首页 > 精品范文库 > 13号文库
三角形性质和判定定理
编辑:紫陌红颜 识别码:22-1059515 13号文库 发布时间: 2024-07-03 12:44:15 来源:网络

第一篇:三角形性质和判定定理

等腰三角形:

定义:有两条边相等的三角形是等腰三角形。在等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。性质:

1.等腰三角形的两条腰相等; 2.等腰三角形的两个底角相等; 3.4.等腰三角形顶角的平分线、底边上的中线、底边上的高重合,它们所在的直线都是等腰三角形的对称轴。判定:

1.有两条边相等的三角形是等腰三角形;

2.如果一个三角形有两个角相等,那么这两个角所对的边也相等。

等边三角形:

定义:三边都相等的三角形是等边三角形,也叫正三 角形。性质:

1.的垂直平分线都是它的对称轴;

2.60°。判定:

1.三条边都相等的三角形是等边三角形; 2.有一个角是60°的等腰三角形是等边三角形; 3.有两个角是60°的三角形是等边三角形。

直角三角形:

定义:有一个内角是直角的三角形叫做直角三角形。其中,构成直角的两边叫做直角边,直角边所对的边叫做斜边。性质:

1.直角三角形的两个余角互余;

2.直角三角形斜边上的中线等于斜边的一半;

3.直角三角形中30°角所对的直角边等于斜边的一半;4.a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 判定:

1.有一个角是直角的三角形是直角三角形; 2..有两个角互余的三角形是直角三角形;

3.如果一个三角形一条边上的中线等于这条边的的一半,那么这个三角形是直角三角形;

4.如果三角形的三边长a、b、c满足于a^2+b^2=c^2,那么这个三角形是直角三角形。

角平分线定理:在角的平分线上的点到这个角的两边的距离相等

逆定理:到一个角的两边的距离相同的点,在这个角的平分线上

中垂线定理:线段垂直平分线上的点到这条线段两个

端点的距离相等

逆定理:到一条线段两个端点距离相等的点,在这

条线段的垂直平分线上定理三角形两边的和大于第三边2 推论三角形两边的差小于第三边

5外角2三角形的一个外角大于任何一个和它不相

邻的内角三角形内角和定理三角形三个内角的和等于180° 4外角1三角形的一个外角等于和它不相邻的两个

内角的和

全等的判定:

6边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等

7角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等

8推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等

9边边边公理(SSS)有三边对应相等的两个三角形

全等

10斜边、直角边公理(HL)有斜边和一条直角边对应

相等的两个直角三角形全等

第二篇:立体几何判定定理及性质定理汇总

立体几何判定定理及性质定理汇总

一线面平行

线面平行判定定理

平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。线面平行性质定理

一条直线与一个平面平行,则过这条直线的任意平面与此平面的交线与该直线平行. 二面面平行

面面平行判定定理

一个平面内的两条相交直线与另一个平面平行,则这两个平面平行. 推论 一个平面内两条相交直线与另一个平面内的两条直线分别平行,则这两个平面平行.

面面平行性质定理

如果两个平行平面同时和第三个平面相交,则它们的交线平行.

三线面垂直

判定定理

一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面平行. 线面垂直性质定理1

如果一条直线垂直于一个平面,则它垂直于平面内的所有直线.

线面垂直性质定理2

垂直于同一个平面的两条直线平行.

四面面垂直

面面垂直判定定理

一个平面过另一个平面的垂线,则这两个平面垂直.

面面垂直性质定理1

两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.

面面垂直性质定理2

两个平面垂直,过一个平面内一点与另一个平面垂直的直线在该平面内.

第三篇:面面平行的判定和性质定理

编写人:邵凤颖202_-6-14晚板书上交日期:202_-6-15早

平面与平面平行的判定及性质定理 学习目标:

1、判定定理 :(文字)

2、性质定理 :(文字)

学习重点:面面平行的判定定理、性质定理。学习难点:应用

学习过程:

一、面面平行的判定定理

1、回答教材56页“观察”中的问题(比划一下),读一遍面面平行的判定定理判断教材56页“探究”的对错(比划一下),再读一遍面面平行的判定定理

不看书你能用数学语言写出面面平行的判定定理吗?

_____________________________________________________________________

2、在教材上完成58页1、33、看明白教材57页例2后,证出它过程中的同理内容,希望你的证明过程更简化

4、做58页练习

2班级___________组______________________层学生___________

二、平面与平面平行的性质定理:_________________________________________(文字)

1、看教材60页“思考”:画出你所想到的所有情形。

2、看明白例5,性质定理与这道例题及思考都有什么关系?

三、反思: 面面平行判定定理的条件是——_________,结论是——______________面面平行性质定理的条件是——_________,结论是——______________

四、看明白例6。注意:证明出平行四边形的意义。

五、例题(教材62页7、8、B组2、3、4填空在书上)

A7

A8

B

2B

3思考:

1、B为ACD所在平面外一点,M、N、G分别为ABC、ABD、BCD的重心,(1)求证:平面MNG//平面ACD。(2)求SMNG:SABC2、用平行于四面体ABCD的一组对棱AB、CD的平面截此四面体,(1)求证:所得截面 MNPQ 是平行四边形

(2)如果ABCDa求证MNPQ的周长为定值

反思:______________________________________________________________________________________________________________________________________

第四篇:平行四边形的性质定理和判定定理及其证明

4.1平行四边形的性质定理和判定定理及其证明

姓名:成绩:

1.在四边形ABCD中,O是对角线的交点,下列条件中,不能判定四边形ABCD是平行四边形的是()A.AD∥BC, AD=BCB.AB=DC,AD=BC C.AB∥DC,AD=BC

D.OA=OC,OD=OB

2.如图,在平行四边形ABCD中,AD5,AB3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为()A.2和

3B.3和

2C.4和

1D.1和

4E 3.如图,在平行四边形ABCD中,AC,BD相交于点O.下列结论中正确的个数有()结论:①OAOC,②BADBCD,③ACBD,④BADABC180.

A

D.4个

第3题图

A.1个B.2个C.3个

4.能够判别一个四边形是平行四边形的条件是()

A.一组对角相等B.两条对角线互相垂直且相等C.两组对边分别相等D.一组对边平行 5.下列条件中不能确定四边形ABCD是平行四边形的是()

A.AB=CD,AD∥BCB.AB=CD,AB∥CDC.AB∥CD,AD∥BCD.AB=CD,AD=BC 6.一个四边形的三个内角的度数依次如下选项,其中是平行四边形的是()

A.88°,108°,88°B.88°,104°,108°C.88°,92°,92°D.88°,92°,88° 7.四边形ABCD中,AD∥BC,要判别四边形ABCD是平行四边形,还需满足条件()

A.∠A+∠C=180°B.∠B+∠D=180°C.∠A+∠B=180°D.∠A+∠D=180° 8.以不在一条直线上的三点A、B、C为顶点的平行四边形共有()

A.1个B.2个C.3个D.4个

二、填空题

5.如图,四边形ABCD中,AB∥CD,要使四边形ABCD为平行四边形,则应添加的条件是

(添加一个条件即可)

6.在四边形ABCD中,AB=CD,AD=BC,∠B=50,则∠A=_______,∠D=_________。7.如图,平行四边形ABCD中,AC、BD相交于点O,已知AB=8cm,BC=6cm,△AOB的周长为18cm,那么△AOD的周长为__________。

如图2,BD是ABCD的对角线,AE⊥BD于E,CF⊥BD于F,求证:四边形AECF

为平行四边形.

D

第5题图

C

C

A第7题图

9.如图:平行四边形ABCD的对角线AC、BD相交于点O,MN过点O与AB、CD

相交于M、N,你认为OM、ON有什么关系?为什么?

10.如图,△ABC中,BD平分∠ABC,DE∥BC交AB于点E,EF∥AC交BC于F,试说明

BE=CF。

A

12.如图,D、E是△ABC的边AB和AC中点,延长DE到F,使EF=DE,连结CF.四边形BCFD是平行四边形吗?为什么?

13.如图,□ABCD的对角线AC、BD交于O,EF过点O交AD于E,交BC于F,G是OA的中点,H是OC的中点,四边形EGFH是平行四边形,说明理由

.三、如图3,田村有一口呈四边形的池塘,在它的四个角A、B、C、D处均种有一棵大核桃树.田村准备开挖池塘建养鱼池,想使池塘面积扩大一倍,又想保持核桃树不动,并要求扩建后的池塘成平行四边形的形状,请问田村能否实现这一设想?

若能,请你设计并画出图形;若不能,请说明理由(画图要保留痕迹,不写画法).

第五篇:《相似三角形的判定定理二》说课稿

《相似三角形的判定定理二》说课稿

一、说教材

1、教材的地位和作用

众览本章教材。在前面,学生已经了解图形并且掌握了一定的图形知识。学过图形的全等和全等三角形的有关知识,也研究了几种图形的变换。全等是相似的一种特殊情况,从这个意义上讲,研究相似比研究全等更具有一般性,所以这一章研究的问题实际上是在前面研究图形的全等和一些全等变换的基础上拓广展的。在后面,学生还要学习“锐角三角函数”和“投影与视图”的知识,学习这些内容,都要用到相似的知识,不仅在数学中,在物理中,学习力学、光学等,也要用到相似的知识。因此这些内容也是今后学习所必具备的基础知识。另外,本节内容相似三角形的判定定理2还应用在实际生活中的建筑设计、测量、绘图等许多方面。因此这一节乃至整章内容对于学生今后从事各种实际工作也具有重要作用。

2、教学目标:

根据数学课程标准和本节课的教学内容特点,针对学生已有的认知水平,我们将从知识、能力、情感态度与价值观三个方面来确定本节课的教学目标为:

(1)知识目标 : 掌握判定两个三角形相似的方法:如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。

(2)能力目标 : 渗透数学中普遍存在着相互联系、相互转化,经历探索两个三角形相似条件的过程,分析归纳结论的过程;在定理论证中,体会转化思想的应用。

(3)情感价值目标 : 从认识上培养学生从特殊到一般的方法认 识事物,从思维上培养学生用类比的方法展开思维;通过画图、观察猜想、度量验证等实践活动,培养学生获得数学猜想的经验,激发学生探索知识的兴趣。

3、教学重难点: 教学重点:

两个三角形相似的判定方法2及其应用。教学难点: 探究三角形相似的条件;运用三角形相似的判定定理解决问题。

二、说学情分析

在课堂教学中,作为学生学习的组织者引导着与合作者。注意突出学生的数学实践活动,变“教学”为“导学”提高课堂效率。在教学中我们尽量引导学生成为知识的发现者,把教师的点播和解决学生的实际问题结合起来,为学生创设情境,鼓励学生亲自动动手实践,在实践中发现知识,培养学生的创新精神和实践能力。

三、说教法、学法: 〈一〉 教法:

教学有法但教无定法,在教学过程中,我们充分运用启发式教学方法和现代化教学手段,把传授知识和培养学生的教学素养结合起来,为创造人才的成长打下坚实的基础。

〈二〉 学法:

我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人。”因而教师要特别注重对学生学法方式的指导。由于学生都渴望与他人交流,合作探究可使学生感受到合作的重要和团队的精神力量,增强集体意识,所以本课采用小组合作的学习方式,让学生遵循“观察——猜想——验证——归纳——反馈——实践”的主线进行学习。

四、说教学理念

1本节课的基本理念是本着义务教育的基础性普遍性和发展性联系学生生活实际面向全体学生。

2从现实生活中发现问题并提出问题,让学生亲身参与活动,进行探索和发现。

五、说教学流程

本节课按照“知识回顾”——“情景导入、激发兴趣”——“类比联想、探索交流” “应用新知”—— “运用提高”——“归纳小结”的流程展开.

本节课主要是探究相似三角形的判定方法2,由于上两节课已经学习了探究两个三角形相似的判定引例﹑预备定理﹑判定方法1,因此本课教学力求使探究途径多元化,通过欣赏图片的形式把数学与现实生活紧密联系,学生利用刻度尺、量角器等作图工具作静态探究与应用“几何画板”等计算机软件作动态探究有机结合起来,让学生充分感受探究的全面性,丰富探究的内涵。协同式小组合作学习的开展不仅提高了数学实验的效率,而且培养了学生的合作能力。

习题设置由浅到深,即考察了学生的动手能力,又考察了学生对知识的灵活运用。

六、说课件设计

我们所用的课件是以POWERPOINT为模板插入相应的图片设计简单易操作,充分体现了教学手段是为教学内容服务的原则。

七、说板书设计

八、自我评价在提高

我的目的是通过学生的动手操作得出结论。突出学生的主体地位,在操作交流中使学生的学习成果得以展示获得成功的快乐。

三角形性质和判定定理
TOP