首页 > 精品范文库 > 13号文库
三角形内角和教学设计
编辑:静谧旋律 识别码:22-1177267 13号文库 发布时间: 2024-10-17 00:34:00 来源:网络

第一篇:三角形内角和教学设计

《三角形内角和》教学设计

绥滨县第二中学:蒋海峰

课题:三角形内角和

教学目标

1、学生亲自动手,通过量、剪、拼、折等方法推导出三角形内角和是180度,会应用这一规律进行计算。

2、通过动手操作,找到规律,并能灵活运用。

3、培养学生的创新意识、探索精神和实践能力,在学生亲自动手和归纳中,感受到理性的美。

重点:学生亲自动手,通过量、剪、拼、折等方法推导出三角形内角和是180度。

难点:会应用这一规律进行计算。

关键:学生动手自己推导。

教具:课件学具:表格、三角板、三角形量角器

一、创设情境 揭示课题。

师:前面我们已经认识三角形,谁能给大家介绍一下?

学生讲学过的三角形知识。分类

师:我们在讨论三角形知识的时候,三角形中的两个好朋友却吵了起来,想知道怎么回事吗?让我们一起去看看吧!(出示课件)

师:到底谁说的对呢?今天我们就来研究有关三角形内角和的知识。(板书课题)

二、自主探究,合作交流。

师:什么是三角形的内角? 三角形有几个内角?

师:三条线段在围成三角形后,在三角形内形成了三个角,我们把三角形内的这三个角,分别叫做三角形的内角。

1、师拿出两个三角板,问:它们是什么三角形?

师:请大家拿出自己的两个三角尺,在小组内说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。

学生们能够很快求出每块三角尺的3个角的和都是180°

师:其他三角形的内角和也是180°吗?

2、师:同学们能通过动手操作,想办法来验证自己的猜想吗?请同学们拿出准备好的三种(直角三角形、钝角三角形、锐角三角形),请同学们在小组内选出一种三角形先测量出每个角的度数,在算出它们的内角和,把结果填在表中。(附表)

(1)、小组合作。

(2)汇报结果。

问:你们发现了什么?

小结:通过测量我们发现每个三角形的三个内角和都在180度左右。(只因为我们测量时会出现一些误差,所以测量出的结果不是很准确。)

3、验证推测:

师:那么,请同学们回忆一下,我们把180度的角叫什么角?现在请同学们动脑想一想,不用测量,能不能用其它的方法知道三角形的内角和是180度呢?请同学们先独立思考,再在小组内把你的想法与同伴进行交流,然后选用一种方法进行验证。看谁最先发现其中的“奥秘”;看谁能争取到向大家作“实验成功的报告”。

(1)、小组合作,讨论验证方法。

(2)汇报验证方法、结果。

谁愿意给大家介绍你们小组是用什么方法来验证的?结果怎样?(生汇报)

师:现在请同学们看屏幕,我们在电脑里把刚才剪拼的过程重播一遍。请大家认真看。3个角拼成了一个平角,刚才剪拼的是一个锐角三角形,那还有直角三角形、钝角三角形呢?

师:刚才这种撕拼的方法可以不用再一个角一个角来量,就能证明三角形的内角和是180°,你们觉得这种方法好不好?那我们把掌声送给刚才这个小组。

师:请这位同学把折的方法给大家演示一下。(投影仪展示)

师:真是个手巧的孩子。他刚才折的是一个锐角三角形,你们小组还有折其他三角形的吗?

4、师小结:刚才同学们用量、撕、拼、折等方法证明了无论是什么样的三角形内角和都是1800,(板书:是180°)现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是180°”。

三、巩固深化,加深理解。

1、解决问题:

学会了知识,我们就要懂得去运用。下面,我们就根据三角形内角和的知识来解决一些相关的数学问题。(课件演示练习题)

(1)数学书29页第一题

∠A=180 °-75 °-28 °

∠A=180 °-(75 °+ 28 °)

(2)、数学书29页第二题

(3)判断下列说法对吗?

①钝角三角形的内角和大于锐角三角形的内角和.()

②在直角三角形中,两个锐角的和等于90 º()

③在钝角三角形中,两个锐角的和大于90 º()

④三角形中有一个角是60 º,那么这个三角形一定是个锐角三角形.()⑤一个三角形中一定不可能有两个钝角。()

2、变式练习

数学书29页第三题

3、拓展创新

小明不小心将镜框上的一块三角形玻璃摔成了两半,玻璃裂成了两块。一块只有原来的一个角,另一块有原来的两个角。他想重新买一块玻璃安上,小明非常聪明,只带了其中的一块到玻璃店去,就配到了和原来一模一样的玻璃了。你知道他带的是哪一块吗?

四、总结提高,课后延伸

通过今天的学习,大家有什么收获?

第二篇:三角形内角和教学设计

三角形内角和教学设计

三角形内角和是学生掌握数学知识的基本知识,那么,下面是小编给大家整理收集的三角形内角和教学设计,供大家阅读参考。

三角形内角和教学设计1 新课标重视让学生经历数学知识的形成过程,要求教师创设有效的问题情境激发学生的参与欲望,提供足够的时间和空间让学生经历观察、猜测、验证、交流反思等过程,使学生在动手操作、合作交流等活动中亲身经历知识的形成过程。这样,学生不仅可以掌握知识,而且可以积累探究数学问题的活动经验,发展空间观念和推理能力。

三角形的内角和是三角形的一个重要特征。本课是安排在三角形的概念及分类之后教学的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。教材很重视知识的探索与发现,安排两次实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间和时间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、拼等活动,让学生探索、实验、交流、推理归纳出三角形的内角和是180°。

1、在学习本课时,学生已经有了探索三角形内角和的知识基础:知道直角和平角的度数,会用量角器度量角的度数;认识长方形、正方形,知道他们的四个角都是直角;认识了三角形,知道了三角形按角分有锐角三角形、直角三角形和钝角三角形;已经知道了等腰三角形和正三角形。

2、已经有一部分学生知道了三角形内角和是180°,只是知其然而不知所以然。

1通过“量、剪、拼”等活动发现、验证三角形的内角和是180°,并能运用这个知识解决一些简单的问题。

2.在观察、猜想、操作、合作、分析交流等具体活动中,提高动手操作能力,积累基本的数学活动经验,发展空间观念和推理能力。

3.在参与数学学习活动的过程中,获得成功的体验,感受数学探究的严谨与乐趣。

探索发现、验证“三角形内角和是180°”,并运用这个知识解决实际问题。

多媒体课件; 锐角三角形、直角三角形、钝角三角形纸片若干个各类三角形、长方形、正方形若干个;每人一个量角器;一把剪刀;每人一副三角尺。

一、复习旧知

引出课题

1、你已经知道有关三角形的哪些知识?

2、出示课题:三角形的内角和

设计意图:也自然导入新课。

二、提出问题

引发猜想

1、提出问题:看到这个课题,你有什么问题想问的?

预设:三角形的内角指的是哪些角? 三角形的内角和是什么意思?

三角形的内角一共是多少度?

2、引发猜想

猜一猜:三角形的内角和是多少度?你是怎么猜的?

设计意图:提出一个问题比解决一个问题更重要。课始在复习三角形已学知识后,引导学生提出有关三角形的新问题,让学生学习自己想研究的内容,无疑激发了学生的学习兴趣,培养了学生的问题意识。由于学生在平时使用三角板时已经若隐若现地有了特殊的直角三角形的内角和是180度这一感觉,因此本环节,要求学生猜一猜三角形的内角和是多少,并说说是怎么猜的,以激发学生已有知识经验,并体会到猜想要合理且有根据,同时也为推理验证的引出作必要的铺垫。

三、操作验证

形成结论

1、交流验证方法:

用什么方法证明三角形的内角和是180度呢?

预设: ①量算法

②剪拼法

③折拼法等

三角形的个数有无数个,验证哪些三角形可以代表所有的三角形?我们的操作过程怎么分工才会做到省时又高效?

2、动手验证

3、全班汇报交流

4、小结:刚才通过大家的动手操作验证了三角形的内角和是180 °度。但动手操作会存在一定的误差,我们的结论也可能存在偏差。

5、方法拓展

推理验证:用直角三角形的内角和来证明其他三角形内角和是180 °的方法。

6、形成结论:任意三角形的内角和是180 °。

设计意图:《标准》指出:“教师应激发学生的积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”猜测后先独立思考验证的方法,再进行全班交流,给学生充分的活动时间和空间,让学生动手操作,使学生在量、剪、拼、折等一系列操作活动中发现了三角形内角和是180°这个结论。在探索活动前,交流如何使研究样本具有代表性和全面性与如何分工做到操作省时高效这两个问题,培养学生严谨、科学正确的研究态度,让学生在活动中积累基本的数学活动经验,为后续的学习提供了经验支撑。

四、应用结论

解决问题

1、巩固新知:想一想,算一算。

2、解决问题:等腰三角形风筝的顶角是多少度?

3、辨析训练,完善结论。

五、课堂总结,归纳研究方法

今天这节课你学到了哪些知识?你是怎样得到这些知识的?

六、课后延伸:用今天所学的方法继续研究四边形的内角和。

七、板书设计:

三角形的内角和

猜测:

三角形的内角和是180°?

验证:

结论: 任意三角形的内角和是180°

三角形内角和教学设计2

1、通过操作活动探索发现和验证“三角形的内角和是180度”的规律。

2、在操作活动中,培养学生的合作能力、动手实践能力,发展学生的空间观念。并运用新知识解决问题。

3.使学生有科学实验态度,激发学生主动学习数学的兴趣,体验数学学习成功的喜悦。

一、创设情景,引出问题

1、猜谜语:

形状似座山,稳定性能坚。

三竿首尾连,学问不简单。

(打一图形名称)三角形

2、猜三角形

师:老师这有3个三角形,每个三角形的一部分被长方形给遮住了,你知道这是什么三角形吗?

师:提问第3个图形时问:被遮住的两个角是什么角?

会是两个直角吗?为什么?

3、引出课题。

师:看来三角形里角一定藏有一些奥秘,这节课我们就来研究有关三角形角的知识“三角形内角和”。

二、探究新知

1、三角形的内角、内角和

什么是三角形内角

三角形里面的三个角都是三角形的内角。为了方便研究,我们把每个三角形的3个内角分别标上∠

1、∠

2、∠3。

三角形内角和

师:内角和指的是什么?

生:三角形的三个角的度数的和,就是三角形的内角和。

2、猜一猜。

师:这个三角形的内角和是多少度?

师:是不是所有的三角形的内角和都是180°呢?你能肯定吗?

预设1师:大家意见不统一,我们得想个办法验证三角形的内角和是多少?可以用什么方法验证呢?

3操作验证:小组合作。

选1个自己喜欢的三角形,选喜欢的方法进行验证。

,剪刀,量角器,白纸,直尺等,以及充裕的时间,保证学生能真正地试验,操作和探索,通过量一量、折一折、拼一拼、画一画等方式去探究问题。)

4学生汇报。

教师:汇报的测量结果,有的是180°,有的不是180°,为什么会出现这种情况?

师:有没有别的方法验证。

剪拼

a、学生上台演示。

B、请大家四人小组合作,用他的方法验证其它三角形。

C、展示学生作品。

D、师展示。

折拼

师:有没有别的验证方法?

师:我在电脑里收索到折的方法,请同学们看一看他是怎么折的。

数学文化

师:除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°早在300多年前就有一个科学家,他在12岁时就验证了任何三角形的内角和都是180°帕斯卡师:你对三角形内角和是多少度还有疑问吗?现在我们可以肯定的说:三角形的内角和是?度。

解决课前问题,为什么画不出1个含有2个直角的三角形?

1个三角形中有没有2个钝角?

师:我们对三角形的认识已经非常清晰,出示2个三角形,生分别说出内角和。

把两个小三角形拼在一起,问:大三角形的内角和是?度。

教师:为什么不是360°?

三、解决相关问题

师:接下来,利用三角形的内角和我们来解决一些相关的问题吧!

1、看图,求未知角的度数

2、书上88页10题。

教师:刚才,我们利用了三角形的什么?

3、教师:如果一个都不知道,或只知道1个角,你能知道三角形各角的度数吗?

求出下面三角形各角的度数。

我三边相等。

我是等腰三角形,我的顶角是96°。

我有一个锐角是40°。

4、判断。

5、求4边形、5边形内角和。

下课的时间就要到了,我们来一个挑战题。你们敢接受挑战吗?

如果要求10边形的内角和,你会求吗?你有什么发现?

四、总结。

师:这节课你有什么收获?

五、板书设计:

三角形的内角和是180°

∠1+∠2+∠3=180°

度量

剪拼

折拼

第三篇:三角形内角和教学设计

三角形内角和教学设计

一、教学目标:

1、通过小组猜想、探索、验证三角形的内角和等于180°,并能运用知识解决简单问题。

2、经历三角形内角和的探究过程,体验“猜想——验证——应用”的学习模式。

3、通过各种实践活动,激发学习兴趣,体验学习成功感,并在教学中,感受数学与生活的密切联系。

二、教学重难点

教学重点:学生运用各种方法,探索三角形的内角和是180度这一知识的全过程

教学难点:运用三角形的内角和解决实际问题。

三、教具、学具准备:

课件、一副三角尺、几个三角形。学生准备一副三角尺。

四、教学过程:

一、创设情境 揭示课题。

师:猜谜语 形状似座山,稳定性能坚;三竿首尾连,学问不简单。(打一几何图形)生:三角形

师:前面我们已经认识三角形,谁能给大家介绍一下? 学生讲学过的三角形知识。分类

师:我们在讨论三角形知识的时候,三角形中的三个兄弟却吵了起来,想知道怎么回事吗?让我们一起去看看吧!

师:呦,瞧,三个兄弟在争论呢。(播放课件)它们在争论什么呀? 生:它们在争论谁的内角和大。

师:哦,原来如此。那么,你们知道什么是三角形的内角? 三角形的内角和又是指什么吗?(生:三角形的内角就是三角形里面的三个角。内角和就是三个内角的度数和。)

师:这个同学说得真好,(课件)我们把三角形里面的这三个角,就叫做三角形的内角,而这三个角的度数和,我们就称为三角形的内角和。

今天我们就来研究有关三角形内角和的知识。(板书课题)

二、探索交流,解决问

(一)、大胆猜想,产生分歧

师:理解了三角形的内角和,那请你们给评评理:这三个大小不一样的三角形,到底是谁的内角和大啊?(这位同学手举得最高,请你来说。)

生1:我认为是这样的,因为大三角形大,所以它的内角和更大。(哦,你是这样认为的,请坐。还有不同意见吗?这位同学很着急,好,你来。)

生2:我不同意,我认为两个三角形内角和的度数都是一样的。(很好,这是你的想法。还有同学想说,你来。)

生3:当然是大三角形的内角和大了。(你回答的声音真响亮。请坐)生4:我同意第二个同学的意见,两个三角形的内角和一样大。

师:现在出现了两种不同的意见,有的同学认为大三角形的内角和大,还有部分同学认为两个三角形的内角和的度数都是一样的。那么到底谁说得对呢?

(二)验证猜想,解决问题

师拿出两个三角尺,问:它们是什么三角形? 生:直角三角形。

师:请大家拿出自己的两个三角尺,同桌之间说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。(学生们能够很快求出每块三角尺的3个角的和都是180°)

师:你们算出来,这两个三角尺的内角和是多少度啊? 生齐:180°。

师:那„„其他三角形的内角和也是180°吗?(这位同学手举得真端正,你来说。)生1:其他三角形的内角和也是180°(好,还有谁想说?)生2:其他三角形的内角和不是180°

师:看来呀,大家都有不同的看法。我们学过三角形的分类,知道直角、锐角、钝角三角形可以代表所有的三角形。那下面就请同学们小组合作,从组里找出这

三类三角形,量一量每个三角形内角的度数,并求出它们的内角和,把结果填在表格里。(板书:测量)师:你们发现了什么?

生1:通过测量我们发现每个三角形的内角和都是180°。生2:不对,应该是180°左右,因为我们组算出来也有175°的。

师:噢!是呀,因为我们在测量时可能会出现一些误差,所以测量出的结果不是很准确,因此我们只能猜测三角形的内角和可能是180°。

师:那么,同学们能发挥你们的聪明才智,通过动手操作,想办法来验证自己的猜想吗?请同学们先独立思考一下,再在小组内把你的想法与同伴进行交流,然后每组选一种方法进行验证,看哪组最先发现其中的“奥秘”。(1)小组合作,讨论验证方法(2)汇报验证方法、结果。

师:谁愿意第一个向大家介绍你们组的验证方法?

组1:我们小组是用剪拼的方法(板书:剪拼),将三角形的三个角剪下来,拼成一个平角,得到三角形的内角和是180度。

师:上来展示给大家瞧一瞧。(投影仪)你们看这位同学多细心呀,为了方便、不混淆,在剪之前,他先给3个角标上了符号。

师:现在请同学们看大屏幕,老师在电脑里把刚才剪拼的过程重播一遍。你们看,成功了,3个角拼成了一个平角。可是,刚才剪拼的是一个锐角三角形,那还有直角三角形、钝角三角形呢,它们能不能拼成一个平角啊? 生齐:能!

师:好。那就是说,刚才这种剪拼的方法可以不用再一个角一个角来量,就能证明三角形的内角和是180°了。你们觉得这种方法好不好啊?那我们把掌声送给刚才这个小组。还有其他方法吗?

组2:我们小组是用折的方法(板书:折图),同样得到三角形的内角和是180度。(这个小组真了不起,竟能想出如此独特的方法,很有新意,非常好!)师:听起来有点抽象,请这位同学上来折给大家看看好不好呀?(投影仪展示)

(展示:3个角折成了一个平角。)

师:真是个手巧的孩子。不过呢,他刚才折的是一个直角三角形,那其他两类三角形呢,是不是也能折出平角呢,谁来告诉大家?

组3:可以,这三类三角形都能折出平角。(这一组探索数学的能力也真棒!)师小结:刚才同学们用量、剪、拼、折等方法证明了,无论是什么样的三角形,内角和都是1800,(板书:三角形的内角和是180°)现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是1800”。师:(出示一个大三角形)它的内角和是多少度? 生:180 °

师:(出示一个很小的三角形)它呢? 生:180 °

师:一个三角形的内角和是180°,那两个同样的三角形拼成一个大三角形,它的内角和又是多少呢?

(生有的答360°,有的180 °。)

师:咦?有两种不同的声音哦。那到底哪一种是正确的呢?

师:(学生个个脸上露出疑问)大家可以在小组内拼一拼,并讨论讨论。(经过一翻激烈的讨论探究后,学生开始举手回答。)

生1:180°,因为两个三角形拼在一起,就变成了一个三角形了,每个三角形的内角和总是180°。(想一想,做一做,数学之门就被这组同学打开了,真棒!哈,还有同学要说,好,你再说。)

生2:我发现两个小三角形拼成一个大三角形,拼接在一起的两条边上的两个角没有了,就比原来两个三角形少180 °,所以大三角形的内角和还是180°,不是360°。

师:你分析问题这么透彻,老师真希望每节课都能听到你的发言。现在,老师把刚才这位同学说的用课件演示一遍,注意看哦。(课件演示)

师:好,这个问题解决了。那么,把大三角形平均分成两份。它的(指均分后的一个小三角形)内角和是多少度? 生齐:180°。

师:哈,看来已经骗不倒我们班的同学勒。答案还是180°,不是90°哦。师总结:所以说,三角形不论位置、大小、形状如何,它的内角和总是180°

三、巩固应用,内化提高

1、解决问题:

学会了知识,我们就要懂得去运用。下面,我们就根据三角形内角和的知识来解决一些相关的数学问题。(课件演示练习题)(1)在能组成三角形的三个角后面画“√”(2)判断下列说法对吗?(3)你能求出被遮住的角吗?(4)67页的做一做。(5)你会求下面图形的角吗?

四、回顾整理,反思提升

通过今天的学习,大家有什么收获?

拓展创新

小明不小心将镜框上的一块三角形玻璃摔成了两半,玻璃裂成了两块。一块只有原来的一个角,另一块有原来的两个角。他想重新买一块玻璃安上,小明非常聪明,只带了其中的一块到玻璃店去,就配到了和原来一模一样的玻璃了。你知道他带的是哪一块吗?

第四篇:《三角形内角和》教学设计

《三角形的内角和是180°》教学设计

教学思路:

由在数学王国里,锐角、直角、钝角三角形内角和大小的争论,引出什么是内角与内角和,并开始讨论内角和的大小。引导学生经历对三个内角的度量,剪拼,折叠等方法的探索,引导学生推测出三角形的内角和是180°。

学生通过度量的方法得出三角形的内角和大约是180°(存在误差),为了让结论更具说服力,再引导学生通过剪拼等的方法发现:各类三角形的三个内角都可以拼成一个平角。再利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。

这一系列活动潜移默化地向学生渗透了“转化”数学思想,培养学生科学试验的态度,培养学生的统计观念。接着向学生渗透数学文化。最后让学生运用结论解决实际问题,练习的安排上,注意练习层次,共安排三个层次,逐步加深。整堂课让学生通过小组合作学习,经历探究知识的过程,明白解决问题策略的多样化。培养学生的空间观念,发展合情推理能力和初步的演绎推理能力,让学生体验数学学习的快乐。

教学目标:

1、知识技能目标:

(1)理解和掌握三角形的内角和是180°;

(2)运用三角形的内角和知识解决实际问题和拓展性问题;

2、能力技能目标:

(1)通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180°。

(2)知道三角形两个角的度数,能求出第三个角的度数。

(3)发展学生动手操作、观察比较和抽象概括的能力。

3、情感与态度目标:

让学生体验数学活动的探索乐趣,通过教学中的活动体会数学的转化思想。教学重难点

重点:理解掌握三角形的内角和是180°。

难点:运用三角形的内角和知识解决实际问题。教具、学具准备:

教具:教学课件、硬纸片制作的各种三角形、三角尺。学具:直角三角形、锐角三角形和钝角三角形各一个,量角器、两个三角板。

教学过程:

一、创设情境 生成问题

(一)课件出示三角形争吵图

在数学王国里住着很多平面图形。一天三角形兄弟忽然吵了起来,直角三角形说我的个头最大所以我的内角和一定最大,钝角三角形说我有一个钝角所以我的内角和一定比你们的大,只有锐角三角形很没自信的说:难道只有我的内角和最小?

(二)猜想什么是三角形的内角和

师:他们三个在比什么呀?什么是三角形的内角?什么是三角形的内角和?

课件演示三角形的内角(内角和)

二、探索交流 解决问题

(一)探究猜想内角和的度数

师:同学们来当小裁判,评一评他们三个谁的内角和最大?不过怎样才能知道三角形的内角和呢?

生:用量角器进行度量。

师:四人小组合作,用手中的量角器量出三个不同三角形的内角和。通过小组合作后交流,汇报。

生回答。(回答可能不一样。)

师:同学们通过刚才的汇报你有什么想说的吗?

生:我发现内角和的度数不一样。

师:是啊,什么原因呢?

生:可能是量的时候出现了差错。

师:是的,在度量时由于测量的误差很容易导致最后的结果出现差错,但你们有没有发现,这些数据都是在180°左右哦。(引导学生推测出三角形的内角和可能都是180°。)同学们要想当好一个裁判除了要公平公正还要有足够的证据,怎样才能让他们三个心服口服?你有办法来验证三角形的内角和是180度吗?

板书课题:三角形的内角和

(二)讨论验证方法

以小组为单位来想一想我们可以怎么样来验证?

小组活动后汇报,老师要提醒学生在撕角之前做好三角形各个角的标记,以防拼错。(可写上1,2,3)

(三)动手验证

生活动,师巡视

(四)汇报

师:哪个小组来汇报你们的验证方法和验证结论?

组1:我们用的是撕的方法,把锐角三角形的三个角都撕下来,然后拼在一起就拼成了一个平角。结论是锐角三角形的内角和是180度。

师:这个小组很厉害,运用了平角的知识来验证的。哪个小组也用了这种撕拼的方法?

组2:我们也是用撕拼的方法验证了钝角三角形的内角和是180度。

组3:我们用这种撕拼的方法验证直角三角形的内角和也是180度。

哪个小组的同学最想上来展示一下你们的研究成果?

师:同学们做得很好,看来用撕拼的方法验证了三角形的内角和确实是180度。老师也尝试用你们的方法来验证一下直角三角形的内角和,不过我不像你们那么简单粗暴,我喜欢温柔的——剪拼,同学们想不想看?

(动画演示剪拼验证过程)

边演示边解说。

见证奇迹的时刻到了,你发现了什么?

师:嗯,很独特的方法,不但验证了三角形的内角和是180度,还知道了直角三角形的两个锐角之和是90度。

课件演示独特折法

同学们还有不同的验证方法吗?

组:我们用的是折一折的方法,把锐角三角形的三个内角向里折,也拼成了一个平角,结论:锐角三角形的内角和是180度。

组::我们用的是折一折的方法,把钝角三角形的三个内角向里折,也拼成了一个平角,结论:钝角三角形的内角和是180度。

出示:普通折法

师:还有不同折法吗?

组:我们还可以这样折,把直角三角形的内角向里折。把直角三角形的两个锐角转化成一个直角。这样验证出:直角三角形的内角和是180度。

师:刚才有几个小组完成的很快所以老师又送了他们几个长方形。看到长方形你们想到了什么?你们能根据手里的长方形想出其他方法验证三角形的内角和是180度吗?

组:我们认为一个长方形的内角和是360度,把他沿着对角线撕开就得到了两个完全一样的直角三角形,360除以2等于180度。结论直角三角形的内角和是180度。

师提出一个疑问:是不是两个完全一样的三角形都能拼成一个长方形?

课件演示长方形推理法。

师:刚才我们用已知的长方形的内角和验证了直角三角形的内角和是180度。

看来当我们遇见一个新问题时可以联想一下以前学过的知识,这样新问题就会很快解决,这种转化法是学习数学的一种很重要的方法希望同学们以后大胆应用。

小结:通过咱们刚才量一量,折一折,撕一撕等方法的验证可以得出一个什么样的共同结论,(全班小结:三角形的内角和是180度)师板书:三角形的内角和是180.师:现在你对这个结论还有丝毫的质疑吗?好,就让我们用自信而骄傲的语调读出我们的验证结论。

三、巩固应用 内化提高

同学们你们能用这个新知识来解决问题吗?那现在我们一同来闯关吧!

1、根据已知角的度数求出未知角的度数

(着重让学生说说自己的想法:从而总结出内角和减去已知角的度数就等于未知角的度数)

2、求等边三角形各内角的度数

3、已知直角三角形的一个锐角是40度求另一个锐角的度数(提示两种方法,90度减去40度等于50度)

4、放风筝:

同学们又是一年三月三风筝飞满天,想去放风筝吗?在放风筝之前老师需要同学们进行一次挑战敢吗?

一个等腰三角形的风筝一个底角是70度,求顶角的度数?

5、挑战极限:

同学们的挑战精神老师分佩服,老师也进行了一次挑战可是失败了,你能帮助老师吗?

根据三角形的内角和是180度的知识求出四、五边形的内角和是多少?

四、回顾整理反思提升

同学们通过这节的学习你有哪些收获?

第五篇:《三角形内角和》教学设计

《三角形内角和》教学设计

杨 海 慧

【教材分析】

“三角形内角和”是三角形的一个重要性质,是“图形与几何”领域的重要内容之一,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。【学情分析】

学生在本节课学习之前已经认识了三角形的基本特征及分类,并且在四年级(上册)教材里已经知道了两块三角尺上的每一个角的度数,学生的数学知识、能力和思考问题的角度有一定的差异,因此课堂上比较容易出现解决问题策略的多样化。【设计理念】

本节课主要采用自主探究、小组合作、全班交流的方式,让学生通过探究式学习,在活动中体验三角形内角和性质的探索过程,发现三角形内角和的性质,并能运用这一性质解决相关的问题,进而加深学生对三角形内角和的认识。

首先让学生知道“内角”的含义;然后引导学生探究三角形的内角和是多少?大多数学生可能会想到用测量的方法,此时可以顺势引导安排小组活动。让每组同学选取大小、形状不同的三角形,分别量出三个内角的度数并求出它们的和,填在相应的表格中;最后通过比较发现:大小、形状不同的三角形,每一个三角形内角和都在180°左右;也可能会有学生提出已经知道三角形的内角和是180°,这时我会表示怀疑,并将一个大的三角形纸等分成两个小三角形进行设疑:每个小三角形的内角和还是180°吗?在学生感到疑惑时,顺势引导学生系统、深刻地再经历测量、计算的过程,当学生经过计算确认这两个小三角形内角和是180°后,再让学生思考其它的三角形呢?能否不用测量的方法呢?进而引导学生利用撕、折的方法验证猜想。【教学内容】

人民教育出版社,《义务教育课程标准实验教科书》数学四年级下册第85页。【教学目标】

1.通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180°。

2.通过把三角形的内角和转化为平角进行探究的过程,渗透“转化”的数学思想。

3.发展学生动手操作、观察比较和抽象概括的能力。4.能应用三角形内角和的性质解决一些简单的问题。【教学重点】

用不同的方法探究和发现三角形内角和是180°。

【教学难点】

进一步加深了对三角形内角和的理解和运用。【教具准备】

一副三角尺;多媒体课件、大三角形纸若干张(备用); 【学具准备】

直角三角形、锐角三角形和钝角三角形各一个,并分别测量出每个内角的度数标在图中 ;一副三角尺。【教学过程】

一、创设情境,谈话导入

猜谜语:

形状似座山,稳定性能坚,三竿首尾连,学问不简单。

(打一几何图形)生:三角形

师:同学们真了不起,一下就猜到了答案。

师:最近我们一直在研究三角形的知识,谁能给大家介绍一下? 生:回顾已学过的三角形知识…….师:通过学习,我们知道了三角形的那么多的知识,大家说数学知识是不是很神奇?今天我们还要继续研究三角形的新知识。(设计意图:回忆已经学过的三角形知识为新内容进行铺垫。同时,也为知识的迁移作了伏笔。《课标》强调学生数学学习的过程是建立在经验基础上的一个主动建构的过程。)

二、以疑激思,引出课题 师:什么是三角形的内角? 三角形有几个内角? 生:就是三角形内的三个角。每个三角形都有三个内角。师:这个同学说得很好,三条线段在围成三角形后,在三角形内形成了三个角(课件闪烁三个角的弧线),我们把三角形内的这三个角,分别叫做三角形的内角。

师:有两个三角形为了一件事正在争论,我们来帮帮他们。(出示课件)

师:同学们,请你们给评评理:是这样吗? 生1:我认为是这样的,因为大三角形大,它的三个内角的和就大。

生2:我不同意,我认为两个三角形的三个内角和的度数都是一样的。

生3:当然是大三角形的内角和大了。

生4:我同意第二个同学的意见,两个三角形的内角和一样大。师:现在出现了两种不同的意见,有的同学认为大三角形的内角和大,还有部分同学认为两个三角形的内角和的度数都是一样的。那么到底谁说得对呢?本节课我们就一起来研究这个问题。(板书课题:三角形的内角和)师:若这时有学生提出已经知道三角形的内角和是180°,我在表示质疑的同时,拿出事先准备好的三角形纸将其等分成两个小三角形,每个三角形的内角和还是180°吗?当学生也表示怀疑时,顺势引导学生系统、深刻地再经历测量、计算的过程。当学生经过计算确认这两个小三角形内角和是180°后,让学生思考其它的三角形呢?能否不用测量的方法呢?在学生思考的基础上,引导学生利用撕、折的方法验证猜想。

三、动手操作,探究新知

1、师拿出两个三角尺教具,问:它们是什么三角形? 生:直角三角形。

师:请大家拿出自己的两个三角尺,在小组内说说每一个三角尺上三个内角的度数,并求出这两个直角三角形的内角和。生:每块三角尺的3个内角的和都是180°。师:其他三角形的内角和也是180°吗? 生A:其他三角形的内角和也是180°。生B:不一定。

(设计意图:让学生经历了矛盾,发现问题后,再和小组的同学一起讨论、探究更好的验证方法,教师给予学生足够的时间和空间,让每个学生自主参与撕、折的实践活动,让学生在经历猜想、验证、演示、汇报过程中解决问题,发展学生空间观念和推理能力。)

2、师:同学们能通过动手操作,想办法来验证自己的猜想吗?请同学们先进行独立思考,然后在小组内把你的想法与同伴进行交流,最后选用一种方法进行验证。看谁最先发现其中的“奥秘”;看谁能争取到向大家作“实验成功的报告”。

(1)小组合作、讨论、验证方法(2)汇报验证方法、结果 师:谁愿意给大家介绍你们小组是用什么方法来验证的?结果怎样?

生A:我们小组是用撕的方法。每人选取一个不同形状的三角形,用手分别把3个角撕下来,然后再拼,结果拼成一个平角,得到三角形的内角和是180度。

师:上来展示给大家瞧一瞧。(投影仪展示)你们看这小组的同学多细心呀,为了不混淆,在撕之前,他们先给3个角分别标上了符号。师:现在请同学们看大屏幕,我在电脑里把刚才撕的过程重播一遍。(课件演示)3个角拼成了一个平角

生B:我们小组是用折的方法,同样得到三角形的内角和是180度。

师:好,请这位同学到前面来折给大家看看。(投影仪展示后课件演示)

生:3个角折成了一个平角。

师:真是个手巧的孩子。他刚才折的是一个锐角三角形,你们小组还有折其他三角形的吗?(学生汇报后课件演示)

师:锐角三角形、钝角三角形都折了几次?(3次)现在请同学们看屏幕,让我们来看看直角三角形折了几次?(课件展示:直角三角形折的过程)

师:折了几次?想想为什么直角三角形可以只折两次就能证明。生;因为它是一个直角三角形,已经有了一个直角,另外2个锐角只要能拼成直角,三个角的和就是180°了。师:说得真清楚。还有没有不同的方法?

生C:我们小组是用测量、计算的方法,但我们发现三角形的内角和有的比180°,有的比180°小,有的正好是180°。

师:为什么会出现这种情况呢?

生:因为测量时会出现一些误差,所以测量出的结果不是很准确。师:同学们真的很棒!

师:刚才同学们用撕、折、量等方法证明了无论是什么样的三角形内角和都是180°(板书:是180°)现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是180°”。

师:(出示一个大三角形)它的内角和是多少度? 生:180 °。

师:(出示一个很小的三角形)它的内角和是多少度? 生:180 °。

师:一块三角尺的内角和180°,两块同样的三角尺拼成的一个大三角形的内角和又是多少呢? 生A:180 °。生B:360°

师:究竟谁对呢?让学生在小组内拼一拼,进行讨论。经过一翻激烈的讨论探究后,学生可以找到答案。

生A:180 °,因为两个三角形拼在一起,就变成了一个三角形了,每个三角形的内角和总是180 °。

生B :我发现两个小三角形拼成一个大三角形,拼接在一起的两条边上的两个角没有了,就比原来两个三角形少180 °,所以大三角形的内角和还是180°,不是360°。

师:你们真聪明。(课件演示)

师: 三角形不论位置、大小、形状如何,它的内角和总是180°。(设计意图:这里通过教师提出具有思考性的问题,层层设疑,使学生探究知识的兴趣波澜起伏,时刻处在紧张而又兴奋的学习状态中。)

四、巩固深化,加深理解

我们学习了三角形的内角和,你能运用所学知识解决下面的问题吗?(课件出示)

1、求三角形中一个未知角的度数。

在三角形中,已知∠1=140°,∠3=25°,求∠2的度数。

2、判断

(1)一个三角形的三个内角度数是:80°、75°、24°。()(2)三角形越大,它的内角和就越大。

()(3)一个三角形至少有两个角是锐角。

()(4)钝角三角形的两个锐角和大于90°。

()

3、解决生活实际问题。

(1)爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70°,它的顶角是多少度?

(2)交通“警示牌”为等边三角形,求其中一个角的度数。

4、拓展练习。

利用三角形内角和是180°,求出下面四边形、六边形的内角和?

师:小组的同学讨论一下,看谁能找到最佳方法。学生汇报(课件演示)。让学生写在自己的练习本上。

(设计意图: 练习设计由浅入深,由易到难,紧紧围绕三角形的内角和来进行,进一步加深了对三角形内角和的理解和运用,让学生计算等腰三角形风筝顶角的度数和等边三角形交通警示牌的度数,不但培养了学生解决问题的能力,也让学生感受到数学与生活的密切联系。最后,让学生求四边形、六边形的内角和的度数,不仅培养了学生知识的迁移能力,而且将所学知识进行了内化和升华。)

五、全课小结。

三角形内角和教学设计
TOP