首页 > 精品范文库 > 15号文库
《确定起跑线》教学反思
编辑:无殇蝶舞 识别码:24-1078714 15号文库 发布时间: 2024-07-25 22:17:05 来源:网络

第一篇:《确定起跑线》教学反思

《确定起跑线》教学反思

--黄

“确定起跑线”是学生在学习完圆的有关知识后,结合跑道结构与起跑位置关系这个具体情节所进行的一节实践活动课,学生在综合运用所学知识解决问题的过程中发现生活现象中蕴含的数学问题,同时让学生感受到数学应用的广泛性。

我所执教的本节课开课直入主题“为什么运动员要站在不同的起跑线上?”学生带着熟悉又陌生的问题开始思考。接着“各条跑道的起跑线应该相差多少米?”一个个问题引领着学生走向思维最深处,这种任务驱动式的学习方式不断强化学生的学习动机,让学生整节课都在思考,都在解决问题,兴趣浓厚。

本节课教学时注重突出重难点,扫清学生障碍,要求π值不带入计算,这一小小要求,却在课堂节约了大量时间,为其它问题的深入分析提供了充裕的时间。

而在解决了400米跑的起跑线问题后,教师可以让学生想想:除了400米跑,跑步项目还有那些?这些项目的起跑线如何确定?引导学生提出100米跑、200米跑、800米跑、1000米跑、1500米跑的起跑线问题。可以师生共同研究,也可作为课后继续探索的材料。这是我本节课忽略了的地方,今后在教学中要加以改进。

第二篇:确定起跑线教学反思

利用综合实践活动提升学生数学应用能力

——以《确定起跑线》一课为例

数学课是以数学体系的理论知识为主,而数学实践活动课则好比是在理论知识与生活实际之间搭起的桥梁。小学数学教学中综合实践活动课的安排,让学生在实践活动中学好数学,灵活运用数学知识发现、解决生活中的数学问题,并用自己的思维方式去重新创造知识,感受数学的趣味,增强数学意识和运用意识,让学生更加深刻地认识到数学在生活中的重大作用。本文将以六年级上册的《综合实践课》的内容是“确定起跑线”为例,来谈谈如何在综合实践活动中提升学生数学应用能力。

《确定起跑线》是六年级上册第5单元后的一节综合实践活动课。这节课是学生在认识了圆、学习了圆的周长和面积的基础上进行的实践活动。学生通过对跑道的认识、测量、记录、计算、推理等多方面的数学知识与技能,让学生经历发现和提出问题、分析和解决问题、归纳和拓展问题的过程,积累数学活动的经验,体会和掌握数学抽象、推理等思想,从而发展数学的应用意识,学以致用,激发学生玩数学,学数学,用数学的学习积极性。

《数学课程标准》对“综合应用”领域的总体要求是:“让学生了解数学与生活的广泛联系,学会综合运用所学的知识和方法解决简单的实际问题,加深对所学知识的理解, 获得运用数学解决问题的思考方法。”由此可见,“应用”数学的知识“解决”实际问题, 并在解决问题的过程中感悟思考问题的方法应该是本节课的重心所在。基于这样的认识, 我们将本课的目标定位于: 通过本节课的学习,一方面让学生了解半圆式田径跑道的基本结构, 学会利用圆的周长等知识来确定起跑线的方法, 从而培养学生应用数学知识解决实际问题的能力;另一方面让学生在运用数学知识解决实际问题的过程中, 切实体会到数学在生活中的广泛应用。

一、发现和提出问题。

田径场是学生很熟悉的地方,让学生联想曾经历的体育活动经验,意识到内圈跑道与外圈跑道有差别,400 米比赛起跑线不同才能公平,并自发的提出需要研究的问题。

1.创设问题情境

播放奥运会中100 米与400 米田径比赛的起跑情景。2.提出问题: 师:看了刚才的画面你想提出什么问题?

生①为什么400 米的比赛现场,选手们不在同一起跑线呢? 生②各条跑道的起跑线应该相差多少米?

(意图:在学生预设方案时,引导学生简要说明自己的依据:两条跑道相差多少,起跑线就要向前移动多少)

3.预定活动方向

让学生去寻找两条跑道相差多少

二、分析和解决问题

不论是研究《确定起跑线》,还是进行其他的数学综合实践活动,一定要有实践活动记录单。这个活动单既是数据的记录单,也是学生思维呈现的表达形式,更是学生与小组其他同伴合作沟通的依据。他们会自己测量,也会对比别人的数据,会自我发现,会自我矫正,而这些正是一个人从被动学习向主动学习的积极蜕变。所以,活动有载体,学生就有依托,不会信息迷航,才能保证学生有效学习。

1.初步感受直道、弯道、道宽

用视屏播放的方式:展现我校的运动场的全景图,让学生观察跑道结构,分析跑道特点。明确什么是直道,什么是弯道,什么是道宽。

此时引导学生归纳并小结:跑道间的道宽一样,所有直道的长度都相等,一组半圆形弯道组成一个圆:两条直道的长度+ 圆的周长= 每圈跑道的周长。

2.设置疑问

(1)怎样找出我们学校相邻两个跑道间的差距来确定起跑线的位置呢?(意图:学生进一步思考联想:①外圈跑道周长–内圈跑道周长= 相邻两个跑道的差距。②外圈圆的周长-内圈圆的周长= 相邻两个跑道的差距)

(2)我们要知道跑道的长度必须要知道哪些数据?

(意图:引发学生对直道长度、弯道直径、道宽的测量需求)(3)需要知道所有弯道直径吗?

(意图:让学生意识到:内圆直径+2 个道宽= 相邻圆周的直径。这对数据的收集工作来说,简便了不少)

3.制定并完成活动记录单(1)组织学生分组在操场上活动:在不同弯道上跑一跑,体验内外圈的差别。合作进行实地测量直道长度、弯道直径长度和道宽长度。完成活动单的数据记录工作。(2)学生回教室,分组进行测算。教师巡视、指导。(3)小组推举不同的方法上台介绍及展示。方法多种多样。方法一:先算第一圈跑道的周长,再算第二圈跑道的周长,找相差; 方法二:直接用相邻跑道的外圆和内圆的周长相减。

三、提炼和拓展问题

1.提炼

在学生汇报、交流的进行中,教师借机引导学生对表格中数据作对比,对测算过程的报告作归纳,帮助发现并提炼规律:由于每一条跑道宽1.25 米,所以相邻两条跑道,外圈跑道的直径就等于里圈跑道的直径加2.5 米,不用计算出每条跑道的长度,就知道两条相邻跑道间的差是2.5π。

2.拓展

学生惊叹于数学规律的呈现以及它的便捷性,对运用规律解决一般性问题跃跃欲试。因此,我留下问题留待学生课后思考及规律的验证:你能为200米的跑道确定正确的起跑线吗?

通过对“确定起跑线”这一课的磨课过程, 我们对如何有效实施“综合应用”领域教学, 特别是在如何把握目标重心、怎样选择和处理学习材料等方面有了更为深刻的认识。

1.综合应用数学知识解决问题,有利于达成“综合应用”的基本目标。“综合应用是指运用不同的数学知识、方法、活动经验、思维方式等解决问题或探索数学规律”。从这个意义上说, 加强数学各部分内容间的联系, 发展学生的综合应用能力, 是我们实施“综合应用”教学的基础目标。以人教版实验教材为例, 每学期编排了两个专题作为“综合应用”内容, 每个专题的设计都有相应的数学知识作为依托。“确定起跑线”也不例外, 它主要依托的是圆的周长等知识, 在活动中学生还自觉地用到了组合图形的一些思考方法。我们认为, 让学生在应用中进一步加深对相关知识的理解, 体会数学知识在生活中的广泛应用, 是我们必须达到的显性目标。在本课例中,为了更好地达成这一目标, 我们采取了放低起点、分层推进的策略, 让每一位学生都能用所学的知识, 采用个性化的方法解决面临的问题, 在丰富感知和广泛交流的基础上再作适当的思维提升, 实现了“下要保底, 上不封顶”的目的。

2.让学生深刻经历、体验解决问题的过程, 有利于“综合应用”的有效实施。综合运用数学知识解决问题是发展学生数学思维的重要途径。当学生面对一个实际问题, 尝试寻求“答案”时, 不是简单地应用已知的信息, 而是对信息进行加工, 重新组织若干已知规则, 形成新的高级规则, 用以解决“问题”“,问题”一旦解决, 学生的思维能力随之而发生变化。这一过程在“综合应用”中尤为明显。因此, 我们认为,综合应用教学中让学生经历解决问题的“过程”比得到“结果”更有价值。事实上,“确定起跑线”的教学也经历了从“重结论”到“重过程”的思路转化。第一次实践时, 提出问题之后先让学生讨论“你打算怎么来解决这个问题”, 交流方法后再提供数据进行计算,将教学的重心落在得到“结果”上。反观整个课堂, 多数学生只是当了一次“操作工”而已, 这显然有悖于“综合应用”的内涵与目标。因此, 我们在后续实践时, 不再将算出结果作为教学的最终目的, 有意让学生经历尝试、探索、感悟的过程, 目的就是留下充分的时间和空间, 让学生在独立思考与积极探索的过程中提升解决问题的能力。

总之数学综合实践活动课,我们决不能只是重视传授知识,更要侧重于“活”学活用数学。在实践活动中发现数学、掌握数学、理解数学、应用数学。开展数学实践活动课程,目的是为了让学生更好地掌握实践活动的方法,灵活运用解决问题的策略,让学生在实践活动中学数学,在现实中学数学,增强学好数学和运用数学的意识,培养创新意识和实践能力,从而提升学生数学应用能力

第三篇:确定起跑线听课反思

《确定起跑线》听课反思

小学部

李国亮

听了翟老师的课,我有以下感受:

1、翟老师既注重数学知识教学,又注重数学学习方法。一个富于挑战性的问题,会促使学生产生浓厚的探究兴趣和强烈的探索欲望,产生自主的探究活动。怎么来求这个长度差呢?这一问题调动了学生的积极性,翟老师在学生发现左右的两个半圆合起来是一个圆时,课件演示将左右的弯道合成一个圆,及时鼓励学生大胆设想,然后又通过小组的合作、交流,倾听别人的意见和想法,激发了学生的灵感,让每一个学生对问题发表自己的见解,呵护了他们的创新思维。最终观察发现400米跑相邻跑道起跑线的差距是“跑道宽×2×π”。翟教师既注重了数学知识的教学,又注重了数学学习方法的教学。学生不但丰富了知识,更重要的是他们学到了解决数学问题的基本步骤和策略。

2、翟老师非常注重数学建模。翟老师确定起跑线这节课,我感觉有一点是非常好的,那就是交给了学生建模的数学思想方法。她把确定四百米起跑线的这个生活问题,经过和孩子们有效的沟通和交流转化成了数学问题。确定起跑线的关键就是求两跑道之间的距离差,再通过孩子们的自主探究,研究出了两跑道的长度差,其实就是两个弯道组成的圆的周长差。数学模型已经初步建立起来,通过孩子的计算确定出了第二道的起跑线是距离第一道前7.85米处。翟老师紧接着提出了具有启发性的问题,那就是第三道的起跑线在什么位置?第四道?„„..有什么规律么?这又极大的调动了孩子们研究的积极性。通过孩子们自主探究合作交流,知道了起跑线的位置其实和道宽有关系,总结出来了两跑道间的差距就是“跑道宽×2×π”,然后再把这个公式应用到了每一跑道,从而数学模型就建立起来了。

3、翟老师注重培养学生解决问题的能力。本节课翟老师引导学生了解田径场跑道的结构,通过小组合作的探究性活动,综合运用所学的知识和方法,动手实践解决问题,学会确定起跑线的方法,同时让学生体会数学来源于生活,同时也服务于生活,应用学到的知识解决实际生活中的问题,不但使学生感受到数学与实际生活是密切联系的,而且能培养他们的创新精神,增强了学生应用数学的

意识。

本课我还有两点建议,一是造成起跑线不同的原因应该更加有针对性,引导学生直接看到是弯道引起的起跑线的差距。二是当学生给出“2π×道宽”是起点的差距之后,应该引导学生验证、肯定并运用。

第四篇:确定起跑线

《确定起跑线》教学设计

【教学目标】

1.让学生经历运用圆的有关知识计算所走弯道距离的过程,了解“跑道的弯道部分,外圈比内圈要长”,从而学会确定起跑线的方法。2.结合具体的实际问题,通过观察、比较、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。

【教学重点】通过圆的周长计算公式,了解田径场跑道的结构,能根据起跑线设置原理正确计算起跑线的位置。

【教学难点】综合运用圆的知识解答生活中遇到的实际问题,探究起跑线位置的设置与什么有关。【教学过程】

1、旧知巨石始击浪

师:我们前面简单研究了一些组合图形,大家还记得练习十六的第6题的周长是怎样求吗?(学生打开课本71页第6题,)回顾结论:跑道的周长=两个直道的长度+圆的周长

设计意图:通过复习题的形式引入单一跑道,一方面巧妙让学生回顾了跑道周长求法,另一方面为引入标准400米跑道的作好铺垫。

2、跑道冲浪:认识标准400米跑道构造

师:上面这个仅是普通的跑道图,你见过400米的标准田径跑道吗? 学生发表自已的见闻

师:你从图中了解到400米标准跑道的哪些知识?或你对这个400米跑道存在什么疑问? 预设1:我发现标准跑道有8条跑道。不论哪一条跑道,其直跑道的长度都是85.96米,最内跑道的弯道直径为72.6米,其余越外圈的弯道直径越来越大。

预设2:从图可以看到,相邻跑道的宽度是1.25米。这样知道内圈跑道的直径就依次可以算出其它弯道的直径。(选取其中几条跑道,提问学生其直径,确保学生了解跑道结构)

预设3:这样的跑道为什么叫400米标准跑道?8条长度的跑道周长肯定不一样,那,哪一条跑道才是400米跑道?其余跑道的周长是多少?

预设4:我看到直道(85.96m)和道宽(1.25m)都是精确到两位小数,那如果我们要计算跑道的周长时,圆周率还是取3.14作为近似值吗?

预设5:如果是用1,2,3,……,8来标各跑道,一般是按从内到外,还是从外到内的顺序来标呢? 师:那我们不妨来填一填这个表,小组交流一下,你们的问题可能就迎刃而解了。跑

道 1 2 3 4 5 6 7 8 直

道(m)85.96

弯道 直径(m)72.6

周长(m)228.08

跑道全长(m)400 相邻跑道全长相差(m)设计意图:借助多媒体手段,从单一跑道渐入到标准跑道,学生不觉陌生,反而更有兴趣和欲望认识标准跑道的结构,再借助计算跑道周长方法的迁移,轻易算出各跑道的周长,并通过表格的形式初步认识跑道长度是由弯道引起变化。

3、跑道逐浪: 400米跑确定起跑线

师:我们认识了400米标准跑道,说到跑道,我们自然会想到什么?(跑步)(1)情境掀风作“浪”

师:现在老师就带大家到赛场,而且是刚结束不久的北京奥运会男子400米决赛 现场。

(2)小组迎风逐“浪” 师:你发现了什么?

预设1:运动员起跑点不同,终点相同。(师:你知道为什么吗起点会不一样吗?)预设2:每个运动员起点不同,他们跑的都是400米吗?

预设3:我们怎样确定不同跑道运动员起跑线才会保证他们都是公平跑400米?(同位交流预设3,学生回答原因)

师:从刚才大家在表中通过计算出各跑道的长度,我们知道,如果跑400米的话,对于跑道1恰好是1圈,外圈跑道都比相邻内跑道多7.85米,所以跑400米时必须把跑道2比跑道1向前移7.85米,跑道3比跑道2向前移7.85米……

(每条跑道比内跑道前移7.85米后的起跑线,然后描出每条跑道到终点的线,八条这样的线放在一起拉直,从而这样确定400米起跑线的公平)

设计意图:以情境为问题导向,以小组为单位,以观察为手段,以多媒体为深化,用常规的方法排解了400米确定起跑线的问题。为下面研究影响跑道长度差异的关键因素作好了“磨刀不误砍柴功”的铺垫。

二、长风破浪:确定道宽决定跑道长度的差异

师:我们在刚才计算各跑道周长的时侯,我们把各个计算弯道相邻周长的算式进行相减对比一下,看看大家有没有什么发现一些共同的特点?

内1内2跑道差: 3.14×[(72.6+1.25×2)-72.6]=3.14×1.25×2

内2内3跑道差: 3.14×[(72.6+1.25×2+1.25×2)-(72.6+1.25×2)]=3.14×1.25×2 其它相邻跑道差: …

(也有相同的现象:=3.14×1.25×2)师:我们发现?(生答)

结论:相邻跑道长度相距好像都是由两条跑道相距的宽1.25米引起的。

师:也就是说,我们除了把各跑道的周长计算出来再确定跑道前移多少米这种方法以外,我们能不能找到别的办法来确定跑道起跑线前移多少?

预设:学生交流,汇报。

师:我们已经知道,引起跑道长度的差异在于弯道,而两个弯道合起来是一个圆,八个弯道合在一起就是一个同心圆。师:大家看一看这两个圆的周长相差多少? 预设:学生汇报。

推导两圆环内外圆周长差的公式 C差=2πR-2πr

=2π(R-r)

(R-r,恰好就是我们跑道的道宽)=2π×道宽

设计意图:前面一节学生用常规的办法算出各道周长,确定各道起跑线的位置,本来这节课已达到目的。但此时,借助学生常规解决了问题后的成就感和积积性,引导学生迈向更深入的研究。在引导学生探索8个弯道合成同心圆后,转化为研究熟知的圆环问题,使问题研究变得倍感亲切,找到了影响跑道差异的道宽,突破难点,理解了问题的关键。师:从这里可以看出:起跑线的确定与什么关系最为密切?

(与跑道的宽度关系最为密切,400米跑相邻跑道起跑线相差都是“跑道宽×2×π”)师:利用这条公式,马上验证一下道宽为1.25米的跑道相邻是否相差7.85米? 1.25×2×3.14≈7.85米

师:所以,我们在跑400米时,相邻跑道的外道要比内道向前移7.85米。

师:我们发现跑道宽度决定了相邻跑道的差,也就是只要知道跑道宽度,我们就可以解决起跑线的问题了,是不是?(是)那么我们来挑战一下?

设计意图:通过对计算弯道周长算式的比对和转化到环形周长变化的探究,让学生深入认识到道宽是影响跑道长度差异的关键。学生的深化认识为下面解决不同道宽,不同跑程等问题提供了简易可行的方法。

三、风吹浪打:三“浪”拷问学生思维

1、兴风作浪:改变跑道宽度引起的起跑线确定问题

师:在某一次比赛时裁判调整了跑道的宽度,你能帮裁判再计算一下相邻两条跑道的起跑线又该相差多少米吗? 400米的跑步比赛,跑道宽为1.5米,起跑线该依次提前多少米?

如果跑道宽是1.1米呢?

(根据“2π×道宽”来计算确定)

2、推涛作浪:不同跑程起跑线确定问题

师:对我们小学生来说,400米测试是超负荷了,所以体育老师要测试大家200米赛跑情况,我们又怎样确定起跑线? 400米时是差两个弯道的长度,当跑200米时,只差一个弯道的长度,所以200米前移是400米时的一半,即:2π×道宽÷2=π×道宽。所以相邻跑道前移3.925米

四、大浪淘金:确定起跑线系统梳理

师:我们在确定起跑线中,主要观察跑道的特点,是由两直道和一个圆的周长合成跑道的长度。很明显,不同跑道的全长不同的地方主要相差在弯道上,下面我们回顾一下我们是怎样确定跑道的长度差,从而确定起跑线的。整

你们用什么方法求出两跑道之间相差多少米? 观察两跑道相差的距离,你们有什么发现? 你们怎样确定起跑线的? 列式: 发现: 方法:

说一说,通过这节课你有什么收获?

设计意图:以整理单的形式,突出探究过程,方法的演化梳理,加强学生对知识的总结和提升。

第五篇:确定起跑线

确定起跑线

教学内容:教材第80~81页 课时:一课时 课标确定的依据

课标要求:知道数学与生活存在着紧密的联系,体验数学在生活中的应用 教材分析:

本节课是一节数学综合应用的实践活动课,是课程标准实验教材新增加的一个内容,培养学生用数学知识解决问题的能力是义务教育阶段数学课程的重要目标之一。因此,本册教材设计了“确定起跑线”这个数学综合实践活动,让学生综合运用所学的数学知识和方法,体会数学在日常生活中的应用价值,增强学生应用数学的意识,不断提高学生的实践能力和解决问题的能力。学情分析:

通过调查发现学生对体育活动比较喜欢,相当一部分学生对起跑时不能站在同一起跑线的现象也有一定的认识,但具体这样做是为什么,相邻两起跑线该相差多远?学生很少从数学的角度去认真的思考。所以在教学中学生可能会在“相邻跑道相差多远”这一点上有些困难。学习目标:

1、通过数学活动了解田径跑道的结构,学会确定跑道起跑线的方法。

2、结合具体的实际问题,通过观察、比较、分析、归纳等数学活动,通过独立思考与合作交流等活动提高解决实际问题的能力。

3、在主动参与数学活动的过程中, 切实体会到探索的乐趣,感受到数学知识在生活中的广泛应用。

评价方式:

1、通过数学活动了解田径跑道的结构,能够说出确定跑道起跑线的方法。

2、结合具体的实际问题,通过观察、比较、分析、归纳等数学活动,提高解决实际问题的能力。

学习重点:通过对跑道周长的计算,了解田径场跑道的结构,能根据所学知识解决确定起跑线的问题。

学习难点:综合运用圆的知识解答生活中遇到的实际问题,探究起跑线位置的设置与什么有关。

教学准备:多媒体课件 练习本 教学过程

一、创设情景,提出问题:

1、播放202_年世界田径锦标赛男子100米决赛场面,博尔特以9秒58创新世界纪录。

师:为什么那么多人为这9秒58而欢呼不停?

(与学生聊一聊比赛中公平的话题。)

2、播放202_年世界田径锦标赛男子400米决赛场面。

师:看了两个比赛,你们有什么发现,又有什么想法?

学生交流:①100米跑运动员站在同一条起跑线上,而400米跑运动员为什么要站在不同的起跑线上?

②400米跑的起跑线位置是怎样安排的?外面跑道的运动员站在最前,这样公平吗?

3、今天,我们就带着这些问题走进运动场。(板书课题)

二、观察跑道、探究问题:

(一)观察思考,找出问题关键。

师:观察跑道图,每条跑道一圈的长度相等吗?差别在哪里?比赛的时候,是怎样解决这个问题的?怎样才能做到公平?

(二)分析比较,确定解决问题思路。

1、小组交流:观察跑道图,说一说,每一条跑道具体是由哪几部分组成的?内外跑道的差异是怎样形成的?

学生充分交流得出结论:

①跑道一圈长度=2条直道长度+一个圆的周长

②内外跑道的长度不一样是因为圆的周长不一样。

2、小组讨论:怎样找出相邻两个跑道的差距?

①分别把每条跑道的长度算出来,也就是计算2个直道长度与一个圆周长的总和,再相减,就是相邻两条跑道的差距。

②因为跑道的长度与直道无关,只要计算出各圆的周长,再算出相邻两圆的周长相差多少米,就是相邻跑道的差距。

(三)计算验证,解决问题:

师:计算圆的周长要知道什么?

生:直径

师:第一道的直径为72.6米,第二道是多少?第三道呢?

(让学生选择自己喜欢的方法进行计算)

方法一:计算完成下表。

方法二:

75.1×3.14-72.6×3.14=7.85(m)

77.6×3.14-75.1×3.14=7.85(m)„„

师:刚才大家通过计算已经知道了400米跑相邻两个跑道长度大约相差7.85米,也就是相邻跑道的起跑线应该相差7.85米。哪一种方法更快更简便呢?

生:第二种方法更简便。

师:如果我们计算圆的周长时直接用π表示,你有什么发现?

(72.6+1.25×2)π-72.6π

=72.6π-72.6π+1.25×2×π

=1.25×2×π

(75.1+1.25×2)π-75.1π

=75.1π-75.1π+1.25×2×π

=1.25×2×π „„

(相邻跑道起跑线相差都是“跑道宽×2×π”)

师:从这里可以看出:起跑线的确定与什么关系最为密切?

生:与跑道的宽度关系最为密切。

小结:同学们经过努力终于找到了确定起跑线的秘密!其实只要知道了跑道的宽度,就能确定起跑线的位置。

三、巩固应用,形成技能:

小学生运动会的跑道宽比成人比赛的跑道宽要窄些,要开小学生运动会,你能帮裁判计算出相邻两条跑道的起跑线又该相差多少米吗?400米的跑步比赛,跑道宽为1米,起跑线该依次提前多少米?如果跑道宽是1.2米呢?

四、回顾小结,体验收获:

谈一谈,这节课你有什么收获?

五、作业

测量自己所在学校的操场的跑道宽度,计算一下如果学校要举行400米的跑步比赛,起跑线该依次提前多少米?

六、板书

(72.6+1.25×2)π-72.6π

=72.6π-72.6π+1.25×2×π

=1.25×2×π

(75.1+1.25×2)π-75.1π

=75.1π-75.1π+1.25×2×π

=1.25×2×π „„

相邻跑道起跑线相差都是“跑道宽×2×π”

七、教学反思

实际生活解释说一说,体会数学与生活的联系同差异。结合这样的一堂课的教学和体会怎样有效的处理好教材,把握好教材,确定教学目标和重难点,以及对随机的学生课堂状况进行把握和及时地调整,这是需要在以后的教学和思考中进一步的提升。

《确定起跑线》教学反思
TOP