首页 > 精品范文库 > 15号文库
药学三废处理技术
编辑:紫云轻舞 识别码:24-226019 15号文库 发布时间: 2023-03-28 01:38:19 来源:网络

第一篇:药学三废处理技术

制药工业三废处理技术

——案例分析

题 目:制药厂的三废处理简述院 系:药学院专 业:药物制剂姓 名:班 级:学 号:

xxxx

12药剂2班 1234567

目录

1.摘要--------------1 2.哈文药厂三废处理案例-----------------------------3 2.1废水----------4 2.2废气----------4 2.3废渣----------5 3.三废处理的方法简介5 3.1制药工艺中废水的处理---------------------------5 3.1.1制药工业废水的种类------------------------5 3.1.2制药工业废水处理的方法--------------------6 3.2制药工艺中废气的处理--------------------------8 3.2.1废气处理的综述----------------------------8 3.2.2有机废气的处理方法-----------------------8 3.3制药工艺中废渣的处理--------------------------9 3.3.1废渣的种类------------------------------9 3.3.2废渣处理的方法--------------------------9 3.3.3废渣处理的原则--------------------------9 4.总结-----------10 5.参考文献--------10

制药厂的三废处理简述

摘要

随着我国医药工业的发展,制药工业三废已逐渐成为重要的污染源之一。制药行业属于精细化工,其特点就是原料药生产品种多,生产工序多,原材料利用率低。由于上述原因,制药工业三废通常具有成分复杂,有机污染物种类多、含盐量高、NH3一N浓度高、色度深等特性,比其他工业三废处理更难处理。由于制药工业环境保护比制药工业起步晚,且治理污染不能给企业带来直接的经济效益,制药三废处理工艺还落后于制药工艺。同时由于制药三废复杂多变的特性,现在的处理工艺还存在着诸多问题和不足之处,所以目前许多制药三废难以处理,或者处理成本居高不下,因此一些小型的制药企业或多或少存在偷排三废的现象。未将处理或处理未达标的三废直接进入环境,将对环境造成严重的危害。本文通过哈药三废污染具体案例分析制药工业中三废的处理的重要性以及所用方法,通过综合利用,实现废物的循环利用。

关键词:制药工业、三废治理、环境保护、综合利用

Pharmaceutical factory of “three wastes” treatment

Abstract With the development of China's pharmaceutical industry, the pharmaceutical industrial “three wastes” has gradually become one of the important pollution sources.Pharmaceutical industry belongs to the fine chemical industry, its characteristic is the API production variety, production process, low utilization rate of raw materials.For these reasons, the pharmaceutical industrial “three wastes” usually has a composition is complicated, a variety of organic pollutants, high salinity and NH3 N, deep chromaticity, high concentrations of industrial “three wastes” treatment more difficult to deal with than others.Due to late thanthepharmaceutical industry, pharmaceutical industry environmental protection and pollution control can't bring direct economicbenefitspharmaceutical “three wastes” treatment technology still lags behind that of pharmaceutical technology.Due to the nature of the pharmaceutical three wastes is complicated at the same time, the process still exist many problems and deficiencies, so now many pharmaceutical waste is difficult to deal with, or processing cost is high, so some small companies are more or less exist discharges, the phenomenon of “three wastes”.Not of “three wastes” treatment or falls below directly into the environment, will cause serious harm to the environment.Specific case analysis in this article, through the medicine “three wastes” pollution in the pharmaceutical industry the importance of the “three wastes” treatment and the method, by comprehensive utilization of waste recycling.Key words: the pharmaceutical industry, three wastes treatment and environmental protection and comprehensive utilization

具体案例:哈药总厂“三废”污染事件

在哈尔滨哈药集团制药总厂附近,即使在夏天,也有人要戴口罩,居民称空气里臭味熏人。记者调查发现,臭味来自于紧邻居民区的哈药总厂,住在周边的一些居民甚至常年不敢开窗。1.废水排污口色度超极限值15倍

哈尔滨城区有条河沟流经哈药总厂,记者发现,河水在进入这个厂区之前是青白色的,但从厂区流出就变成土黄色,散发着非常刺鼻的臭味。记者在厂区深处顺着河沟寻找,发现了药厂污水排放口。排污口散发着恶臭,水是黄色的。哈药总厂以生产青霉素和头孢菌素类药物为主,青霉素类的生产属于发酵类制药。而国家对发酵类制药水污染物排放极限值有着明确规定,记者将排污口水样送到具有检测资质的相关部门进行检测,其检测参考值表明:哈药总厂排污口色度为892,高出国家规定极限值60近15倍。排污口氨氮为85.075,高出国家规定极限值35两倍多,排污口COD为1180,高出国家规定极限值120近10倍。2.废气超过恶臭气体排放标准

哈药总厂位于城区上风口,它释放的臭味影响范围波及周边的高校、医院和居民区。药厂为什么排放臭味呢?记者进入厂区后注意到,越往厂区内部,难闻的气味就越来越浓。记者调查了解到产生臭味的主要原因是药厂青霉素生产车间发酵过程中废气的高空排放,以及蛋白培养烘干过程和污水处理过程中,无全封闭的废气排放。废气排放严重超标,长期吸入可能导致隐性过敏,产生抗生素耐药性,还会出现头晕、头痛、恶心、呼吸道以及眼睛刺激等症状。3.废渣 废渣简单焚烧后流入河沟顺着排污口沿着河沟向下游几百米,在岸边上就是哈药总厂制剂厂。在厂区外,记者看到一个用砖搭建的焚烧炉,里面有大量的废渣在燃烧,废渣可直接排到河沟里。“车间垃圾全往这儿倒,啥都有,盐酸、硫酸。”现场的制剂厂职工告诉记者,焚烧炉里焚烧的都是化工产品。记者发现,制剂厂即便是简单的焚烧,有时也是不分地点,随意进行。部分废渣经过简单焚烧后会流入河流之外,还有大量的废渣就被直接倾倒在河沟边上。

制药工业的三废一般指制药工业生产过程中产生的废水、废气、废渣,接下来就简单讲一下三废处理的具体方法。

一. 制药工艺中废水的处理

从含义上来讲,制药废水是指在药物生产的过程中,因为工序的要求需要使用大量的水资源,而在工序过程中需要分泌出来部分有害药物,此时会与水分充分融合,由此产生大量的只要废水。因制药产品的不同、生产工艺的不同而差异很大, 通常情况下,可以将其分为:抗生素生产废水;合成药物生产废水;中成药生产废水和其他洗涤冲洗废水等四种。其特点为水质组分繁杂,污染物含量高,废水的BODs/CODcr差异较大,含有大量有毒、有害物质、难生物降解物质及生物抑制剂(包括一定浓度的抗生素)等,带有气味和颜色,悬浮物SS含量高,易产生泡沫。而且制药厂通常是釆用间歇生产,产品的种类变化较大,造成了废水的水质、水量及污染物的种类变化较大。基于这样的特定,在废水处理的难度也不断提高,已经成为制药企业发展过程中的难题。

1.制药工业废水主要包括以下四种

1.1抗菌素废水主要包括发酵废水、酸碱废水、有机溶剂及洗涤废水等,其中发酵废水的有机物浓度较高,COD达几万mg/L,而且废水中的残余抗生素对微生物具有抑制作用,使生物处理效率降低。此外,该类废水悬浮物含量高、色度高。

1.2合成药物生产废水:有机物浓度中等,COD在1000mg/L左右,可生化性一般,有的较差,常含有氨氮、油类及一些金属离子,如铬、铜、铅等。这些有毒物质不仅污染环境,而且增加生物处理的难度。

1.3中成药生产废水:废水主要来自原料的洗涤水、原药煎汁和冲洗水,COD数千mg/L,可生化性尚佳。d.各类制剂生产过程的洗涤水和冲洗废水。

2.常用的制药废水的处理方法

目前,国内对制药废水处理技术的研究往往是以其中最具代表性,污染最严重的化学制药、生物发酵制药等产生的高浓度、难降解有机废水为主要研究对象。一般情况下,制药工业废水分为合成药物生产废水、抗生素生产废水、中成药生产废水、各类制剂生产过程的洗涤水和冲洗废水常用的处理方法有物化法、生物法以及他们组合的处理方法。2.1物化处理

根据制药废水的水质特点,在其处理过程中需要采用物化处理作为生化处理的预处理或后处理工序。目前应用的物化处理方法主要包括混凝、气浮、吸附、氨吹脱、电解、离子交换和膜分离法等。2.1.1.氧化法。采用该法能提高废水的可生化性,同时对COD有较好的去除率。对3种抗生素废水进行臭氧氧化处理,结果显示,经臭氧氧化的废水不仅BOD5/COD的比值有所提高,而且COD的去除率均为75%以上。

2.1.2气浮法。气浮法通常包括充气气浮、溶气气浮、化学气浮和电解气浮等多种形式。新昌制药厂采用CAF涡凹气浮装置对制药废水进行预处理,在适当药剂配合下,COD的平均去除率在25%左右。2.1.3吸附法。常用的吸附剂有活性炭、活性煤、腐殖酸类、吸附树脂等。武汉健民制药厂采用煤灰吸附-两级好氧生物处理工艺处理其废水。结果显示,吸附预处理对废水的COD去除率达41.1%,并提高了BOD5/COD值。2.1.4膜分离法。膜技术包括反渗透、纳滤膜和纤维膜,可回收有用物质,减少有机物的排放总量。该技术的主要特点是设备简单、操作方便、无相变及化学变化、处理效率高和节约能源。

2.1.5.电解法。该法处理废水具有高效、易操作等优点而得到人们的重视,同时电解法又有很好的脱色效果。采用电解法预处理核黄素上清液,COD、SS和色度的去除率分别达到71%、83%和67%。

2.1.6.混凝法。该技术被广泛用于制药废水预处理及后处理过程中,如硫酸铝和聚合硫酸铁等用于中药废水等。高效混凝处理的关键在于恰当地选择和投加性能优良的混凝剂。近年来混凝剂的发展方向是由低分子向聚合高分子发展,由成分功能单一型向复合型发展。2.2化学处理

应用化学方法时,某些试剂的过量使用容易导致水体的二次污染,因此在设计前应做好相关的实验研究工作。化学法包括铁炭法、化学氧化还原法(fenton试剂、H2O2、O3)、深度氧化技术等。

2.2.1.铁炭法。工业运行表明,以Fe-C作为制药废水的预处理步骤,其出水的可生化性可大大提高。采用铁炭—微电解—厌氧—好氧—气浮联合处理工艺处理甲红霉素、盐酸环丙沙星等医药中间体生产废水,铁炭法处理后COD去除率达20%。

2.2.2.Fenton试剂处理法。亚铁盐和H2O2的组合称为Fenton试剂,它能有效去除传统废水处理技术无法去除的难降解有机物。随着研究的深入,又把紫外光(UV)、草酸盐(C2O42-)等引入Fen-ton试剂中,使其氧化能力大大加强。以TiO2为催化剂,9W低压汞灯为光源,用Fenton试剂对制药废水进行处理,取得了脱色率100%,COD去除率92.3%的效果,且硝基苯类化合物从8.05mg/L降至0.41mg/L.2.3生化处理

生化处理技术是目前制药废水广泛采用的处理技术。由于制药废水中有机物浓度很高,所以一般需要用厌氧和好氧相结合的方法才能取得好的处理效果。好氧生物处理有普通活性污泥法、序列间歇式活性污泥法(SBR法)、生物接触氧化法等。厌氧处理中常用工艺有升流式厌氧污泥床(UASB)、厌氧流化床、厌氧折流板反应器等.总之,制药废水水质水量波动较大,是处理难度较大的工业废水之一。所采用的处理方法应根据具体情况进行选择。二.制药工艺中废气的处理

废气处理指的是针对工业场所、工厂车间产生的废气在对外排放前进行预处理,以达到国家废气对外排放的标准的工作。一般废气处理包括了有机废气处理、粉尘废气处理、酸碱废气处理、异味废气处理和空气杀菌消毒净化等方面.一般制药工业废气多为有机废气,下面介绍有机废气的处理。1.有机废气吸附回收处理

有机溶剂废气的吸附回收方法的一个重要的应用领域是化工、石油化工和制药工业。使用的有机溶剂,例如甲苯、苯、汽油、二氯甲烷和乙醇等一般来说都是有较大价值的,并且有足够高的浓度,可以用相对较低的费用进行回收处理。2.有机废气的生物净化处理

生物滴流概念的进一步发展,一种具有很大表面积的惰性载体材料促使气相和水相的密切接触。同时通过反应器中的专用的内件及改进的废气输送可以实现过滤器能力的最佳化。在废气的直流和循环水中进行操作。溶剂被微生物分解并且变为无害的最终产品,如二氧化碳、水和生物物质等(新陈代谢)。流出的水在反应器内部循环,以把污染的气体的溶剂转变为可溶的形式。3.再生式燃烧有机废气处理

热再生式燃烧装置在700~900℃的温度范围工作,一般来说是3或5个炉室的结构。体积流量在10000标准m3/h以上的热再生式燃烧装置可以经济地进行操作。装置周围可能产生的废液可以通过启动烧咀或附加烧咀来烧掉。如果在有害气体中含有氯或硫之类的化合物,那么就可能需要采取进一步的有机废气净化处理步骤。三.制药工业中废渣的处理

1.废渣的特点:废渣不仅占用大量的土地,而且造成地表水、土壤和大气环境的污染,必须净化处理。化工废渣主要有炉灰渣、电石渣、页岩渣、无机酸渣;含油、含碳及其他可燃性物质,如罐底泥、白渣土等;报废的催化剂、活性炭以及其他添加剂;污水处理的剩余活性污泥等。2.废渣处理方法

主要有化学与生物处理法、脱水法、焚烧法和填埋法等。3.废渣处理的原则:

① 采用新工艺、新技术、新设备,最大限度地利用原料资源,使生产过程中不产生废渣;

② 采取积极的回收和综合利用措旆,就地处理并避免二次污染;

③ 无法处理的废渣,采用焚烧、填埋等无害化处理方法,以避免和减少废渣的污染。

4.废渣也是二次再生资源,根据废渣的种类、性质回收其中的有用物质和能量,实现综合利用。

例如,从石油化工的固体废弃物中回收有机物、盐共;从含贵重金属的废催化剂中回收贵重金属;从含酚类的废渣中回收酚共化合物;硫酸生产产生的酸渣,经焙烧可循环使用;含有难以回收的可燃性物质的固体废渣,可通过燃烧回收其中的能量;含有土壤所需元素的废渣,处理后可生产土壤改良剂、调节剂等;污水处理厂剩余的活性污泥,可生产有机肥料;将有用物质回收、有害物质除去之后的废渣,如炉渣、电右渣等,可作为建筑、道路和填筑材料。

总结:中国制药工业的发展越来越引起世界瞩目,然而不容忽视的是,中国承接国际产业转移也相应地加大了自身的能源消耗总量,制药生产过程的环境污染加剧,对人类健康的危害也日益普遍和严重,其中特别是生产过程中排出的有机物质,大多都是结构复杂,有毒有害的和生物难以降解的物质。因此,制药工业三废处理难度很大,是目前三废处理技术方面的研究重点和热点。我相信我们大家一起努力,制药工业严格把握三废处理的规定,做到零污染,协调人类与环境的关系,有意识地保护它,就能创造出适合于人类生活、工作的环境。References(参考文献)

[1] Balcioglu IA;(o)tkerM Treatment of pharmaceutical wastewatercontaining antibiotics [J] 2003(01)[2] 朱安娜,吴卓,荆一风,等.纳滤膜分离生产废水的试验研究[J].膜科学与技术,2000,20(4). [3] 魏有权。王化军,张强,等.气浮法预处理废水的试验研究[J].过滤与分离,2003,13(1).

[4]宁平,孙佩石,何少先,吴晓明 《西南地区火电厂废气废渣综合治理研究》昆明工学院

第二篇:化工三废处理

化工生产中的三废处理

近些年,我们一般所说的工业“三废”是指的是工业生产当中产生的废气、废水和废渣。而“三废”的产生主要有这几个来源,一是化学反应不完全或者有副反应,二是物理分离中产生的,三是通过非正常时期的短期排放产生的。“工业三废”中含有多种有毒、有害物质,若不经妥善处理,如未达到规定的排放标准而排放到环境(大气、水域、土壤)中,超过环境自净能力的容许量,就对环境产生了污染,破坏生态平衡和自然资源,影响工农业生产和人民健康,污染物在环境中发生物理的和化学的变化后就又产生了新的物质。好多都是对人的健康有危害的。这些物质通过不同的途径(呼吸道、消化道、皮肤)进入人的体内,有的直接产生危害,有的还有蓄积作用,会更加严重的危害人的健康。不同物质会有不同影响。化工生产曾今给人类创造了很多财富,生产了许多各个领域必须的产品,满足了人们生产和生活的越来越高的要求。但生产过程中的一些废弃物排入环境中,造成水体、大气和土壤的污染,这些污染物在水环境、大气环境和土壤环境之间不断地时行互相迁移、循环给人类的生活环境带来严重的危害。到20世纪末期尤为严重,已经形成了21世纪的一大“公害”。据资料统计,当今世界各国生产使用十多万种化学化工产品。人们利用各种原料进行加工,其中1/3直接转化为废物和污染物,2/3转化为产品。

一、化工三废的产生、分类及特点(1)化工废弃物的分类。

化学工业中所产生的废弃物,可以按聚集在一起时的状态来分类,也可按它们被处理和利用的办法来分类。其中最常用且又合理的是按聚集状态来分类,即将废弃物分为固体废物、液体废物和气体废物三大类,也就是我们通常意义上的“三废”。固体废物,这是些成粉末状、灰状、块状或凝固状的废物。属于这一类的有:残渣,灰渣,飞灰和烟灰,塑料丢弃物,废橡胶,选矿后留下的含金属的矿渣,有腐渣的有机物等。液体废弃物大都是些被污染的水体或其它废溶液,其中溶有盐类、碱类、酸和有机物,也包括分散的“油”液和含有悬浮的颗粒状杂质。属于这一类的主要是生产中排出的废水或用过了的有机溶剂和有机液体。气体形式的废物,这是一些工业锅炉、干燥设备、通风设备所排出的气体以及化学生产过程中分离出来的气体等等。属于这一类的有:各种烟,各种气味的气体,或雾状的固体或液体弥散颗粒,以及含N0、S02、HCl、HF等的烟雾,含尘气体,有机物蒸汽,含有有毒物质的蒸汽空气混合气体。除上述三类主要的形式外,还有一类较特殊的废弃物,即成泥浆状的废弃物,它既不能算作液体,也不能算作固体。通常它们是松散的或呈细粒晶体状的糊,其中含有(按质量计)20%~80%的水,不预先经过加工处理(干燥、冻结等)就较难运输。属于这一类的有:过滤、沉淀后的残渣,废液中和处理或特殊加工处理后产生的泥浆等。

化工废物的“毒性程度”是一个重要的概念或参数。所谓毒性程度,指的是化学或化工废物对生物界的影响。首先,是指对人类的影响,其次是对动植物的影响。根据毒性程度的大小,化学或化工废物可以分为无害的、有毒的和剧毒的几种。实际上,所有的化学或化工废物几乎都是有毒的,它所产生的影响的大小取决于人所接触到的剂量或自然环境中所具有的浓度。此外,许多化学物质无论是在组织中还是在周围环境中,许多都有能积累的特点,从而越来越加剧了毒性的作用。(2)化工三废的来源。

虽然产生化工污染物的原因和污染物进入环境的途径有多种多样,但概括讲,化工污染物的主要来源大致可分为以下两个方面。

二、生产中三废的综合利用

将化工厂排放的废弃物,加以合理的综合利用和回收,使无用的“废物”重新成为有用之物,即可治理三废防治污染,又可创造财富,故称之为“资源的二次开发工作”。1.废气的处理和利用

废气的常用处理方法:冷凝法,吸收法,吸附法,直接燃烧法,催化燃烧法五种。典型化工废气的处理和利用化工生产过程中典型的废气处理主要有:烟气脱硫和烟气脱硝两大部分。2.废水的处理方法 工业上对废水处理的方法有物理法,化学法和生物法三类。化工生产过程中典型的废水有:含硫废水,含酚、氰有毒废水含硫废水的处理:主要有空气氧化法和水蒸气氧化法 3.废渣的处理方法

化工生产过程中排出的废渣,除少数组分回收利用外,大都分采用堆放处理。化学和生物处理。用化学和生物的方法处理化工废渣,主要有中和、氧化、还原、水解、化学固定等方法。三、三废治理原则

对于三废的防治,在进行工艺设计和工程设计时,要把三废治理作为重要环节,做到“三同时”,即同时设计、同时施工、同时投产。对于已经投产的企业,如果三废不加治理时,可以指令限期治理,不然可以令其停产。治理三废的积极的思路就是改造工艺,使其不产生无法治理或难以治理的三废;其次是“三废”资源化,回收利用或生产出新的产品(过去称综合利用产品),万不得已则使之无害化。这是总的原则。

采用先进工业技术,控制产生污染

(1)对有严重污染的原料路线、生产方法进行改革。

化工生产中采用的某些原料、催化剂以及生产过程中的中间产物,是有毒有害的,直接污染生产环境,长期危害操作人员健康。因此,力图实现工艺改革,采用无害或低害的原料路线,并相应改变工艺生产方法。隔膜电解法代替水银电解法,就免除了汞污染。有些生产中由于使用大量酸、碱、溶剂、氨等,造成严重的污染。如用次氯酸化法生产环氧乙烷,需要排放大量的石灰浆和含有机氧化物的废水;采用乙烯直接氧化制环氧乙烷,污染显著减轻。(2)改变造成污染的产品品种。

有些化工产品在生产和使用过程中有毒有害,污染环境,需要采用改革产品品种的措施。农药生产在这方面的例子是显著的。如以往使用的无机砷、有机汞农药以及六六

六、滴滴涕等有机氯制剂,现在已禁止生产和使用。(3)改变设备、改进操作。为减少和消除污染,需要对污染环境的生产设备进行改造。如在冷却、洗涤操作上,采用直接接触式设备,会产生大量的废水,如改用问接冷却器进行问接冷却,可有效地减少污染物的排放量。电解食盐水工业中产生的氯气,过去用直接喷淋水冷却的方法去除氯气中的水蒸气,在喷淋过程中水与氯气直接接触,有一部分氯气溶解于水,因而排放出来的废水中含有一定量的氯。现在采用钛管列管冷却器,氯气通过钛管,被管外的冷冻水进行问接冷却,使滤器中的水蒸气直接冷凝下来,不与冷却用水接触,消除了排出水含氯的问题,同时减少了氯气的损失。(4)采用密闭循环工艺。

所谓密闭循环,指系统的废弃物,通过一定的治理技术,重新回到系统中加以使用,以避免污染物排放环境的工艺。又称为“无废工艺”或“零排放工艺”。它既可降低原料消耗,又减少污染物的危害。(5)减少系统泄漏。

从控制污染观点考虑,提高设备管道的严密性、减少反应物料的泄漏也是十分重要的。需要提高设备和管道的严密性,对泵和阀门等管件要选用密闭性能好的,如屏蔽屏、整体阀门等;管件连接密封,可选用优质垫圈,采用双层密封等。为防止泄漏,在设计上应尽量减少机械连接,在材质上要选用耐腐蚀的材料,对因腐蚀易引起泄漏的部位,要在设计上考虑便于监测和修补。视流体性质不同,应安装自动报警或监测泄漏的装置,以防止泄漏事故的发生。

四、本文主要介绍几项重大污染行业的三废处理:造纸业、氯碱工业。造纸业:

随着造纸工业的迅速发展,造纸工业废水已经成为水环境的重要污染源之一。造纸工业废水的污染已经是世界公认的“六大”公害之一,对环境的污染主要为废水、废气、废渣、噪声和恶臭。其中废水的污染最为严重和复杂,这是由于造纸工业废水排放量大,又还有大量的纤维素、木质素、无机碱以及丹宁、树脂、蛋白质等。并且即使经过充分的废液回收利用,也还是或多或少地会有一些纤维素和半纤维素流失进入废水中。含有大量有机物的造纸废水排入水体,对水体会造成不同程度的污染。同时造纸过程中通常还需要加入一些必要的化学药剂和化学助剂,这些物质流失进入水体中更是加重了水体污染。造纸工业的漂白工段通常是采用含氯化合物漂白,导致排出的漂白废水中含有大量的氯化有机物,其中的氯苯酚、氯化脂肪酸、氯化树脂酸、dioxin 等有毒且难以处理的氯化有机物,对环境中的生物具有强烈的毒害、致畸、致多发性脑神经病变作用,因此如何有效地去除造纸废水中的含氯有机物已经成为废水处理的一大难题。本文在查阅大量文献资料的基础上针对当前的废水来源和废水处理技术特点进行详述, 主要介绍国内外处理造纸废水的方法和新技术,并就国内外治理造纸废水的现状和未来的发展前景加以评述。4.1 制浆造纸废水特点和处理方法

造纸工业废水主要分为蒸煮废液、中段水、造纸白水三种, 对于废纸制浆企业来说, 在废纸再生利用过程中会产生脱墨废水, 它们由于产生的情况和来源不同, 其污染的严重程度和特点也有一定的差异。4.1.1 蒸煮废液

蒸煮废液即碱法制浆的黑液和酸法制浆的红液。目前国内的制浆技术主要是碱法制浆, 黑液的污染负荷最大, 占整个造纸行业污染负荷的90% , 其产生的黑液污染物浓度与所用造纸原料种类、生产工艺等有关。一般黑液中杂质约占10% ~ 20% , 其中1/ 3 为无机物, 主要是各种钠盐;2/ 3 为有机物, 主要是碱木素、半纤维素、脂肪酸和树脂酸等。对其处理方法主要是采用碱回收, 但目前草类原料中的硅干扰问题没有完全解决, 使得黑液提取率比木材低得多, 碱回收比较困难, 造成一定的污染, 而且碱回收工艺投资大, 工艺复杂, 只有大型制浆企业才能承受。4.1.2 中段水

中段水来源于造纸工艺的洗涤、筛选、漂白工段, 是废水处理的主要目标, 其化学成分与黑液相仿, 只是浓度稍低, 其中漂白废水中含有大量的有机氯化物, 具有很深的颜色和很大的毒性, 除了需要除去COD、BOD、SS 等物质外, 还要进行脱色处理。目前中段废水的处理工艺主要是物化和生化处理, 经过处理后, 虽然COD、BOD、SS 等物质大大降低, 但部分有机污 4.1.3 造纸白水

造纸白水主要来自打浆、浆料的净化筛选和造纸机的湿部。白水污染物浓度低, 主要是一些纤维、填料、涂料等, 可通过白水封闭循环、过滤、筛分、气浮、沉淀等处理工艺, 回收纤维实现可循环利用, 减少污染排放量。4.1.4 废纸脱墨废水

废纸脱墨废水主要来源于制浆部分的洗涤废, 该废水不仅SS 含量高、色度大, 而且还含有大量成分复杂的COD 物质。这些COD 物质主要包括细小纤维、油墨、树脂、颜料、化学药品和机械杂质等污染物, 根据废纸来源和生产工艺的差别, 洗涤废水的特征有所不同。我染物无法有效去除。国目前采用的废纸造纸废水处理技术为混凝沉淀(或气浮)等。氯碱,即氯碱工业

使用饱和食盐水制氯气氢气烧碱的方法。工业上用电解饱和NaCl溶液的方法来制取NaOH、Cl2和H2,并以它们为原料生产一系列化工产品,称为氯碱工业。氯碱工业是最基本的化学工业之一,它的产品除应用于化学工业本身外,还广泛应用于轻工业、纺织工业、冶金工业、石油化学工业以及公用事业。氯碱工业是化学工业的一个重要组成部分,是生产基本化工原料的行业。近年来,中国氯碱工业迅速发展,原有氯碱企业纷纷扩大了生产能力,一些新的企业也相继投产,产能快速提升,氯碱工业呈现出加速向规模化,高技术含量方面发展的态势。中国氯碱工业在产能迅速提升的同时,技术也获得了长足发展,规模化装置增多,装置技术水平提高,中国氯碱工业呈规模化、高技术化发展态势。氯碱行业为国民 经济发展做出了重要贡献。同时,氯碱行业对环境污染也是比较大的。

每年氯碱行业排放三废数量大,污染物多,其中工业废水年排放7200万~80000万t,废气排放600亿~700亿m3,废渣160万~200万t。全国化学工业每年排放废水60亿m3,废气7000亿m3,废渣3500万t,氯碱行业年排放总量约占全国化学工业排放总量比例分别为废水占1.2%~1.3%,废气占8.6%-10%,废渣占4.6%~5.7%。由此可以看出,氯碱行业产生“三废”废气量最大,其次是废水和废渣。“三废”种类包括:重金属、有机氯化物、硫化物、氯化物、酚类、油类及放射性物质等等。因此应加大对废气和废水治理力度,逐步采用清洁生产,把三废消除在生产过程中,搞综合利用,变废为宝,变“三废”为资源,做到社会环境和经济效益的统一。4.2.1 废水治理 氯碱生产中废水主要来源于工艺废水,如盐水净化、电解系统、氯氢处理系统、烧碱蒸发废水、PVC含酸废水、有机氯产品含酸废水、乙炔发生电石灰废水、电站水净化产生废水等等。这些废水大部分是酸性水,含有各种污染物,盐分高、悬浮物高、COD高,个别有异味,排人水体后集中处理不但数量大,难度也很大,污染环境,腐蚀设备、管道。根据各厂经验,分别将各种产品产生的废水针对各种污染物种类,采取不同的处理方法,将其解决在某一工艺过程中。高浓度废水综合利用回收有价值的可作为产品和半成品,可变废为宝,取得较好的经济和环境效益。废水治理各厂都有自己好的经验,大致包括:酸性废水治理、PVC含汞废水治理、过氯乙烯和氯苯废水治理、含三氯乙醛废水治理、含酚废水治理、含硫废水治理、氯水综合利用,含有机氯废水治理等。生产过程中全部碱性废水回收利用

烧碱蒸发中大量的冷凝水,已实现了闭路冷却,再循环利用。在此基础上实现了烧碱生产废水的零排放。其中有:①吸附工段,冲网、冲地面、真空泵排水等含悬浮物的碱性废水,采用滤池过滤后清液全部回收循环使用,废石棉绒定期清池集中处理,实现吸附工段废水零排放。②蒸发和盐水工段下水回收。各类泵冷却水、42%碱二段冷却器回收、离心机冷却水、42%碱热水槽溢流水等,这些水引人贮槽,用泵送人水封槽,再进人碱性循环水系统。③氯乙烯碱洗废水回收。氯乙烯碱洗塔置换时,废碱液利用碱循环泵打入电石渣浓缩池,浓缩压滤处理后作为发生器的补充水。酸性废水治理

氯碱生产中酸性废水主要来自离子膜树脂塔再生酸性水,电站水处理磺化酶再生水及氯产品洗水,废气塔吸收水等。近几年浙江善高化工有限公司,北京二化股份有限公司等利用5~8mm的石灰石中和酸性水,并建立了大型废水处理装置,多年运行状况良好,废水处理后pH值(6~9)合格率100%。4.2.2废气的治理

1.锅炉、炉窑烟道气SO2治理

湿法脱硫 即目前国内较先进的“烟囱组合型简易湿式脱硫装置”,由日本三菱重工业株式会社承担设计,提供主体设备,由日本政府无偿援助3套,都用在氯碱行业,山东潍坊亚星集团公司、广西南宁化工集团和四川长寿化工总厂,其中潍坊亚星集团的运行较好,脱硫效率可达82.4%(一般在70%左右)。使用的脱硫剂是生产PvC副产电石渣浆,因是简易脱硫法,产物硫酸钙未做处理,水泥厂做填料。现在仅此三家,因造价高还未全面推广。浙江大学开发研制双碱脱硫法

即用氢氧化钠和氢氧化钙作为脱硫剂吸收SO2,其生成物为亚硫酸钠和亚硫酸钙,在水中水解后逐步由钙盐代替。脱硫除尘同时在花岗岩砌筑塔内进行,脱硫剂定期加入循环使用,将吸收烟尘随循环吸收液一起排人沉降池沉降,上清液循环,沉渣做砖用材料,两塔串联使用除尘效率达95%以上,除尘渣煤灰可利用。脱硫效率达70%,该技术造价低,运行费用低。2.按脱硫法

原理是采用50%甲基二乙酸胺(MEDA)来脱硫,运行能耗低,50:脱除率高,效果好。此技术由美国道化学公司和加拿大的TurbOSoulc公司合作研究开发,脱硫系统包括特定的胺与亚硫酸气反应,加热分离成有用的50:和可回收的胺。与一般方法相比生成物大为减少,后处理方便易行。此公司技术目前只在亚洲国家、印度、韩国和澳大利亚使用。今后美国将此技术与中方合作,扩大应用范围来解决中国的脱硫间题。3.生产工艺废气治理

氯碱行业排放工艺废气一般都含有氯化氢、氯气、硫化氢及有机氯化物,VCM单体,硫醇类,对大气产生污染,有些严重超标,是群众较敏感的问题。4.2.3废渣的治理

氯碱行业产生废渣主要有:电石渣、粉煤灰、炉渣、盐泥、钡渣及化工废渣等。1998年全国电石法生产PvC88.4万t,产生的电石渣在160万一170万t,利用率80%以上。1998年烧碱产量508万t,产生盐泥7万一10万t。全国氯碱行业自备电站装机容量为50万kwh,每年产生粉煤灰30万一40万t,炉渣80万~100万t。1.粉煤灰的治理及应用 一般液态排渣炉粉煤灰比较细,流动性强,输送困难,风吹运输造成贮灰场灰尘飞扬,污染环境。一般在灰场建立灰仓储存,并在灰仓上部加布袋除尘器,再反吹下来收集到料仓里,运往用户。目前粉煤用量最大是建高速公路路基填土代替三合土,硬度强,质量好,已供不应求。

另外,随着建材行业迅速发展,用粉煤灰做粉煤灰水泥,有独特性能,特用在桥梁建筑桥墩上,越接触水强度越好。粉煤灰中含有大量SiO2:和A12O3等活性物质,与Ca(OH)2反应后生成一系列水化产物,产生水硬性,将粉煤灰、氧化钙、铝粉、水泥混合固化制成加气混凝土砌块,粉煤灰用量占60%~70%以上,这种非承重空心砌块用于框架填充材料,又轻又保温且造价低,很受欢迎。

粉煤灰用于农业方面,作为肥源制造硅钙肥、硅钾肥、微肥补充源,又是改良土坡物化状态价廉物美改良剂,制造人造土和人造沸石满足床土育苗和农药吸附需要。现在农业用粉煤灰潜力很大。2.电石注处理及应用

用电石渣做水泥以电石渣为主原料,以电场液态渣为混合材生产普通硅酸盐水泥是一种化害为利、变废为宝的好措施,既解决了水泥市场供不应求的状况,又使固体废弃物得到了综合利用。用电石渣浆做水泥在氯碱行业有20多家,产量百万吨以上,用电石渣处理度氛气做次氛酸钙氯碱行业利用自己副产电石渣有利条件,处理电解系统含氯废气,生产市场上畅销的氯产品,如山东潍坊亚星化工集团、新获石河子化工厂、上海天原化工集团就利用电石渣浆生产次氯酸钙,其产品有效氯达5%~6%,供给造纸行业作漂白剂,取得一定经济效益。电石渣装可作环氧丙沈和氛酸钾的原料生产环氧丙烷皂化时用高浓度的Ca(OH)2进行反应,而电石渣浆中Ca(OH)2含量妻≥90%(干基),能满足环氧丙烷工艺要求,且实践证明可行。在锦西化工总厂、天津大沽化工厂都采用电石渣来代替白灰皂化,效果很好。另外,大沽化工厂用电石渣生产氯酸钾已多年,只要将电石渣浆乙炔吹净,安全上无问题。

盐泥综合利用国外电解用盐都用精制盐,不产生盐泥,特别是汞法电解意义重大,避免了含汞盐泥污染问题,我国电解用盐因种类不同,盐泥产生量不同。海盐和岩盐产生盐泥数量不等。但这也是一个重要污染源,占用耕地,污染地下水,应作为一个课题加以研究解决。目前我国大部分厂家还是堆存填坑,尚未利用。太原化工集团做了很多试验工作,取得了成绩,有关部门应组织攻关解决。结束语

“三废”治理强调的是资源的重复利用,必须从源头抓起,着眼于生产的全过程。尽可能地减少“三废”的排放,并积极开发和利用“三废”治理的先进技术,从而作到“三废”资源的回复利用,减少对环境的污染,同时也降低了生产成本,提高了企业的竞争力,使之能够在激烈的市场竞争中立于不败之地,实现了经济效益和环境保护的“双赢”。

第三篇:水泥三废处理论文

芜湖职业技术学院

三废处理论文

论文题目:论水泥工业三废处理技术的应用及效益

学 院 芜湖职业技术学院 系 别 轻化工程系 专 业 精细化学品生产技术 年 级 10级 学 号 100303104 学 生 姓 名 白龙飞

指导教师姓名 徐世前 指导教师职称 教授

2012 年 11月 12 日

目录

一、1.摘要 „„„„„„„„„„„„ 1 2.关键词 „„„„„„„„„„„„1

二、1.引言

„„„„„„„„„„ 1

2.水泥的生产工艺 „„„„„„„„„1 3.水泥工业三废及处理 „„„„„„„„„„„1 3.1废气 „„„„„„„„„„„1 3.2废水 „„„„„„„„„„2 3.3废料 „„„„„„„„„„„3 4.水泥“三废”合理利用有助资源节约 „„„„„„„3 4.1对水泥工业发展的意义 „„„„„„„„„„„„3 4.2 对水泥行业带来的机遇 „„„„„„„„„„„„„3 4.3 环境保护的意义 „„„„„„„„„„„„„3 5.结论 „„„„„„„„„„„„„„4

三、参考文献 „„„„„„„„„„„„„4

摘要:介绍了水泥生产线生产过程中产生废气的情况,针对废气排放特点,采用包含末端治理在内的综合治理措施进行治理;对水泥生产废水处理回用工程可行性、经济性等进行探讨,并提出切实可行的工艺流程;对水泥生产中废料处理,采取的措施等。关键词:水泥;废气;废水;废料;治理 引言

水泥(英文:cement)是指粉状水硬性无机胶凝材料。加水搅拌后成浆体,能在空气中硬化或者在水中更好的硬化,并能把砂、石等材料牢固地胶结在一起。水泥是重要的建筑材料,用水泥制成的砂浆或混凝土,坚固耐久,广泛应用于土木建筑、水利、国防等工程。水泥的生产工艺

水泥的生产工艺,以石灰石和粘土为主要原料,经破碎、配料、磨细制成生料。喂入水泥窑中煅烧成熟料,加入适量石膏(有时还掺加混合材料或外加剂)磨细而成。

水泥生产随生料制备方法不同,可分为干法(包括半干法)与湿法(包括半湿法)两种。水泥工业三废及处理

所谓“三废”,就是“生产过程中,产生的废料(废煤碴、废石碱、废煤灰等)、废气(排放、残余等气源再利用)、废水(自然排泄工业废水等)”的概称。

水泥生产过程产生的废气污染物主要是粉尘,其次是SO2、NOx等。水泥生产的废水中,有机物含量低,主要含粒径不同的颗粒物,主要污染物为SO2。水泥生产的废料有离心成型后的废浆、搅拌成型和浇灌的撒落料及拌制混凝土的剩余混合料、冲洗搅拌机的水浆、蒸汽锅炉废渣、粗细集料(砂、石)筛(洗)余物、废品及其他边料。下面分别介绍水泥生产中三废处理技术的应用。

3.1 废气

水泥生产的特点为物料处理量大,粉状物料或成品输送环节多。在物料破碎、输送、粉磨、煅烧、包装、储存等环节中,几乎每道工序都伴随着粉尘的产生和排放。产生的粉尘类型主要有:(1)原料粉尘;(2)煤粉尘;(3)水泥窑粉尘;(4)熟料粉尘;(5)水泥粉尘。粉尘的排放方式分为有组织排放和无组织排放两大类。有组织排放包括从热力设备烟囱和各种通风设备排气筒排放的粉尘。无组织排放包括各种物料在装卸、运输、堆存过程中自由散发出来的粉尘。粉尘最大的排放源为窑尾废气,其次是窑头废气。SO2、NOx等产生于熟料煅烧过程,由窑尾烟囱排入大气。

治理措施:为了有效地控制废气的产生和排放,工程采取了以下综合措施:(1)从工艺流程设计、布置上尽量减少扬尘环节;(2)选用扬尘少的先进设备;(3)粉状物料采用空气输送、链式输送机等密闭式输送设备;(4)带式输送机布置尽量降低物料落差并加强密闭;(5)配备洒水车,设置洒水管道,对石膏、原煤、矿渣等物料露天堆场和物料运输道路洒水降尘;(6)加强绿化,厂区内的绿化面积占可绿化面积的81.4%;(7)对有组织排放点设置相应废气处理装置。

结论:(1)在采取综合治理措施后,各废气排放点废气各项排放指标均符合《水泥厂大气污染物排放标准》(GB4915—1996)中二级标准;该厂粉尘无组织排放符合《水泥厂大气污染物排放标准》(GB 4915—1996)二级标准。治理设施运行稳定、综合治理效果良好。(2)水泥厂的废气排放,特别是粉尘无组织排放情况,同企业的内部管理情况直接相关。强化企业内部管理是水泥厂废气长期、稳定地实现达标排放的关键和有效保证。

3.2 废水

水泥工业生产用水量大而对水质要求不高,主要用于旋转窑冷却、地面冲洗、冲洗磨机等,其生产废水一般未经处理直接排入地面水体,严重时造成河道淤塞,影响了人们正常的生活生产用水。水泥工业生产废水主要含不同粒径的细小颗粒,而水泥生产对用水水质要求不高,因此,对水泥生产废水进行处理并回用,不但具有环境社会效益,而且经济效益也十分显著。水泥生产废水主要污染物为SS,废水中SS主要以粗分散系和胶体分散系两种形态存在。其中粗分散体系占总悬浮物的80%-90%,在自然沉淀状态下就能较容易去除。处理的关键在以胶体状分散体系存在的SS。治理措施:通常对于以胶体状存在的SS,主要靠投加混凝剂,通过混凝剂水解产物压缩胶体的扩散层,达到胶体脱稳而相互聚结;或者通过混凝剂的水解和缩聚反应而形成的高聚物的强烈吸附架桥作用,使胶粒被吸附粘结。针对水泥生产废水的特性,经过充分的试验论证,采用聚合氧化铝为絮凝剂,压缩双电层,降低电位,然后投加少量PAM作助凝剂,靠其大分子的吸附架桥功能,将脱稳的细小颗粒凝聚成较大的颗粒,提高沉降速度,从而达到泥水分离的目标,SS处理效果显著。根据试验结果,废水中CODcr和SS具有线性关系,CODcr随SS的变化而变化。因此,水泥废水的治理主要以去除SS为目标,只要SS降低了,CODcr就随之降低。具体流程如图4示:

3.3 废料

水泥制品企业往往忽视企业本身废渣废料的综合利用,以致侵占农田、堵塞河道、污染环境。经济合理地处理这些废渣废料,特别是用于农房墙体生产,既可解决农房墙体材料急需的大量原材料,又可增加企业的经济效益,具有一定的现实意义。

离心成型后的废浆这种废浆含有5%-8%的水泥,可作墙体材料的胶绪材使用;搅拌、成型和浇灌的撒落料及拌制混凝土的剩余混合料,后者性能较好,可作为农房墙体材料的基本混合料,前者可作混合料;冲洗搅拌机的水浆其性能与离心成型的废浆大致相同,可作胶结材或混合料使用;蒸汽锅炉废渣这种废渣经破碎筛分可分别替代粗细集料,不过用作粗巢料时,要防止混凝土成型时出现分层现象I粗细集料砂、石筛洗余物;废品及其他废地坪、废砖瓦及混凝土边料这些材料经破碎筛分后,可替代粗细集料。

治理措施:(1)废渣砖:利用离心成型的废浆作胶结材,加入适量的炉渣人工或机械破碎作集料,再加混凝土撒落料,人工拌和均匀后放人钢模内夯实成型,经自然养护即为废渣砖尺寸与普通粘土砖相同,主要用于围墙砌筑;(2)废料实心砌块:利用撒落料和剩余混合料,掺加一些砂、石筛余物和炉渣作集料,经人工拌和均匀,在钢模中振动密实成型,白然养护后即为废料实心砌块毫米,可用作单层房屋的墙体材料;(3)房屋基础用的水泥条石利用撒落料和剩余混合料,掺加冲洗搅拌机的水浆和部分砂、石筛余物,经人工拌和后,在钥模中夯实成型,自然养护后即得水泥条石;(5)室内外地坪方砖:利用离心成型后的废浆、撒落料和砂、石筛余物或混凝土制品的边料,经人工拌和后,在模子中夯实成型,即为地坪方砖厘米,此砖生产在各厂较为普遍;(6)其他:如花墙、花格栏杆和水泥墩子船台上使用等。水泥“三废”合理利用有助资源节约

水泥行业“三废”的合理利用,国家在政策上可给予一定比例的政策性优惠和支持,一般水泥企业利用了一定比例的“三废”即可获得退税等的优惠和地方性补贴支持,这可谓是“一举两得,甚至一举多得”之好事:

4.1对水泥工业发展的意义

在经济欠发达地区(特别是经济贫困地区、山区等等)“三废”利用率较低,鼓励(用政策激励等措施)调动相关涉及利用“三废”行业积极合理使用“三废”上效益、促发展,更具十分重要的意义,为我国水泥厂焕发了生机,主要是充分利用了“三废”来降低成本赢得效益最大化的,这就更加凸显了“三废”产生的财富威力。

4.2 对水泥行业带来的机遇

在经济发达地区“三废”则更显高价值功能,利用的空间规模会更加庞大,给水泥利用“三废”的行业(企业)带来更多机遇和商机,创造利润的更大化。4.3 环境保护的意义

在发展和平衡经济地区间“三废”有其“意想不到”之价值效果,并产生更多的节能效应。虽然处于发展和平衡经济带中间,“三废”的拥有量和可用程度还是比较有潜力可挖的;充分合理利用“三废”就等于节约了优良的资源,创造出以“废”变“宝”之新跨越!为实现“资源节约型和环境友好型”社会氛围奠定了坚实的基础,为资源节约化程度之攀高增加了重量级砝码。结论

通过对水泥工业中“三废”的综合处理应用,不仅给企业带来可观的经济效益,还具有一定的社会效益。水泥生产中,废水、废气和废料的处理回用工程的实施,不但具有环境、社会效益,而且具有十分显著经济效益。云南省腾冲县水泥厂对本地企业加工生产过程中产生的废弃物加以综合利用,变废为宝,保护了环境。腾冲县水泥厂过去生产水泥的原料采用硫铁矿和火山灰,生产中产生大量二氧化硫气体,对大气造成严重污染。因这两种原材料的大量采挖,对山林植被造成了大面积破坏。后经水泥厂技术人员反复实验论证后,采用了县化肥厂硫酸提炼后产生的硫铁矿废渣替代硫铁矿,采用县纤维板厂及胶合板厂锅炉烧余后的煤灰和火山石机制解石厂产生的大量边角废料和其他剩余物替代火山灰。这类铁矿渣、火山石、煤灰已经高温煅烧,性能稳定,富含水泥生产有用的化学成分,使水泥质量更加稳定,产品标号显著提高。此举不仅解决了这些企业清运废料的后顾之忧,还使公司增效,同时消除了大量工业废料随处倒弃对环境造成的严重污染问题。经有关专家鉴定,该公司的“三废”利用率高达到33.5%,每年综合利用“三废”3.315万吨。

参考文献:

《水泥工业三废处理与工程实例》 作

者:曹健,李浪编 出 版 社:化学工业出版社 《水泥生产工艺控制(第2版)》 作

者:张建丰 编著 出 版 社:中国电力出版社 《化工安全与环境》

主管单位:中国石油和化学工业协会

主办单位:中国化学品安全协会 中国化工信息中心 北京中化信深达信息技术有限责任公司 主

编:周厚云 《化工安全与环境保护》

作 者:王德堂,何伟平著

出 版 社:化学工业出版社 《化工三废处理工》

作 者: 黄海林,晋卫 著 化学工业职业技能鉴定指导中心编

出 版 社: 化学工业出版社

第四篇:电石法乙炔生产中“三废”处理技术

化工三废处理工(论文)

题 目:电石法乙炔生产中“三废”处理技术

院 系: 材料工程院 专 业: 精细化学品生产技术

班 级: 11级精化班 姓 名: 陈飞建 学 号: 110303107

2013年 11 月 07日

目录 电石制乙炔中废渣的回收利用„„„„„„„„„„„„„„„„„„„„3 1.1 电石渣制水泥技术的发展与思路„„„„„„„„„„„„„„„„„3 1.2电石渣生产生石灰技术的发展路„„„„„„„„„„„ „„„„„„3 1.3电石渣制砖技术的发展思路 „„„„„„„„„„„„„„„„„„„3 1.4 电石渣生产纳米碳酸钙技术的发展思路 „„„„„„„„„„„„„„4 1.5电石渣作为化工原料的发展思路 „„„„„„„„„„„„„„„„„4 2 电石制乙炔中废水的回用方法及发展思路 „„„„„„„„„„„„„„5 2.1 废次钠的处理技术简介和讨论 „„„„„„„„„„„„„„„„„„5 2.1.1 废次钠回用发生器使用技术运行中存在的问题 „„„„„„„„„„5 2.1.2 脱析废次钠中乙炔气后循环利用的技术简介以及存在的问题 „„„„5 2.1.3 膜法回收废次钠技术简介 „„„„„„„„„„„„„„„„„„„5 2.2 电石渣上清液的回用技术简介 „„„„„„„„„„„„„„„„„„7 3 电石制乙炔中废气的回用方法及发展思路 „„„„„„„„„„„„„„ 8 3.1 系统构成与工艺流程 „„„„„„„„„„„„„„„„„„„„„„8 3.2 工艺设计原理与注意事项 „„„„„„„„„„„„„„„„„„„„8 4 结语 „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„9 5文献„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„9

电石法乙炔生产中“三废”处理技术

陈飞建

(芜湖职业技术学院 安徽 芜湖 241000)

摘 要:介绍了电石法乙炔生产过程中“三废”的处理和回用方式,提出了发展思路。

关键词:电石渣;废次钠;乙炔气;环保 电石制乙炔中废渣的回收利用 1.1 电石渣制水泥技术的发展与思路

电石废渣制水泥工艺在国内已经成熟,中国在上世纪 70 年代就建成了 1 条水泥生产线,专门消化电石废渣。经过多年的发展,电石渣制水泥技术越加成熟,成为电石渣处理的主流技术。2005 年,国家十一五发展规划实施后,干法电石制乙炔技术广泛应用,产生的电石渣含水量为百分之五左右,直接进入水泥生料工段,降低了预处理以及热能的损耗,从而使电石渣制水泥具备了低成本、低能耗的市场竞争优势。据 2010-2015 年水泥市场调查报告,传统的水泥产业在城镇化建设较为完善的区域,已经存在市场饱和情况。湿法电石制水泥项目,项目技术较复杂、占地面积大、投资大、能耗较高,不能做为持续发展的道路;干法电石制水泥技术简单,具备低成本、低能耗的优势。1.2 电石渣生产生石灰技术的发展思路

采用电石渣生产石灰工艺有较长的技术历史,理论上,采用电石渣生产石灰是较好的方式。但是在实际利用的过程中,还存在杂质富集等很多问题。电石渣生产石灰的投资不到电石渣生产水泥的十分之一,石灰是电石生产的原料,不存在另寻市场的问题,在一定程度上实现了以钙为载体,形成电石废渣—石灰—电石—电石废渣的闭路循环,减少了电石制乙炔废渣对生产影响的因素,也保护了石灰石矿源,所以,电石废渣制石灰所产生的经济效益和社会效益相对高于别的电石渣处理方式。然而,这种方式的能耗比较大,不适合没有多余热源的企业采用,而且由于回收石灰中含硫、磷杂质多,造成电石质量低下,导致回收石灰重作电石原料所占的比例不能超过电石原料的 20%,故而无法实现全部的电石渣循环利用。对于该项技术,最大的制约因素是硫、磷杂质的富集,虽然随着科学

[1]

技术的进步,有了较多的方式去除杂质,但是真正能够去除固体中硫磷的方式还没有完全突破,需要在以后的生产中进行完善。1.3 电石渣制砖技术的发展思路

电石渣制砖技术主要的工艺流程是以浓缩的废电石废渣为主要原料,掺入少量的水泥,与经过破碎的煤渣碎石料按电石渣:水泥:碎石:煤渣=3.2:1.1:3.2:1.4的比例进行混合搅拌后,再经砌块成型机加压成型,养护完成后,便可销售。电石渣制砖的强度能够达到普通红砖强度,符合小型空心砌块的国家标准。该技术方案投资省、成本低、产品自重轻,可以在常温、常压下进行生产养护,节约能源。另外电石渣制砖的成本是普通黏土砖的 60%,是混凝土砌块的 50%。具备低成本的产品竞争优势。既综合利用了电石渣,提高了经济效益,变废为宝,也保护了环境。但是在轻质煤渣砖的生产过程中,电石废渣作为钙质原料,其加入量有限,一般不超过 35%,对于排渣量大的企业,是难以消化完全的,而且由于认知的原因,采用废渣制成煤渣砖的市场销路尚有一定的局限性,也在某种程度上制约了该产品的发展。1.4 电石渣生产纳米碳酸钙技术的发展思路

纳米碳酸钙又称超微细碳酸钙,又叫超细碳酸钙,是20世纪80年代产生的新材料,广泛应用于塑料、涂料、油墨、造纸、橡胶等多种行业,最成熟的应用在于塑料行业,可代替百分之四十左右的PVC加工塑料,并且能改善塑料制品的流变性能、尺寸稳定性能和耐热稳定性,具有填充及增强、增韧作用,能降低树脂用量,从而降低产品生产成本。电石渣制备纳米碳酸钙主要流程见图 1。

[5]

[4][3]

[2]

电石渣制作纳米碳酸钙是电石渣回收技术发展的新突破,该项目投资较低,运行成本低,在具备电石炉气提供的 CO2的企业,电石渣制纳米碳酸钙无疑是具备很大的环保效益以及经济效益的技术,它的广泛应用将会为电石法制乙炔提供

一条高附加值的应用途径。1.5 电石渣作为化工原料的发展思路

干法乙炔生成的电石渣,含水量低,氢氧化钙纯度高于90%,进行预处理后可以生产多种化工原料,具有代表性的是电石渣代替熟石灰生产环氧丙烷与氯酸钾等技术。

(1)生产环氧丙烷。在以丙烯、氧气和熟石灰为原料,采用氯醇化法生产环氧丙烷的工艺过程中,需要大量熟石灰。丙烯气、氯气和水在管式反应器和塔式反应器中发生反应生成氯丙醇。氯丙醇与经过处理的电石渣混合后,送入环氧丙烷皂化塔生成环氧丙烷。由于电石渣中 Ca(OH)2的质量分数高达 90%以上,而国内熟石灰中Ca(OH)2的平均质量分数仅为65%,因此,采用电石渣不仅使环氧丙烷的生产成本下降,而且其中未反应的固体杂质处理量比用熟石灰要少得多。利用电石渣生产环氧丙烷,不仅充分利用电石渣资源,实现了变废为宝,化害为利,而且生产的环氧丙烷质量稳定,符合标准。

(2)生产氯酸钾。用电石渣代替石灰生产氯酸钾的生产工艺过程是,先将电石渣配成 12%乳液,用泵将电石渣乳液送至氯化塔,并通入氯气、氧气。在氯化塔内,Ca(OH)2与 Cl2O2发生皂化反应生成Ca(ClO3)2。去除游离氯后,再用板框压滤机除去固体物,将所得溶液与 KCl 进行复分解反应生成KClO3溶液,经蒸发、结晶、脱水、干燥、粉碎、包装等工序制得产品氯酸钾。

反应式是:Ca(OH)2+Cl2+O2=Ca(ClO3)2+H2O;Ca(ClO3)2+ KCl=KClO3+CaCl2 用电石渣代替石灰生产氯酸钾(KClO3),技术可行,实现了综合利用电石废渣的目的,不仅减少了电石废渣对环境造成的危害,也减少了在石灰储运过程中造成的污染,而且改善了劳动条件。随着干法乙炔技术的应用,电石渣中氢氧化钙的含量更高,水分也较低,为下游电石渣的应用提供了原料。随着工业化的集中以及科技的进步,电石渣已经逐渐变成一种原料资源,可以结合区域、能源、市场的多种需求,充分利用电石渣,将会获得更大的经济效益与社会效益。2 电石制乙炔中废水的回用方法及发展思路

电石法制乙炔中废水分别有清净洗涤后的次氯酸钠废水、湿法乙炔反应剩余

[9]

[8][7]

[6]

上清液、以及清净中和塔废碱液和正常的排污所产生的废水。相对而言,在电石法乙炔生产过程中,上清液与次氯酸钠废水占有相当大的比重2.1 废次钠的处理技术简介和讨论

废次钠的成分较复杂,各项指标均远远高于排放指标,必须进行及时地回收处理。目前行业中绝大多数使用 2 种回收方式,一种是直接进入发生器与电石进行反应; 另一种是将废次钠与高浓度的次氯酸钠进行配置,生成0.08%~0.12%的次氯酸钠进入系统进行循环使用。2 种方式都能较好地回收使用废次钠,但是随着研究的深入以及结合生产情况来看,均有尚未解决的弊端。2.1.1 废次钠回用发生器使用技术运行中存在的问题

废次钠泵在发生器中直接与电石进行反应,是比较直接的一种处理方式,在很多生产企业中应用,但存在以下问题。

(1)硫磷杂质的富集。废次钠中还有硫磷杂质,参与反应后会继续以气体的形式混合在乙炔气中,给后期的清净处理带来负荷,尤其是在大型工业化生产过程中更为明显。

(2)废次钠中含有大量的氯化物,反应过后产生固体氯化物,生成的电石渣中含氯组分增多,影响电石渣的主要成分,特别是在电石渣制造水泥过程中,氯化物的增多对生产系统以及水泥产品的质量都会造成很大影响。废次钠加入到发生器中,增加了电石渣的处理难度以及乙炔气的清净难度,对于全面治理电石制乙炔的“三废”而言,反而存在弊端。

2.1.2 脱析废次钠中乙炔气后循环利用的技术简介以及存在的问题

脱析废次钠中乙炔气后循环利用的技术是将有效氯低于0.06%的废次钠与高浓度的次氯酸钠直接进行配置,生产出有效氯含量为 0.08%~0.12%的新鲜次氯酸钠进行循环回用。在这个过程中,先将废次钠通入脱析塔中,通过压缩空气或者喷淋解析出乙炔气排放到外界,防止与浓次钠中的有效氯进行反应,然后通过迸射器或者混合器按流量与浓次钠进行配置,配置完成后混合进清净塔使用。目前,这种技术应用广泛,但是仍然存在以下问题。

(1)废次钠中溶解有大量的乙炔气,极易与高浓度的有效氯生成氯乙炔发生爆炸,如果脱析不完全容易出现爆鸣,影响生产安全。

[8]

[7]

[10]。

(2)在循环回用的过程中,磷化物、氯化物加剧富集,造成自燃爆炸以及盐类结晶堵塞生产管道等一系列问题,需要定时定量或者实时进行废次钠的排放。为完整、完全地回收废次钠,必须保证废次钠中的杂质组分不能对下一个系统造成影响,不仅回收废次钠中大量的液体,而且必须对溶解在其中的高浓度离子进行脱离萃取。

2.1.3 膜法回收废次钠技术简介

膜法回收废次钠是新进研发的技术,采取过滤、氧化、絮凝、还原、浓缩等方法,将废次钠中各类杂质组分进行脱离处理,生成工艺用水,并对脱离后产生的高浓度的主要杂质进行专项回用,该最新技术,在很大程度上解决了废次钠全面回收过程中的瓶颈。膜法回收废次钠整个系统由调节器、固体过滤器、沉降池、陶瓷膜、氧化装置、除磷装置、反渗透装置、pH 值调节器、还原器、蒸发装置、多级泵等设备,以及在线监测装置、数台自动阀连锁装置、气体流量计等控制设备组成。工艺流程示意图见图2 [9]

该项技术主要是针对以下的废次钠参数进行处理见表1。各个生产厂家废次钠中的组成相同,所以挑选以下具备典型代表性数据进行描述。从表 1 中可以得出,TOC、COD、pH 值、氯化物含量、电导率以及钙、镁、磷等含量较高,如果循环使用,富集量更大,从而影响废次钠的再次回收利用,目前需要采取多种方式去除其中各类超标的杂质,达到工艺用水的指标

[10]。

(1)由于废次钠是由有效氯较高的次氯酸钠与乙炔气进行洗涤反应后产生的,废次钠中溶解有大量的乙炔气,是造成废次钠中 TOC 超标的主要原因,针对这项问题,需要采用脱析和曝气等方式降低其中 TOC 含量,使废次钠得以回用。(2)对于废水的pH值调节,一般采用加酸、加碱的方式进行合理配置,但是废次钠中含有少量的游离氯,具有一定的氧化性,对后续的系统容易造成影响,本方案为了确保工艺水对氧化剂要求,根据废次钠中游离氯的含量配置相应的亚硫酸钠溶液,还原废水中的氧化剂,达到工艺用水的要求后,进行相应的 pH 值调节。

(3)废水中磷化物含量远远超过工艺用水的指标,本方案采取了以下无机过量法进行去除。

a.氧化剂氧化低价磷。废水中的磷化物价态较多,需要采用固定价态的方式进行处理,经过大量的实验以及实践论证,在废水中加入一定量氧化剂以及置换离子,可以将清净废水中的低价磷氧化,使其以磷酸根的高价固定的形式存在沸水中。b.钙离子除磷酸根。将废水中的低价磷氧化至高价磷之后,加入高温的氢氧化钙溶液,使其和清净废水中的磷酸根发生沉淀反应,生成不溶性的磷酸钙沉淀,进

行沉降压滤后,以固态进行排除,反应方式为 Ca2++PO3=Ca3(PO4)2↓ c.碳酸钠除过量钙离子。由于采用的是过量法除磷,待磷化物处理后,废水中产生大量的钙离子,需在除磷后的废水中加入低温饱和的碳酸钠溶液,使其和废水中的过量的钙离子反应,生成不溶性的碳酸钙沉淀,沉降压滤后进行收集,反应方程式为Ca2++CO2-3=CaCO3↓本方案的除磷效果达到95%以上,废水中的磷化物指标达到工艺用水的要求。

(4)废水经过 TOC、pH值调节、以及磷化物和大量的钙镁离子的处理后,仍然会存在少量的固体杂质和微量不溶性物质,采取过滤方式进行去除。过滤方式较多,但是目标均是经过过滤后,浓水中的浊度降低至0.5NTU 以下。(5)废水中的氯化物含量较高,直接使用,会对用水单位产品质量、设备管道使用寿命等造成很大影响。对于氯化物的处理,也是废次钠处理的一个重点,对此,需要专项采取高密度反渗透膜方式进行脱氯处理,反渗透是渗透逆过程,在高浓度溶液一侧加上一个大于渗透压的压力,高浓度溶液中的水就会在压力作用下以相反的方向穿过渗透膜,进入低浓度一侧,而留下离子和悬浮固体物质。废水经过高压进入反渗透膜循环渗透后,大多数通过反渗透膜成为清水,小部分循环浓缩至一定浓度后收集至浓水池。其中,清水指标达到工艺用水指标,浓水指标远远高于废次钠初始指标需要进一步进行处理收集。

(6)经过以上处理,废次钠分为2个部分,80%为各项指标合格的工艺用水,可以直接进入用水工段进行使用,另外的 20%为各项指标严重超标的高浓度废水,需要进一步处理[11]

-4。在生产过程中,可以结合具体不同的工艺布置,采用 2 种方式处理浓水。

a.浓水中氯离子与钠离子浓度超高,一般达到12000mg/L以上,天辰公司采取蒸发法处理浓水,回收固体钠盐。

b.定时、定量均匀补给至氯碱工艺的盐水工段,进入离子膜生产工艺,再次利用,节约资源。膜法处理次钠废水,能够从根本上解决废次钠回用对各个生产系统的影响,然而,该方式运行成本较高,需要结合企业自身生产要求与特点,制定合适的废次钠回收装置,才能确保经济效益与环境效益。2.2 电石渣上清液的回用技术简介

在电石法乙炔生产过程中,湿法乙炔由于需要过量的水来控制反应热,所以产生的电石上清液多,需要的处理设备与设施较多。由于上清液含固量较大,首先进入沉降池进行沉降,浓渣通过压滤、离心、分离器等多种方式进行脱水后进行收集,上清液进入冷却塔用空气冷却至50 ℃后,送发生装置回用。就上清液循环而言,该工序简单实用。总而言之,上清液是液相循环的载体,担负着电石渣和冷量输送的任务,所以,必须及时处理好影响其循环通道的各项因素,使上清液的作用充分发挥[12]

。电石制乙炔中废气的回用方法及发展思路

电石法制乙炔中的废气主要分为溶解在各种废水中的溶解乙炔气。由于乙炔有气溶解度随温度升高而降低的特殊性,在平均温度为 70 ℃左右的上清液中的溶解量较少,而在平均温度为 25 ℃的废次钠液中却溶解有大量的乙炔气体。目前,绝大多数生产企业的废次钠回收是将溶解乙炔气的废次钠通过曝气,使乙炔气脱析至大气后,再与浓次钠进行配置。在 25 ℃和标准大气压下,每立方米的废次钠溶解乙炔气约为0.93 m3,以废次钠液回收量为150 m3/h 为例,析出乙炔气量为 135 m3/h,折损电石产能约为0.45 t/h;以乙炔气收率 80%计算,1 年可节约电石约 2 851 t。目前,已有专利采用真空萃取乙炔气回收方案回收乙炔气[13],具体的方案介绍如下。

3.1 系统构成与工艺流程

整个系统由废水泵、真空水环压缩机组、pH 值调节器等设备,以及在线监测氧气装置、自动阀连锁装置、气体流量计等控制设备组成3.2 工艺设计原理与注意事项

(1)乙炔气在不同温度的水中溶解度不同,若全部曝气脱析至大气,造成资源浪费,因此,将这部分乙炔气进行回收是该方案的目的。

(2)真空萃取乙炔气,是将溶解乙炔气的废水,通过降低水中分压的方式,使之溶解的乙炔气进行释放回收。本方案中采取分压为-90kPa,降低乙炔气在常压下的溶解度进行萃取。工作原理是,根据亨特定律,当气体压力不大时(小于 1MPa),气体的溶解度与其分压力成正比,其公式表示如下:CW=KS×P式中:CW—气体溶解度;KS—气体吸收系数;P—达到溶解平衡是液体上的力。乙炔气

[14]。

体吸收系数为 0.01,计算乙炔气在溶液中脱析较为完全时,需要压力为-90 kPa。通过改变压力,降低乙炔气在水中溶解度,使之脱析,在真空罐中需要加装填料,降低水的自身静压力,来达到废水回收标准。

(3)废次钠中氯根含量高,极易腐蚀碳钢及不锈钢材质,通常,在清净生产中采用衬塑的方式解决腐蚀,但是该系统为负压系统,并且介质为乙炔气,密封要求极高,碳钢衬塑不能满足要求,故采用特殊材质装置系统。真空萃取乙炔回收工艺流程[15]示意图见图3

(4)负压的安全性能。乙炔气中抽入氧气达到3%,极有可能发生爆炸危险,该负压系统中,需要加入泵后在线测量氧含量设备,当系统含氧量达到 2.5%时,系统采用自控阀切断进出口,通入氮气自动放空,置换合格后,检查漏点,再次开车使用。

(5)废次钠中的氯气解析

[16]

。废次钠中部分氯根为次氯酸根,容易在解析的过程中产出氯气,生成氯乙炔发生爆炸。本系统中需要加碱装置或者加亚硫酸钠装置(pH 值混合器)进行稳定处理,调节 pH 值至7.0~8.0 后,进行真空萃取。该系统的研发投用,在降低了废次钠循环利用难度的同时,回收了低温废次钠中溶解的乙炔气,又降低了在乙炔生产中电石的部分消耗,不仅具有较为完善的环保效益,并且得到了经济效益,需要在以后的生产过程中进一步地完善降低运行能耗,延伸至其他废气的回收领域。4 结语

电石法制乙炔生产中产生的“三废”,逐渐成为电石制乙炔的第二发展产业,由“三废”转变为产品,全力回收废渣、废气、废水,达到节能降耗目的。但是 在“三废”治理的过程中,仍然存在许多问题,如低成本造成回收的不完全,高成本造成的高能耗等,需要在以后的发展道路上结合传统技术,融会贯通,生产出具备市场能力的各类产品。5文献:

[1] 马国清,李兆乾,裴重华.电石渣的综合利用进展[J].西南科技大学学报.2005(02)[2] 李冬生.向废渣要经济效益[J].铁道劳动安全卫生与环保.1987(02)[3] 闫秀华,李世扬.电石渣综合利用生产砌块[J].聚氯乙烯.2007(05)[4] 马俊华,郝静元.电石渣替代生石灰脱硫经济效益分析[J].电力技术.2010(01)[5] 范广能,陈红,胡坤宏,周海,王刚,程波;电石渣制备超细碳酸钙的工艺研究[J];安徽化工;2005年06期

[6] 李东霞,王会昌,武建国.利用电石渣和模拟烟道气生产纳米碳酸钙的实验室研究[J].中国氯碱.2011(07)[7] 胡维新;章天刚;张效忠;电石渣-粉煤灰新型环保免烧砖的配比及力学性能研究[J];化工新型材料;2011年08期

[8] 赵琦.电石法制氯乙烯生产的三废治理[J].中国氯碱.1995(05)[9] 崔小明,聂颖.干法乙炔生产技术的研究开发现状[J].化工科技市场.2009(10)[10] 李富勇.电石法乙炔清净废次钠回收利用的研究及实施[J] 新疆化工.2012(03)

[11] 张丽俊.电石渣浆回收乙炔装置的应用[J].聚氯乙烯.2011(07)[12] 卫泳波,薛维汉,郝强,等.新型烟气脱硫剂———电石渣浆[J].石油和化工节能,2007,14(3):15-16.[13] 徐正胜 浅析电石法聚氯乙烯生产中乙炔清净废水回收处理工艺技术 [J] 石河子科技.2012(02)

[14] 徐庆臻,冯庆中,韩璐,刘新峰,任广涛,田瑞侠.石化废水处理工艺优化经验总结[J].建设科技.2002(12)

[14] 余建芳.电石渣上清液吸收锅炉烟气中SO2的可行性探讨[J].中国氯碱.1997(03);17-19 [15] 魏绍东,杨巨澜.干法乙炔生产的技术与现状[J].精细化工原料及中间体,2009(11):3-7.[16] 宋晓玲,李向荣,王勤,龙运兰.次氯酸钠溶液中有效氯的测定方法探讨[J].中国氯碱.2005(02);29-31.3-

第五篇:制药工业三废处理技术之案例分析

制药工业三废处理技术之案例分析

姓名:张xx 班级:12药剂 学号:1234567 前言:随着我国医药工业的发展,制药工业三废已逐渐成为重要的污染源之一。制药行业属于精细化工,其特点就是原料药生产品种多,生产工序多,原材料利用率低。由于上述原因,制药工业三废通常具有成分复杂,有机污染物种类多、含盐量高、NH3一N浓度高、色度深等特性,比其他工业三废处理更难处理。由于制药工业环境保护比制药工业起步晚,且治理污染不能给企业带来直接的经济效益,制药三废处理工艺还落后于制药工艺。同时由于制药三废复杂多变的特性,现在的处理工艺还存在着诸多问题和不足之处,所以目前许多制药三废难以处理,或者处理成本居高不下,因此一些小型的制药企业或多或少存在偷排三废的现象。未将处理或处理未达标的三废直接进入环境,将对环境造成严重的危害。

摘要:本文通过哈药三废污染具体案例分析制药工业中三废的处理的重要性以及所用方法,通过综合利用,实现废物的循环利用。

关键词:制药工业、三废治理、环境保护、综合利用 具体案例:哈药总厂“三废”污染事件

在哈尔滨哈药集团制药总厂附近,即使在夏天,也有人要戴口罩,居民称空气里臭味熏人。记者调查发现,臭味来自于紧邻居民区的哈药总厂,住在周边的一些居民甚至常年不敢开窗。

在哈尔滨哈药集团制药总厂附近,即使在夏天,也有人要戴口罩,居民称空气里臭味熏人。记者调查发现,原来臭味来自于紧邻居民区的哈药总厂,住在周边的一些居民甚至常年不敢开窗。

1.废气超过恶臭气体排放标准

哈药总厂位于城区上风口,它释放的臭味影响范围波及周边的高校、医院和居民区。药厂为什么排放臭味呢?记者进入厂区后注意到,越往厂区内部,难闻的气味就越来越浓。记者调查了解到产生臭味的主要原因是药厂青霉素生产车间发酵过程中废气的高空排放,以及蛋白培养烘干过程和污水处理过程中,无全封闭的废气排放。废气排放严重超标,长期吸入可能导致隐性过敏,产生抗生素耐药性,还会出现头晕、头痛、恶心、呼吸道以及眼睛刺激等症状。

2.废水排污口色度超极限值15倍

哈尔滨城区有条河沟流经哈药总厂,记者发现,河水在进入这个厂区之前是青白色的,但从厂区流出就变成土黄色,散发着非常刺鼻的臭味。记者在厂区深处顺着河沟寻找,发现了药厂污水排放口。排污口散发着恶臭,水是黄色的。哈药总厂以生产青霉素和头孢菌素类药物为主,青霉素类的生产属于发酵类制药。而国家对发酵类制药水污染物排放极限值有着明确规定,记者将排污口水样送到具有检测资质的相关部门进行检测,其检测参考值表明:哈药总厂排污口色度为892,高出国家规定极限值60近15倍。排污口氨氮为85.075,高出国家规定极限值35两倍多,排污口COD为1180,高出国家规定极限值120近10倍。

3.废渣简单焚烧后流入河沟

顺着排污口沿着河沟向下游几百米,在岸边上就是哈药总厂制剂厂。在厂区外,记者看到一个用砖搭建的焚烧炉,里面有大量的废渣在燃烧,废渣可直接排到河沟里。“车间垃圾全往这儿倒,啥都有,盐酸、硫酸。”现场的制剂厂职工告诉记者,焚烧炉里焚烧的都是化工产品。记者发现,制剂厂即便是简单的焚烧,有时也是不分地点,随意进行。部分废渣经过简单焚烧后会流入河流之外,还有大量的废渣就被直接倾倒在河沟边上。

通过这一案例,我们可以看出三废处理和环境保护密不可分,因此,要掌握三废处理技术就越来越重要了。

制药工业的三废一般指制药工业生产过程中产生的废水、废气。废渣。

一.制药工艺中废水的处理

制药废水通常属于较难处理的高浓度有机污水之一,因制药产品的不同、生产工艺的不同而差异很大,其特点为水质组分繁杂,污染物含量高,CODcr、氨氮、含盐量和BODs浓度高且波动性大,废水的BODs/CODcr差异较大,含有大量有毒、有害物质、难生物降解物质及生物抑制剂(包括一定浓度的抗生素)等,带有气味和颜色,悬浮物SS含量高,易产生泡沫。而且制药厂通常是釆用间歇生产,产品的种类变化较大,造成了废水的水质、水量及污染物的种类变化较大。1.制药工业废水的特点

(1)水质组分繁杂 由于医药产品生产的流程长、反应复杂、副产物多,反应原料常为溶剂类物质或环状结构的?化合物,因此废水中的污染物组分繁多复杂,增加了废水的处理难度。

(2)污染物质含量高制药工业生产过程中需大量使用各种化工原料,但由于反应步骤较多、原料利用率低,表面活性剂、中间代谢产物和提取分离中残留的高浓度酸、碱、有机溶剂等,大部分随废水排放,往往造成废水中的污染物质含量居高不下。该类污染物质易引起pH波动大、色度高和气味重等不利因素,影响后续厌氧反应器中甲烧菌正常的代谢活动。

(3)CODcr浓度高 在制药工业中,CODcr浓度在几万、甚至几十万毫克/升的废水是经常可以见到的。这是由于原料反应不完全所造成的大量副产物和原料或是生产过程中使用的大量溶剂介质进入废水体系中所引起的。以抗生素废水为例,其中主要为发醉残余基质及营养物、溶媒提取过程的萃余液、经溶媒回收后派出的蒸馆繁残液、离子交换过程排出的吸附废液、水中不溶性抗生素的发酵滤液、染菌倒灌液等。

(4)含盐量高 废水中的盐分浓度过高对微生物有明显的抑制作用,当氯离子超过3000mmol/L时,未经驯化的微生物的活性将明显受到抑制,严重影响废水处理的效率,甚至造成污泥膨胀,微生物死亡等现象。

(5)可生化性差 制药废水因其特殊性,废水的BODs/CODcr差异较大,经传统预处理后可生化性很.难得到实质性的提高,阻碍了后续的生化处理过程。

2.常用的制药废水的处理方法

目前,国内对制药废水处理技术的研究往往是以其中最具代表性,污染最严重的化学制药、生物发酵制药等产生的高浓度、难降解有机废水为主要研究 对象。一般情况下,制药工业废水分为合成药物生产废水、抗生素生产废水、中成药生产废水、各类制剂生产过程的洗涤水和冲洗废水常用的处理方法有物化法、生物法以及他们组合的处理方法。

(1).物化处理

根据制药废水的水质特点,在其处理过程中需要采用物化处理作为生化处理的预处理或后处理工序。目前应用的物化处理方法主要包括混凝、气浮、吸附、氨吹脱、电解、离子交换和膜分离法等。

a.氧化法。采用该法能提高废水的可生化性,同时对COD有较好的去除率。对3种抗生素废水进行臭氧氧化处理,结果显示,经臭氧氧化的废水不仅BOD5/COD的比值有所提高,而且COD的去除率均为75%以上。

b.气浮法。气浮法通常包括充气气浮、溶气气浮、化学气浮和电解气浮等多种形式。新昌制药厂采用CAF涡凹气浮装置对制药废水进行预处理,在适当药剂配合下,COD的平均去除率在25%左右。

c.吸附法。常用的吸附剂有活性炭、活性煤、腐殖酸类、吸附树脂等。武汉健民制药厂采用煤灰吸附-两级好氧生物处理工艺处理其废水。结果显示,吸附预处理对废水的COD去除率达41.1%,并提高了BOD5/COD值。

d.膜分离法。膜技术包括反渗透、纳滤膜和纤维膜,可回收有用物质,减少有机物的排放总量。该技术的主要特点是设备简单、操作方便、无相变及化学变化、处理效率高和节约能源。

e.电解法。该法处理废水具有高效、易操作等优点而得到人们的重视,同时电解法又有很好的脱色效果。采用电解法预处理核黄素上清液,COD、SS和色度的去除率分别达到71%、83%和67%。

f.混凝法。该技术被广泛用于制药废水预处理及后处理过程中,如硫酸铝和聚合硫酸铁等用于中药废水等。高效混凝处理的关键在于恰当地选择和投加性能优良的混凝剂。近年来混凝剂的发展方向是由低分子向聚合高分子发展,由成分功能单一型向复合型发展。

(2).化学处理

应用化学方法时,某些试剂的过量使用容易导致水体的二次污染,因此在设计前应做好相关的实验研究工作。化学法包括铁炭法、化学氧化还原法(fenton试剂、H2O2、O3)、深度氧化技术等。

a.铁炭法。工业运行表明,以Fe-C作为制药废水的预处理步骤,其出水的可生化性可大大提高。采用铁炭—微电解—厌氧—好氧—气浮联合处理工艺处理甲红霉素、盐酸环丙沙星等医药中间体生产废水,铁炭法处理后COD去除率达20%。

b.Fenton试剂处理法。亚铁盐和H2O2的组合称为Fenton试剂,它能有效去除传统废水处理技术无法去除的难降解有机物。随着研究的深入,又把紫外光(UV)、草酸盐(C2O42-)等引入Fen-ton试剂中,使其氧化能力大大加强。以TiO2为催化剂,9W低压汞灯为光源,用Fenton试剂对制药废水进行处理,取得了脱色率100%,COD去除率92.3%的效果,且硝基苯类化合物从8.05mg/L降至0.41mg/L。

(3).生化处理

生化处理技术是目前制药废水广泛采用的处理技术,包括好氧生物法、厌氧生物法、好氧—厌氧等组合方法。

a.好氧生物处理。由于制药废水大多是高浓度有机废水,进行好氧生物处理时一般需对原液进行稀释,因此动力消耗大,且废水可生化性较差,很难直接生化处理后达标排放,所以单独使用好氧处理的不多,一般需进行预处理。常用的好氧生物处理方法包括活性污泥法、深井曝气法、吸附生物降解法(AB法)、接触氧化法、序批式间歇活性污泥法(SBR法)、循环式活性污泥法(CASS法)等。

b.厌氧生物处理。目前国内外处理高浓度有机废水主要是以厌氧法为主,但经单独的厌氧方法处理后出水COD仍较高,一般需要进行后处理(如好氧生物处理)。目前仍需加强高效厌氧反应器的开发设计及进行深入的运行条件研究。在处理制药废水中应用较成功的有上流式厌氧污泥床(UASB)、厌氧复合床(UBF)、厌氧折流板反应器(ABR)、水解法等。

总之,制药废水水质水量波动较大,是处理难度较大的工业废水之一。所采用的处理方法应根据具体情况进行选择。

二.制药工艺中废气的处理 1.有机废气吸附回收处理

有机溶剂废气的吸附回收方法的一个重要的应用领域是化工、石油化工和制药工业。使用的有机溶剂,例如甲苯、苯、汽油、二氯甲烷和乙醇等一般来说都是有较大价值的,并且有足够高的浓度,可以用相对较低的费用进行回收处理。含有有机溶剂的废气在生产装置中被抽出来,在有机废气过滤和冷却后,有机溶剂积聚在活性炭的孔隙中,就这样从废气流中分离出来。装置的设计可以达到纯净空气中的溶剂浓度只有几mg/m3。当吸附器充满溶剂后,就用蒸汽通进去,这样溶剂又从活性炭中被驱赶出来。蒸汽和溶剂的混合物被冷却、冷凝并送入一个收集容器。

2.有机废气的生物净化处理

生物滴流概念的进一步发展,一种具有很大表面积的惰性载体材料促使气相和水相的密切接触。同时通过反应器中的专用的内件及改进的废气输送可以实现过滤器能力的最佳化。在废气的直流和循环水中进行操作。溶剂被微生物分解并且变为无害的最终产品,如二氧化碳、水和生物物质等(新陈代谢)。流出的水在反应器内部循环,以把污染的气体的溶剂转变为可溶的形式。

3.再生式燃烧有机废气处理

热再生式燃烧装置在700~900℃的温度范围工作,一般来说是3或5个炉室的结构。体积流量在10000标准m3/h以上的热再生式燃烧装置可以经济地进行操作。燃烧室本身安排在炉室上方。安装在那里的烧咀用于启动和供给增加的能源,如果气体混合物(由于溶剂少)而不能自热式地点火或燃烧的话。在启动之后的各个炉室变换地发挥各种不同的作用。其目标是:不需要添加燃料(取决于有害气体的溶剂浓度)而实现燃烧。如果有热量过剩,则可以用来生产蒸汽。装置周围可能产生的废液可以通过启动烧咀或附加烧咀来烧掉。如果在有害气体中含有氯或硫之类的化合物,那么就可能需要采取进一步的有机废气净化处理步骤。

三.制药工业中废渣的处理

废渣不仅占用大量的土地,而且造成地表水、土壤和大气环境的污染,必须净化处理。化工废渣主要有炉灰渣、电石渣、页岩渣、无机酸渣;含油、含碳及其他可燃性物质,如罐底泥、白渣土等;报废的催化剂、活性炭以及其他添加剂;污水处理的剩余活性污泥等。废渣处理方法主要有化学与生物处理法、脱水法、焚烧法和填埋法等。

药学三废处理技术
TOP