公有资源土地一样,“圈地运动”同样存于今天:美国一家公司用一种植物为原料制成抗癌物质,赚取上亿美元,而这一植物的自然资源地的人们却没有拿到一分钱补偿,这时就涉 及到生物遗传资源能否拥有私有知识产权的问题。
2.2 要不要反对生物剽窃
不少发展中国家拥有原始遗传资源,而发达国家却拥有生物技术革命的手段,可以把基因库资源变成商品。印度有一种讷木树,一家西方公司从其中分离出有效成份,申请和获得多项讷木提取液生产工艺的专利,这种被生物资源地称之为“生物剽窃”的做法是否妥当。
2.3 人类能否成为知识产权
美国卫生研究院从巴拿马妇女血液中分离一种病毒,可以生成研究艾滋病和白血病的抗体,并申请专利;印度近亲结婚多,成为国际基因勘察目标,对遗传缺陷和遗传基因感兴趣的“基因猎手”们蜂拥而至。这些做法在世界上正受到强烈的抵制,1994 年,40 多个国家的妇女反对美国公司申请和获得乳腺癌基因的专利,因为这些基因是自然产物,不是人类发明,不应成为知识产权。
2.4 基因工程会不会给地球带来严重的环境后果
基因可以随着技术的发展和人类的应用而产生流动,这种“基因流”就带来“遗传污染”。比如消化木质素的遗传工程酶对造纸业有极大的价值,可一旦这种细菌进入森林,则导致森林毁灭。更可怕的是基因武器,故意释放危险的遗传工程病毒,造成世界污染。
2.5 遗传工程使动物受难
在科学实验中插入突变基因的小鼠,常常发生没有后腿、面裂、脑缺,世界动物 淮阴工学院生物课程论文
保护协会对这些实验一直都持反对态度。
第 4 页
共 7 页
2.6 转基因动物的争论
有两种意见:一种是称赞转基因动物突破传统技术,产生全新的生物,带来无限商机,是一个进化的表现,是一个革命;另一种理论表示这在道德上违反了生物类群的遗传本质,对进化历史和传统饲养的彻底背离。
2.7 遗传工程食品会不会危及人类健康
致敏性生物基因的遗传工程食品会引发人群严重变态反应。
2.8 遗传工程动物器官移植的新忧虑
这项技术可能导致动物跨种系传播,造成全球扩散,比如艾滋病。人类很久以来所追求和艰难保存的个人和公共的安全,可能在追求完美自身的遗传改造过程中不可逆地丧失。在这种情况下,生物技术虽然有一个清楚的开端,目前却没有一个清楚的结尾。对于这些争议,作为科技界,应该在保持清醒头脑和良知的同时做出认真选择,让基因工程趋利避害,真正为社会和人类服务。转基因食品的隐患
虽然转基因食品研究历史只有短短几十年,但其提高产量、增强自身抗病抗虫等优点较为明显,另一方面,其潜在的风险,如过敏性、毒性及对环境影响也令世人关注。
3.1 毒性问题
一些研究学者认为,对于基因的人工提炼和添加,可能在达到某些人们想达到的效果的同时,也增加和积聚了食物中原有的微量毒素。
3.2 过敏反应问题
对于一种食物过敏的人有时还会对一种以前他们不过敏的食物产生过敏,比如:科学家将玉米的某一段基因加入到核桃、小麦和贝类动物的基因中,蛋白质也随基因加了进去,那么,以前吃玉米过敏的人就可能对这些核桃、小麦和贝类食品过敏。
3.3 营养问题
科学家们认为外来基因会以一种人们目前还不甚了解的方式破坏食物中的营养成分。淮阴工学院生物课程论文
3.4 对抗生素的抵抗作用
第 5 页
共 7 页
当科学家把一个外来基因加入到植物或细菌中去,这个基因会与别的基因连接在一起。人们在服用了这种改良食物后,食物会在人体内将抗药性基因传给致病的细菌,使人体产生抗药性。
3.5 对环境的威胁
在许多基因改良品种中包含有从杆菌中提取出来的细菌基因,这种基因会产生一种对昆虫和害虫有毒的蛋白质。在一次实验室研究中,一种蝴蝶的幼虫在吃了含杆菌基因的马利筋属植物的花粉之后,产生了死亡或不正常发育的现象,这引起了生态学家们的另一种担心,那些不在改良范围之内的其它物种有可能成为改良物种的受害者。淮阴工学院生物课程论文
结
论
第 6 页
共 7 页
生物技术是20世纪末期在现代分子生物学等生命科学的基础上发展起来的一个新兴技术领域,目前人们常说的生物技术一般指基因工程技术,是现代生物技术的核心。利用基因工程技术改变基因组构成而形成的动植物、微生物及其产品被称为转基因生物产品。由于基因工程技术在生产上的应用打破了无中间天然杂交的屏障,不同物种间的遗传物质可以互相交流,因此人们有理由相信这种技术的实际应用会对人类、动植物、微生物及其生态环境构成危险或潜在风险,即生物安全。所以,我们要在抓住机遇,大力发展基因工程技术的同时,需要严格管理,充分重视转基因生物的安全性。淮阴工学院生物课程论文
参 考 文 献
第 7 页
共 7 页 楼士林,杨盛昌,龙敏南,等.基因工程[M ].北京:科学出版社,2002.李庆军,董艳桐,施冰.植物抗虫基因的研究进展[ J ].林业科技, 2002, 27 3 吴乃虎,基因工程原理.北京:科学出版社,1998 4 张慧展,基因工程.上海:华东理工大学出版社,2005
第五篇:基因工程论文
基因工程论文
一. 定义
基因工程(genetic engineering)又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。基因工程技术为基因的结构和功能的研究提供了有力的手段
二,基本操作步骤:
1.提取目的基因:一条是从供体,的DNA中直接分离基因;另一条是人工合成基因(1)直接分离基因:最常用的方法是“鸟枪法”,又叫“散弹射击法”。鸟枪法的具体做法是:用限制酶将供体细胞中的DNA切成许多片段,将这些片段分别载入运载体,然后通过运载体分别转入不同的受体细胞,让供体细胞提供的DNA(即外源DNA)的所有片段分别在各个受体细胞中大量复制(在遗传学中叫做扩增),从中找出含有目的基因的细胞,再用一定的方法把带有目的基因的DNA片段分离出来。
(2)工合成基因的方法主要有两条。一条途径是以目的基因转录成的信使RNA为模版,反转录成互补的单链DNA,然后在酶的作用下合成双链DNA,从而获得所需要的基因。另一条途径是根据已知的蛋白质的氨基酸序列,推测出相应的信使RNA序列,然后按照碱基互补配对的原则,推测出它的基因的核苷酸序列,再通过化学方法,以单核苷酸为原料合成目的基因。
2.目的基因与载体结合:将目的基因与运载体结合的过程,实际上是不同来源的DNA重新组合的过程。
3.将目的基因导入受体细胞:目的基因的片段与运载体在生物体外连接形成重组DNA分子后,下一步是将重组DNA分子引入受体细胞中进行扩增。
4.目的基因检测与表达:在全部的受体细胞中,真正能够摄入重组DNA分子的受体细胞是很少的。必须通过一定的手段对受体细胞中是否导入了目的基因进行检测。重组DNA分子进入受体细胞后,受体细胞必须表现出特定的性状,才能说明目的基因完成了表达过程。
三.基因工程应用:
1.与医药卫生
(1)生产基因工程药品(2)基因诊断(3)基因治疗
2.与农牧业、食品工业
(1)农业:培育高产、优质或具特殊用途的动植物新品种。
(2)畜牧养殖业:培育体型巨大、品质优良的转基因动物;利用外源基因在哺乳动物体内的表达获得人类所需要的各种物质,如激素、抗体及酶类等。(3)食品工业:为人类开辟新的食物来源。
3.与环境保护
(1)用于环境监测:用DNA探针可检测饮水中病毒的含量
(2)用于被污染环境的净化:分解石油的“超级细菌”;“吞噬”汞和降解土壤中DDT的细菌;能够净化镉污染的植物;构建新的杀虫剂;回收、利用工业废物等。
生物081 马明臣 0802030119